ON THE DIMENSION OF MODULES AND ALGEBRAS. I

SAMUEL EILENBERG,* MASATOSHI IKEDA and TADASI NAKAYAMA

In [5], Ikeda-Nagao-Nakayama gave a characterization of algebras of cohomological dimension $\leq n$. In a subsequent paper [4] Eilenberg gave an alternative treatment of the same question. The present paper is devoted to the discussion of a number of questions suggested by the results of [4] and [5]. Among others it is shown that the conditions employed in stating the main results in [4] and [5] are equivalent, so that the main results of these two papers are in accord. Further, the cohomological dimension of a residue-algebra is studied in terms of that of the original algebra and the (module-) dimension of the associated ideal. The terminology and notation employed here are that of [3].

§ 1. Modules and quasi-modules

Throughout this paper, Λ will denote an algebra over a commutative ring K. It is always assumed that Λ has a unit, and this unit acts as the identity on all Λ -modules.

In addition to Λ -modules we shall also consider quasi-modules in which it is no longer assumed that the unit element 1 of Λ operates as the identity; however the unit element ε of K still operates as the identity. Explicitly a (left) Λ -quasi-module is a K-module Λ together with a homomorphism

$$\Lambda \otimes_{\kappa} A \to A$$

satisfying

$$\gamma(\lambda a) = (\gamma \lambda)a \qquad (\gamma, \lambda \in \Lambda; a \in A)$$

where λa is the image of $\lambda \otimes a$.

Clearly each Λ -module is a Λ -quasi-module. Further each K-module A may

Received June 21, 1954.

^{*} This work was done while S. Eilenberg was engaged under contract AF-18 (600)-562.

also be regarded as a Λ -quasi-module with $\lambda a = 0$ for all $\lambda \in \Lambda$, $a \in \Lambda$. In a sense, these two classes exhaust the picture. Indeed, for each Λ -quasi-module Λ we have the direct sum decomposition (due to Peirce)

$$A = 1A + A^{\bullet}$$

where A^{\bullet} consists of all elements $a \in A$ with 1a = 0. Clearly 1A is a A-module, while A^{\bullet} is just a K-module converted into a A-quasi-module as above.

A Λ -module A is *projective* if for every epimorphism (i.e. onto-homomorphism)

$$\varphi:B\to A$$

of Λ -modules, there exists a Λ -homomorphism $\psi: A \to B$ such that $\varphi \psi = \text{identity}$. A is said to be *injective* if for each monomorphism (i.e. (into-)isomorphism)

$$\varphi:A\to C$$

of A-modules, there exists a A-homomorphism $\psi: C \to A$ with $\psi \varphi = \text{identity}$.

Replacing in the above definitions all modules by quasi-modules we obtain the notions of a projective quasi-module and of an injective quasi-module.

Proposition 1. A Λ -quasi-module A is projective [injective] if and only if 1A is a projective [injective] Λ -module and A^{\bullet} is a projective [injective] K-module.

Proof. Let $\varphi:B\to A$ be an epimorphism of \varLambda -quasi-modules. Then φ decomposes into two components

$$\varphi_1: 1B \to 1A, \qquad \varphi_2: B^{\bullet} \to A^{\bullet}$$

A map $\phi: A \to B$ with $\varphi \phi = \text{identity exists if and only if such maps exist for } \varphi_1$ and φ_2 . This yields the desired conclusion.

This proposition implies that a Λ -module A is projective [injective] if and only if it is projective [injective] as a quasi-module.

§ 2. The Hochschild quasi-operators

It will be convenient to denote by Λ^n the *n*-fold tensor product $\Lambda \otimes \ldots \otimes \Lambda$ where $\otimes = \otimes_K$. We may regard Λ^n as a two-sided Λ -module by setting

$$\lambda(\lambda_1 \otimes \ldots \otimes \lambda_n) = \lambda \lambda_1 \otimes \ldots \otimes \lambda_n,$$

$$(\lambda_1 \otimes \ldots \otimes \lambda_n) \lambda = \lambda_1 \otimes \ldots \otimes \lambda_n \lambda.$$

We consider the complex $S(\Lambda)$ with

$$S_n(\Lambda) = \Lambda^{n+2} \qquad n = 0, 1, \dots,$$

$$d(\lambda_0 \otimes \dots \otimes \lambda_{n+1}) = \sum_{i=0}^{n} (-1)^i \lambda_0 \otimes \dots \otimes \lambda_i \lambda_{i+1} \otimes \dots \otimes \lambda_{n+1}$$

and with the augmentation

$$\varepsilon: S_0(\Lambda) = \Lambda \otimes \Lambda \to \Lambda$$

given by $\varepsilon(\lambda_0 \otimes \lambda_1) = \lambda_0 \lambda_1$. This complex is acyclic as can be easily seen using the homotopy operator $\zeta: S_n(\Lambda) \to S_{n+1}(\Lambda)$ given by $\zeta x = 1 \otimes x$, $x \in S_n(\Lambda)$.

If Λ is assumed to be K-projective, then each Λ^n (n>1) is easily seen to be a $\Lambda \otimes \Lambda^*$ -projective module, where Λ^* is the inverse ring of Λ . Thus in this case $S(\Lambda)$ is $\Lambda \otimes \Lambda^*$ -projective resolution of Λ . This is the *standard complex* of Λ as defined in [3] (Ch. IX, §2).

Now let A be a left Λ -module which is K-projective. We consider the complex (of left Λ -modules)

$$S(A) = S(A) \otimes_{A} A$$

It is easy to see that S(A) is a projective resolution of A. We have

$$S_n(A) = S_n(A) \otimes_{\Lambda} A = A^{n+2} \otimes_{\Lambda} A$$
$$= A^{n+1} \otimes_{\Lambda} A \otimes_{\Lambda} A = A^{n+1} \otimes_{\Lambda} A.$$

In this notation we have

$$d(\lambda_0 \otimes \ldots \otimes \lambda_n \otimes a) = \sum_{i=0}^{n-1} (-1)^i \lambda_0 \otimes \ldots \otimes \lambda_i \lambda_{i+1} \otimes \ldots \otimes \lambda_n \otimes a + (-1)^n \lambda_0 \otimes \ldots \otimes \lambda_{n-1} \otimes \lambda_n a.$$

Since the complex S(A) is acyclic, we have

$$B_n(S(A)) = Z_n(S(A)).$$

Consequently we have the exact sequence

$$0 \to B_n(S(A)) \to S_n(A) \to \ldots \to S_0(A) \to A \to 0$$

Since $S_i(A)$ are Λ -projective, it follows that $B_n(S(A))$ is Λ -projective if and only if $1 \cdot \dim_{\Lambda} A \leq n+1$.

In addition to the already present Λ -operators on $S_n(A) = \Lambda^{n+1} \otimes A$ we introduce Λ -quasi-operators as follows

$$\lambda * x = d(\lambda \otimes x) = \lambda x - \lambda \otimes dx.$$

We calculate

$$\gamma * (\lambda * x) = \gamma * d(\lambda \otimes x) = \gamma d(\lambda \otimes x) = d(\gamma \lambda \otimes x) = (\gamma \lambda) * x$$

so that indeed we have quasi-operators.

Proposition 2. If Λ and the left Λ -module A are both K-projective then for each n > 0 the following properties are equivalent:

- (i) 1. dim_{Λ} $A \leq n$,
- (ii) the left 1-module $B_{n-1}(S(A))$ is projective,
- (iii) the left Λ -module $1 * (\Lambda^n \otimes A)$ is projective,
- (iv) the left Λ -quasi-module $\Lambda^n \otimes A$ is projective.

Proof. The equivalence of (i) and (ii) has already been asserted above. We prove the equivalence of (ii) and (iii) by showing that $B_{n-1}(S(A))$ and $1 * (\Lambda^n \otimes A)$ coincide as Λ -modules. We have

$$1 * x = d(1 \otimes x) \in B_{n-1}(S(A)),$$

$$d(\lambda \otimes x) = \lambda * x = 1 * (\lambda * x) \in 1 * (\Lambda^n \otimes A)$$

which shows that $B_{n-1}(S(A))$ and $1*(\Lambda^n \otimes A)$ coincide as groups. Further if $x \in B_{n-1}(S(A))$ then dx = 0 and thus (*) yields $\lambda * x = \lambda x$ so that the Λ -operators also coincide.

To prove the equivalence of (iii) and (iv) consider the direct sum decomposition

$$A^n \otimes A = 1 * (A^n \otimes A) + (A^n \otimes A)^{\bullet}.$$

Since $\Lambda^n \otimes A$ is K-projective it follows that $(\Lambda^n \otimes A)^{\bullet}$ is K-projective. The conclusion thus follows from Prop. 1.

Remark. If n=0 then $B_{-1}(S(A))$ should be interpreted as the image of the augmentation $A\otimes A\to A$; thus $B_{-1}(S(A))=A$. Further if we interpret $A^0=K$ then $A^0\otimes A=A$. The quasi-operators are $\lambda*a=d(\lambda\otimes a)=\lambda a$ and coincide with the operators. With these interpretations Prop. 2 remains valid also for n=0.

§ 3. Discussion of dim 1.

Using the results of §2 it is now possible to close the gap between [4] and [5]. First we give a glossary translating the terminology used here into

that of [5] and [6]:

module — module
$$M$$
 satisfying $M = 1 M$,

quasi-module---module,

projective quasi-module— (M_0) -module,

injective quasi-module— (M_u) -module.

Let Λ be a K-algebra. The (cohomological) dimension of Λ may be defined as follows: dim $\Lambda \leq n$ if and only if the cohomology groups $H^q(\Lambda, A)$ vanish for all q > n and all two-sided Λ -modules A.

Assume that K is a field and that $(\Lambda:K) < \infty$. Let N denote the radical of Λ . The main result of [5] may now be stated as follows:

For n > 0, the condition

(a)
$$\dim \Lambda \leq n$$

is equivalent with the set of two conditions

(b)
$$\Lambda/N$$
 is separable,

(c)
$$1 * (\Lambda^{n-1} \otimes N)$$
 is projective.

In view of Prop. 2 (c) is equivalent with

(c')
$$1. \dim_{\Lambda} N \leq n$$

which is in turn equivalent with

(c") 1.
$$\dim_{\Lambda} (\Lambda/N) \leq n$$
.

This is the form of the result as established in [4]. Actually if (c'') is used, the main result remains valid also for n = 0.

Remark. In [5] it is proved also that (a) implies

(c₀)
$$1 * (\Lambda^{n-1} \otimes 1)$$
 is projective for any left ideal 1 of Λ .

This is equivalent to

$$(\mathbf{c}_0') 1. \dim_{\Lambda} \mathfrak{l} < n$$

or

$$(\mathbf{c}_0^{\prime\prime}) \qquad \qquad 1.\dim_{\Lambda} (\Lambda/\mathfrak{l}) \leq n.$$

This last inequality is a consequence of the general inequality 1. gl. dim $\Lambda \leq \dim \Lambda$ (see [4], Corollary 5).

§ 4. An inequality

Let Λ and Λ' be rings and

$$\varphi: \Lambda \to \Lambda'$$

a ring homomorphism. By means of this homomorphism, each left Λ' -module may also be regarded as a left Λ -module.

Proposition 3. For each left Λ' -module A we have

$$1. \dim_{\Lambda} A \leq 1. \dim_{\Lambda'} A + 1. \dim_{\Lambda} \Lambda'$$
.

Proof. This proposition could be derived directly from a spectral sequence established in [3] (Ch. XVI, §5), however we shall give an elementary inductive proof here.

Let p = 1. $\dim_{\Lambda'} A$ and q = 1. $\dim_{\Lambda} \Lambda'$. Clearly we may assume that p and q are finite. For each free Λ' -module F we have 1. $\dim_{\Lambda} F = q$, and therefore for each direct summand P of F we have 1. $\dim_{\Lambda} P \leq q$. This proves the proposition if A is Λ' -projective i.e. if p = 0.

From here we proceed by induction with respect to p. We assume p > 0 and assume that the proposition holds for Λ' -modules A of left dimension (over Λ') smaller than p. Let

$$0 \rightarrow B \rightarrow X \rightarrow A \rightarrow 0$$

be an exact sequence of Λ' -modules with $X \Lambda'$ -projective. Then

1.
$$\dim_{A'} X = 0$$
, 1. $\dim_{A'} B = p - 1$

and therefore by the inductive assumption

1.
$$\dim_{\Lambda} X \leq p , 1. $\dim_{\Lambda} B .$$$

For each left Λ -module C we have the exact sequence

$$\operatorname{Ext}_{\Lambda}^{p+q}(B, C) \to \operatorname{Ext}_{\Lambda}^{p+q+1}(A, C) \to \operatorname{Ext}_{\Lambda}^{p+q+1}(X, C)$$

and since the extreme terms are zero, so is $\operatorname{Ext}_{\Lambda}^{p+q+1}(A, C)$. Thus $\operatorname{l.dim}_{\Lambda} A \leq p+q$, as required.

Corollary 4. If Λ' is semi-simple, then

l.
$$\dim_{\Lambda} A \leq l$$
. $\dim_{\Lambda} \Lambda'$

for each left 1'-module A.

Theorem 5. Let Λ be a K-algebra over a field K with $(\Lambda:K)<\infty$, and let $\mathfrak l$ be a two-sided ideal contained in the radical N of Λ . Denoting $\Lambda'=\Lambda/\mathfrak l$, we have

$$\dim \Lambda \leq \dim \Lambda' + 1 \cdot \dim_{\Lambda} \Lambda'$$
.

Proof. Let N' = N/!. Then N' is the radical of Λ' and $\Lambda/N \cong \Lambda'/N'$. Clearly we may assume that dim $\Lambda' < \infty$. This implies that Λ'/N' is separable (see preceding section). Since both Λ/N and Λ'/N' are separable it follows from the preceding section that

dim
$$\Lambda = 1$$
. dim _{Δ} $(\Lambda/N) = 1$. dim _{Δ} (Λ'/N') dim $\Lambda' = 1$. dim _{Δ'} (Λ'/N') .

Thus the desired inequality follows from Prop. 3 with A = A'/N'.

Remark. If instead of $l \subset N$ we have $N \subset l$ then Cor. 4 is applicable.

§ 5. Cartan Matrix

In proving that if dim $\Lambda < \infty$ then Λ/N is separable an important role is played by the Cartan matrix $M(\Lambda)$. In fact, denoting by Λ_L the algebra obtained from Λ by passing to the algebraic closure L of K, it was proved in [4] and [5] that if dim $\Lambda < \infty$ then det $M(\Lambda_L) = \pm 1$. An algebra Λ is called *primary* if Λ/N is simple. A direct product (sum) of a finite number of primary algebras is called *primarily decomposable*. An algebra Λ is called *absolutely primarily decomposable* if for each extension K' of K, the algebra $\Lambda_{K'}$ is primarily indecomposable. It suffices that this be the case for the algebraic closure L of K. For a structural characterization of absolutely primarily decomposable algebras see [1], § 1.

Proposition 6. If the algebra \varLambda is absolutely primarily decomposable then dim $\varLambda=0,\ \infty$.

Proof. Since dim Λ remains unchanged under extensions of the ground field we may assume that K is algebraically closed. If is semi-simple (i.e. separable) then dim $\Lambda=0$. We may thus assume that Λ is not semi-simple. Let Λ_1 be one of the primary components of Λ with a non-zero radical N_1 . Now all the primitive idempotents in Λ_1 are isomorphic and if e_1 is one of them then $e_1N_1e_1 \neq 0$. Thus

$$\det M(\Lambda_1) = (e_1 \Lambda_1 e_1 : K) = (e_1 N_1 e_1 : K) + (e_1 (\Lambda_1 / N_1) e_1 : K) > 1.$$

Since det $M(\Lambda)$ is the product of det $M(\Lambda_i)$ where Λ_i runs through all the primary components of Λ it follows that det $M(\Lambda) > 1$. Therefore by the result quoted above we have dim $\Lambda = \infty$.

There are other situations in which it can be proved that $\dim \Lambda = \infty$ by showing that the matrix $M(\Lambda_L)$ is not inversible. The converse however is not true as will be shown by an example. Indeed, we shall construct an algebra Λ over any field K such that $\dim \Lambda = \infty$ but $\det M(\Lambda_L) = -1$.

Let K be an arbitrary field. Given $\alpha = (\alpha_1, \ldots, \alpha_{12}), \alpha_i \in K$, we consider the matrices

$$m_{1}(\alpha) = \begin{vmatrix} \alpha_{1} & 0 & 0 & 0 & 0 \\ \alpha_{3} & \alpha_{2} & 0 & 0 & 0 \\ \alpha_{4} & 0 & \alpha_{2} & 0 & 0 \\ \alpha_{5} & 0 & 0 & \alpha_{2} & 0 \\ \alpha_{10} & \alpha_{8} & \alpha_{7} & \alpha_{6} & \alpha_{1} \end{vmatrix}, \qquad m_{2}(\alpha) = \begin{vmatrix} \alpha_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ \alpha_{11} & \alpha_{2} & 0 & 0 & 0 & 0 & 0 \\ \alpha_{8} & 0 & \alpha_{1} & 0 & 0 & 0 & 0 \\ \alpha_{7} & 0 & 0 & \alpha_{1} & 0 & 0 & 0 \\ \alpha_{6} & 0 & 0 & 0 & \alpha_{1} & 0 & 0 \\ \alpha_{12} & 0 & 0 & 0 & 0 & \alpha_{2} & 0 \\ \alpha_{9} & \alpha_{11} & \alpha_{3} & \alpha_{4} & \alpha_{5} & \alpha_{12} & \alpha_{2} \end{vmatrix},$$

$$m(\alpha) = \begin{vmatrix} m_1(\alpha) & 0 \\ 0 & m_2(\alpha) \end{vmatrix}.$$

The matrices $m(\alpha)$ form an algebra Λ with $(\Lambda: K) = 12$. Basis elements $x_i \in \Lambda$ (i = 1, ..., 12) are obtained by taking $x_i = m(\alpha)$ where $\alpha_j = \delta_{ij}$.

The elements x_1 and x_2 are primitive idempotents with $x_1 + x_2 = 1$. Further computation shows that

$$x_1 \Lambda x_1 = x_1 K + x_{10} K,$$

 $x_1 \Lambda x_2 = x_6 K + x_7 K + x_8 K,$
 $x_2 \Lambda x_1 = x_3 K + x_4 K + x_5 K,$
 $x_2 \Lambda x_2 = x_2 K + x_9 K + x_{11} K + x_{12} K.$

This implies that the idempotents x_1 and x_2 are not isomorphic and thus form a maximal set of non-isomorphic idempotents in Λ . Thus the Cartan matrix of Λ is

$$M(\Lambda) = \begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix}$$

with determinant -1. The ground field K played no role in the argument and the result remains valid for any extension of K.

Next consider the K-homomorphism $\varphi: \Lambda \to K$ given by

$$\varphi(m(\alpha)) = \alpha_9 + \alpha_{10}.$$

We have

$$\varphi(m(\alpha)m(\beta)) = \alpha_{11}\beta_{11} + \alpha_{12}\beta_{12} + \sum_{i=1}^{10} \alpha_i\beta_{10-i}.$$

This shows that

$$\varphi(m(\alpha)m(\beta)) = \varphi(m(\beta)m(\alpha))$$

and that if $\varphi(m(\alpha)m(\beta)) = 0$ for all $m(\alpha)$ then $m(\beta) = 0$. Thus the hyperplane $\varphi = 0$ contains no left ideals (except zero) and contains all commutators. Thus Λ is a symmetric algebra and therefore also a Frobenius algebra (see [2]). For such algebras it has been proved in [5] that dim $\Lambda = 0$, ∞ . However Λ is not semi-simple since x_3, \ldots, x_{12} are nilpotent. Thus dim $\Lambda = \infty$.

Remark. The argument that dim $\Lambda = \infty$ remains valid if K is an arbitrary commutative ring (with a unit element). This follows from the generalized treatment of symmetric and Frobenius algebras that will appear in the next paper in this series.

BIBLIOGRAPHY

- [1] G. Azumaya and T. Nakayama, On absolutely uni-serial algebras, Jap. J. Math. 19 (1948), 263-273.
- [2] R. Brauer and C. Nesbitt, On the regular representations of algebras, Proc. Nat. Acad. Sci. U.S.A. 23 (1937), 236-240.
- [3] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press (1954).
- [4] S. Eilenberg, Algebras of cohomologically finite dimension, Comment. Math. Helv. (to appear).
- [5] M. Ikeda, H. Nagao and T. Nakayama, Algebras with vanishing n-cohomology groups, Nagoya Math. 7 (1954), - .
- [6] H. Nagao and T. Nakayama, On the structure of (M_0) and (M_u) -modules, Math. Zeit. 59 (1953), 164-170.

Columbia University
Osaka University
Nagoya University