A NOTE ON UNITS OF ALGEBRAIC NUMBER FIELDS

TOMIO KUBOTA

We shall prove in the present note a theorem on units of algebraic number fields, applying one of the strongest formulations, be Hasse [3], of Grunwald's existence theorem.

THEOREM. Let k be an algebraic number field, l a prime number, E_k the group of units of k and H a subgroup of E_k containing all l-th powers of elements of E_k . Assume that, for every $\eta \in H$, $k(\sqrt[l]{\eta})$ is always ramified over k whenever k contains an l-th root ζ_l ($\neq 1$) of unity. Then there are infinitely many cyclic extentions K/k of degree l with following properties:

- a) $N_{K/k}E_K = H$, where E_K is the group of units of K.
- b) if an ideal a of k is principal in K, then a is principal in k.

Proof. Denote by B the group of elements β of $k^{\times 1}$ such that (β) is an *l*-th power of some ideal in k, and denote by \mathfrak{C} the group of ideal classes of k. Let W be the group generated by H and all *l*-th powers of elements of k^{\times} , and let

(1)
$$B = B_0 \supset B_1 \supset \ldots \supset B_{s-1} \supset B_s = W$$

be a sequence of subgroups of B such that $(B_{i-1}: B_i) = l$ for every $i (1 \le i \le s)$. As preliminaries, we shall prove that, for every *i*, there is a prime ideal \mathfrak{p}_i of k which satisfies the following conditions: i) an element γ of B_{i-1} is an *l*-th power of some element in the \mathfrak{p}_i -adic field $k_{\mathfrak{p}_i}$ if and only if γ belongs to B_i . ii) The set of ideal classes of $\mathfrak{p}_1, \ldots, \mathfrak{p}_s$ contains an independent base of $\mathfrak{C}/\mathfrak{C}^l$. Assume first that $k \not \equiv \zeta_l$. Set $k_l = k(\zeta_l)$. Let $\Lambda = k_l(\sqrt[l]{B})$ be the field obtained from k_l by adjoining all *l*-th roots of elements of B. Then Λ contains no cyclic extention of degree *l* over *k*. For, if L/k is cyclic of degree *l*, and $L \subset \Lambda$, then $k_l L/k$ is abelian, $k_l L/k_l$ is cyclic of degree *l* and therefore $k_l L = k_l(\sqrt[l]{B})$, where

Received March 3, 1955.

¹⁾ We shall use this notation to stand for the multiplicative group of non-zero elements of a field.

TOMIO KUBOTA

 β is an element of *B*. But this is impossible because $k_l(\sqrt[l]{\beta})/k$ is apparently non-abelian. Thus we see that, if Z_l is the class field over \mathbb{S}^l , then

(2)
$$k_l(\sqrt[l]{B}) \cap Z_l = k.$$

Let β_i $(1 \leq i \leq s)$ be an element of B_{i-1} which does not belong to B_i . Set $k_l(\sqrt[l]{\beta_i}) = k_i, k_l(\sqrt[l]{B_i}) = k'_i$. Then since W contains all *l*-th powers of elements of k^{\times} and since every element of k, being an *l*-th power of some element in k_l , is already an *l*-th power of some element in $k_i^{(2)}$ we have $k_i \cap k'_i = k_l$. Therefore it gives infinitely many prime ideals q_i of k_l which are of degree 1 over k and such that

(3)
$$\left(\frac{k_i/k_l}{\mathfrak{q}_i}\right) \neq 1, \quad \left(\frac{k_i'/k_l}{\mathfrak{q}_i}\right) = 1.$$

Let \mathfrak{F}_i be the set of prime ideals \mathfrak{p}_i of k divisible by some \mathfrak{q}_i . Then since $k_{\mathfrak{p}_i} = k_{l,\mathfrak{q}_i}$, the condition i) is an immediate consequence of (3) and the theory of Kummer extentions. On the other hand, it is easily seen that \mathfrak{F}_i contains a *prime ideal clase*³⁾ of k with respect to Λ . To prove the condition ii), it is sufficient to show that every class of ideals of k modulo \mathfrak{G}^l contains a prime ideal of \mathfrak{F}_i . But this is actually the case because it follows from (2) that every *prime ideal class* of k with respect to Λ intersets with every class of ideals modulo \mathfrak{G}^l . Now, assume that $k \supseteq \zeta_l$. Then every cyclic subfield over k of Z_l is of the form $k(\sqrt[l]{\beta})$, where $\beta \in B$. But the assumption in the theorem implies $\beta \notin W$. Therefore the elements β_1, \ldots, β_s ($\beta_i \in B_{i-1}, \notin B_i$) can be so chosen that we have $Z_l \subset k(\sqrt[l]{\beta_1}, \ldots, \sqrt[l]{\beta_s})$. Set, as before, $k_i = k(\sqrt[l]{\beta_i}), k'_i = k(\sqrt[l]{\beta_i})$, k'_i and $(\frac{k_i/k}{p_i}) \neq 1, (\frac{k_i'/k}{p_i}) = 1$.

Making use of the condition i), we can conclude that, for every $i \ (1 \le i \le s)$, there is a character χ_i of $k_{p_i}^{\times}$ which is of order l and such that

(4)
$$\chi_i(\beta_i) \neq 1, \quad \chi_i(\beta_i) = 1.$$

Now, it follows from Grunwald's theorem that there are infinitely many cyclic extention K/k of degree l with following properties: I) Besides the prime ideals p_i , it gives one and only one prime ideal and no infinite place of

²⁾ See Hasse [3], §1, Satz 1.

³⁾ See Hasse [2], II, §24.

k which ramifies in $K^{(4)}$ ii) There is an isomorphism φ between the Galois group of K/k and the group of all *l*-th roots of unity such that

(5)
$$\left(\frac{\alpha, K/k}{\mathfrak{p}_i}\right)^{\varphi} = \chi_i(\alpha),$$

where α is an arbitrary element of k^{\times} . We propose to prove that the field K has the required properties.

Let \mathfrak{a} be an ideal of k. Assume that $\mathfrak{a} = (A)$, where $A \in K$. Then we have $\mathfrak{a}^{l} = N_{K/k}\mathfrak{a} = (N_{K/k}A)$. On the other hand, it follows from (4), (5) that $N_{K/k}A \in W$. This means that $(N_{K/k}A) = (\alpha)^{l}$ for an element α of k, whence $\mathfrak{a} = (\alpha)$ and the property b) is verified. To prove a), we make the following observation. Since from (4) and (5) follows, as before, $H \supseteq N_{K/k}E_{K}$, it suffices to prove that

(6)
$$(E_k: N_{K/k}E_K) \leq (E_k: H)$$

Denote by a the group of ideals of k, by (α) the group of principal ideals of k, by \mathfrak{A}_0 the group of ambiguous ideals of K/k and by (A_0) the group of principal, ambiguous ideals of K/k. Let further E_0 be the group of units E_0 of K such that $N_{K/k}E_0 = 1$, and let σ be a generator of the Galois group of K/k. Then we obtain easily the following relations:

(7)
$$(\mathfrak{A}_0:\mathfrak{a})/(\mathfrak{A}_0:(A_0)\mathfrak{a}) = ((A_0):(\alpha))/((A_0) \cap \mathfrak{a}:(\alpha)),$$

(8)
$$(\mathfrak{A}_0 : \mathfrak{a}) = l^{s+1},$$

(9)
$$(A_0)/(\alpha) \cong E_0/E_K^{1-\sigma}.$$

Since the condition ii) is satisfied, we may assume that the set of ideal classes of $\mathfrak{p}_1, \ldots, \mathfrak{p}_t$ is an independent base of $\mathfrak{C}/\mathfrak{C}^l$, where t is determined by l^t $= (\mathfrak{C} : \mathfrak{C}^l)$. Now assume that $\mathfrak{p}_i = \mathfrak{P}_i^l$ in K and that $\mathfrak{P}_1^{\mathfrak{v}_1} \ldots \mathfrak{P}_t^{\mathfrak{v}_t} \in (A_0)\mathfrak{a}$. Then we have $\mathfrak{P}_1^{\mathfrak{l}\mathfrak{v}_1} \ldots \mathfrak{P}_t^{\mathfrak{l}\mathfrak{v}_t} = \mathfrak{p}_1^{\mathfrak{v}_1} \ldots \mathfrak{p}_t^{\mathfrak{v}_t} \in (A_0)^l \mathfrak{a}^l \subset (\alpha)\mathfrak{a}^l$; therefore every $\mathfrak{p}_i^{\mathfrak{v}_i}$ belongs to an ideal class of \mathfrak{C}^l . Thus we have

(10)
$$(\mathfrak{A}_0:(A_0)\mathfrak{a}) \ge l^t.$$

Furthermore, the property b) implies

(11)
$$((A_0) \cap \mathfrak{a} : (\alpha)) = 1$$

⁴⁾ See Hasse [3]. "Starker Existenzsatz (zykilscher Fall mit Primzahlpotenzordnung)" at p. 45, especially its "Genauer"-part. In the case of prime degree l, this theorem is applicable without any extention of the set \mathfrak{D} , as we learn from its proof.

TOMIO KUBOTA

and finally we can conclude by means of Herbrand's lemma⁵⁾ that

(12)
$$(E_0: E_K^{1-\sigma}) = l(E_k: N_{K/k}E_K).$$

It follows from (7), (8), (9), (10), (11) and (12) that $l^{s+1}/l^t \ge l(E_k : N_{K/k}E_K)$, whence $(E_k : N_{K/k}E_K) \le l^{s-t}$, which shows that (6) is true. The theorem is thereby completely proved.

COROLLARY. k and E_k being the same as in the theorem, let l be a prime number which does not divide either the class number of k or the number of roots of unity in k, and let H be any subgroup of E_k containing all l-th powers of elements of E_k . Then there are infinitely many cyclic extentions K/k of degree l with the properties a) and b).

References

- [1] Chevalley, C., Class field theory, Nagoya University (1953/54).
- [2] Hasse, H., Bericht, I (1926), I a (1927) and II (1930).
- [3] Hasse, H., Zum Existenzsatz von Grunwald in der Klassenkörpertheorie, J. Reine Angew. Math., 188 (1950), 40-64.
- [4] Whaples, G., Non-analytic class field theory and Grunwald's theorem, Duke Math. J., vol. 9 (1942), 455-473.

Mathematical Institute, Nagoya University

⁵⁾ See Chevalley [1], §10.