
ALGEBRAS WITH VANISHING M-COHOMOLOGY GROUPS

MASATOSHI IKEDA, HIROSHI NAGAO

and TADASHI NAKAYAMA

Cohomology theory for (associative) algebras was first established irt

general higher dimensionalities by G. Hochschild [3], [4], [5]. Algebras with

vanishing 1-cohomology groups are separable semisimple algebras ([3], Theorem

4.1). On extending and refining our recent results [6], [8]? [12], we establish

in the present paper the following:

Let n ^ 2. Let A be an (associative) algebra (of finite rank) possessing

a unit element 1 over a field Ω, and Ar be its radical. If the w-cohomology

groups of A all vanish, then

a) the semisimple residue-algebra ^4/iVis separable, and

/3) for every left-ideal f of A the A-left-submodule

KAx . . . xΛxO (with n-2 A's)

of the Kronecker product (over Ω) Ax Ax ... x A (with n-l A's) is an

(Mo)-module (see below), where the operation of A on Ax Ax ... x A is-

defined by a(xιXx2x . . . xxn-ι) = aX\Xχ2 x . . . x Xn-i - a xχiX 2x . . . xxn-ι

+ . . . + ( -l)n~2(aXX! X . . . X Xn-2Xn-i), (<*, Xi, . . . , Xn-lE: A). (Oΐϊ t h e

submodule 1(Λ x A x . . . x A) = A(A x Ax ... x A) (whence on 1(A x A

x . . . xAxΐ)) this operation coincides, however, with the ordinary operation

which simply operates, from the left, on the first component.) (In proving 0)

we do not need to assume A to be of finite rank.)

Conversely, if a) is the case and if

βi) the A-left-module K A x . . x A x N), with n = 2 Λ's, is an (Mo)-module,

then all the ^-cohomology groups of A are 0.

This paper was first submitted to the Transactions of the American Mathematical
society, received by the Editors of that Journal on December 2, 1953, accepted for publi-
cation in that Journal, and subsequently transfered to the Nagoya Mathematical Journal
by request of the authors, who planned jointly with S. Eilenberg a series of papers on
related subjects to be published in this latter Journal. A revision was made, on April 10,.
1954, at the occasion of transfer.
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Thus either the pair a), β) or the pair a), ft) is necessary and sufficient

for A to have vanishing w-cohomology groups. Needless to say that our theorem

contains [4], Theorem 8 as a very special case.

Now, we call a left-, say, module m of A an (Mo)-module when the follow-

ing condition is satisfied: if m is A-isomorphic to a residule-module W/n then

Wt is a direct sum of n and a second A-submodule mf (necessarily A-isomorphic

with m), 5Dt = m'Θn. A structural characterization, for an A-left-module m to

be an (Mo)-module, is that 1 m should be a direct sum of A-submodules A-iso-

morphic to principal left-ideals of A generated by idempotent elements ([9]).

Hochschild [5]? Theorem 1.4 asserts that all the ^-cohomology groups of A

vanish if and only it Ax Ax . . . x A with nA's is an (Mo)-module when con-

sidered as an A-(double-)module with the left operation of A defined similarly

as above (with n in place of n-l) and with the ordinary right operation of A

(which simply operates, from the right, on the utmost right factor of the

Kronecker product). Let us observe that in β) or βi) the number of factors of

the Kronecker product is smaller by 1 than in this statement while the last

factor is an arbitrary left-ideal, in β), or the radical, in βι). Moreover, we are

dealing with one-sided modules, of A, instead of a two-sided one. We wish to

note also that in case « = 2we are, in β), βi), dealing simply with a left-ideal

or the radical under ordinary left multiplication of A. As for the case n = 3,

l(Axΐ) is the kernel of the (natural) homomorphism Axί-^ί = A x J .

Now, the vanishing of the fl-cohomology groups of A is expressed either

by class A ^ n, in the sense of Hochschild [4], or by dimA-£n — l, in the

sense of Cartan-Eilenberg [2]. Moreover, that an A-left-module m is an (Mo)-

module is equivalent to the fact that it is protective, i.e» of (A-left-)dimension

0, in the sense of Cartan-Eilenberg. Moreover, that the A-left-module 1(A

x . . . xAxm) with n-2 A's is an (Mo)-module (or projective, or of (A-left)

dimension 0) turns out to be equivalent to that the A-left dimension of m is

not greater than n - 2 a proof of this, together with some other results related

to the present paper, will be given in a joint paper by Eilenberg and two of

the present authors in Nagoya Math. Journal So our result may be expressed

also by saying that d i m A ^ w - 1 implies a) dimA/iV=0, jS) lάimAi^n-2

(ί being any left-ideal in A), and is implied by a) and βi) 1.dim AN ^ n - 2.

Further, we are informed by Eilenberg that he has an alternative treatment
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of our main theorem within the frame work of the Cartan-Eilenberg [2] theory

it will appear in Comment. Math. Helvetich

§ 1. Relative cohomology

Let A be an (associative) algebra, over a field Ω, and let ί be a left-ideaί

of A. Consider an .A-double-module m of A satisfying

(1) mί = 0.

We briefly recall the notion of ί-relative cohomology groups of A in in as it

was introduced in [12] our purpose is, and was in [12], to apply it in proving

our structural theorem for algebras with vanishing (ordinary) cohomology

groups, but the notion is perhaps of interest by itself. Let n be a natural

number, and consider the subgroup C"(A, m) of the w-cochain group Cn{A, m)

of A in m consisting of all those /2-cochains /—called {-relative cochains—

which satisfy the condition: f(xu AΓ2, . . . , xn) = 0 when xn G ί. We put

C\(A, in) = m. With the ordinary coboundary operator δ we have, as we see

readily,

(2) δCι'\A, m) iC?U, m).

Therefore, on putting

Z"(A, m) = C?(A, m)Γ\Zn{A, m),

Bΐ(A,m)=δCn

ί-
ι(AJ m),

where Z7\A, m) is the ordinary w-cocycle group, we obtain the group (in fact,.

J2-module)

H7{(A, m) =Z?(A f m)lBn

ι{A, m)

which we want to call the {-relative n-cohomology group of A in rn if we

speak simply of a cohomology group, we shall always mean an ordinary, non-

relative (i.e, a O-relative) cohomology group.

We consider C"(A, tn) as an .A-double-module, defining, for / e C\{A, m),

(3) (xf)(Xι, . . . , Xn) = Xf(Xi, . . . , Xn),

(fx)(Xu . , Xn) = XfiXi, - . , Xn) - δf(x, Xi, . . . , Xn)

(x, Xi, . . . , XnEiA). Then we obtain the following generalization of

Hochschild's reduction theorem:
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(4) HΓr(A, m)^Hr(A, Cn

{{A, m)),

where the right-hand side is the ordinary r-cohomology group of A in C7{(A, in).

The proof is exactly the same.as in the ordinary case.

§ 2. The modules Pn'\ Qnf\

Let n ̂  2 and define, after Hochschild, the Kronecker product, over Ω,

<5) Pn~x = AxAx . . . xAxA (with n-\ A's)

the following left operation of A:

(6) x(XιXX2X . . . XXn-2XXn-i)

= XXlXX2X . . . XXn-l- XXX1X2X . . . XXn-i

+ . . . + ( -l)n(χXXιX . . . XXn-zXn-i).

Let m be an A-left-module. We consider it as an A-double-module with

(7) mA = 0.

The (ordinary) (w-l)-cochain group Cn~\A, m) -CZΉA, m) may be identified

with the J2-module L(Pn~\ m) of all i?-linear mappings of Pn~ι into m. The

^4-double-module structure of Cn~ι{A, m), as defined in (3), reads as follows in

UPn'\ m): for φ e L(Pn~\ m), xGA, u(Ξ Pn~ι

(8) ί

(φx)(u) =ψ(xu)

(Observe (6) and (7)). The (ordinary) reduction theorem ((4) with ί = 0, r = 1

and n replaced by n-1) gives

(9) Hn(A, m)-H1(A,L(Pn'\ m)).

If here Hn(A, m) vanishes, so does Hι(A, UP"'1, m)) naturally. This means,

however, that every (Λ-left-module) extension of the A-left-module m by the

Λ-left-module Pn~x splits; the proof is exactly the same as in Hochschild [5],

§ 1. Asm is any Λ-left-module, this proves

LEMMA 1. If the {ordinary) n-cohomology groups of A in A-double-modules

annihilated by A on the right all vanish, then the A-left-module Pn~ι (as defined

in (5) with (6)) is an (Mo)"module for the notion of an (MQ)-module cf. the

introduction.
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Remark 1. In case A possesses a unit element 1, every Pι (i^l) is an

(Mo)-module as an A-left-module under the operation (6). This holds indeed

without any assumption on cohomology groups of A, and follows in fact readily

either from (9) and [4], Theorem 1 combined or from an inductive argument

which makes use of the homomorphisms of P* similar to those of Qιs (see below)

used in our proof of Theorem 4 below (cf. also [11], Lemma 4.1 and [6],

Proposition 2).

Next, let ί be a left-module of A, and put

(10) QΓ1 = Λ x . . . x A x ί (with n-2 A's).

This is a left-module of A under the operation (6), where we let xn-i now

stand for an element of ί. If in particular ί is a left-ideal of A, as we shall

assume in the rest of this section, then Qr{~1 is an A-submodule of the A-left-

module Pn~ι (with the operation (6)).

Further, let

(11) A = A°®1

be a decomposition of A into a direct sum of ί and an J2-submodule A0. With

x EL A we denote by Xs the A°-component of x in this decomposition. For

x, y e A, put

(12) xy = (xyΫ + λ(x,y) (λ(x,y)el).

Then we have, for x, y, z e A,

(13) λ(xy, z) = λ(x, (yz)°)+xλ(y, z),

(14) λ(x,I)=xl ( Z e ί ) .

Now let 9tt be an A-left-module and m an A-submodule of 3K. Let

(is) m = m1®m

be a direct decomposition of 9tt into m and an i2-submodule 3J11. With u G 9JΪ,

let li be the SD^-component of u with respect to (15). Putting, for x G A,

u e an,

(16) Λ:W= (ΛΓW)1^ /.((Λ:, U) (μ(x, ύ) G m),

we have, similarly as above,

(17) 1
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<18) μ(x, m) = xm (m e m).

Now assume that 2K/m is A-isomorphic to our A-left-module Qi'1. With

q G QΊ~\ let ct be the element of 3JΪ1 whose class modulo m corresponds to q

by the (once fixed) A-isomorphism of 5Dl/m and Q"'1. For the sake of brevity,

we write μ{x, q) in the place of μ{χ, #*).

Making m an A-double-module with

(19) mA = 0,

we consider the ί-relative (w-f-Ό-cocycle / in m defined by

(20) /(#o, Xi, . . . , Xn-2, }', z) = μ(Xo, XiX . . . Xtf«-.2XΛ0>, 2°)).

Indeed, we have

dfiw, xo, xι, . . ., Xn-2, y, z)

y, Z°))-μ(wXo, Xi X . . . XXn-2><λ(y, 2°))

n3

Σ( -
0

( { 9 XoX . . .

~ μ{w,

= WμiXo, XiX . . . XXn-2Xλ(y, Z0)) - (μ(w, XQ(XLX . . . X Xn-2 X λ(y, Z0)))

xxn-2Xλ(y, z0))) + (μ(w, xQ(xιX . . . xxn-2Xλ(y, z0))

. . . XXn-zXXn-2λ(y, 2°)))

+ ( -l)nμ(w, XoX . . . XXn-iXXn-sλiy, Z°)) = 0 ,

"by (17), (β) and (13). Thus

(21) /EiZι+i(Λ, m).

Suppose that there exists h e Cχ(A, m) such that

(22) δh =/,

i.e.

(23) μ(xo, XiX . . . xxn-2Xλ{y, 2°)) = δhixo, Xu . . ., xn-2, y, z).

Put, in view of (11),

<24) vixo, X1XX2X * > . XXn-i)

= ( - l)n~1h(Xo9 Xi, . . . , Xn-i) + μ(Xo9 XiX . . . XXn-2X (Xn-l - Xn~l^)-
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Then clearly

(25) v{Xo, XiX . - . XXn-2Xl)=M(Xo, Xi X - . XXn-tXΪ) (/6ί).

Further

. . . XXn-i)

o, Xi, . . . , Xn-i) +

. . . XXn-i)

= ( - l ^ M t l W o , ΛΓI, . . . , # » -

= ( -l)n~1h(lVXo, Xι, . . . , Xn-i)+μ(tV,

v{w, XQ(XIX . . . XXn-l))

= (-l)n-l(δk{w, Xo, Xu . . .,Xn-i)

— WhiXo, Xi, . . . , Xn-l) +k(wXo, Xi, . . . , Xn-i)

+ ( -lYμiw, X^XXiX . . . XΛr«-3X^(^n-2, Xn-i))

+ λ(w, ΛΓo(̂ lX . . . XXn-zX (Xn-i-x\ι-\))9

by (17), (6) and (12), whence

(26) Wv{Xo, XiX . . . XXn-i) -P(WXOT XiX . . . XXn-l)

+ v(iV, XoiXiX . . . XXn-i)) = ( -D^δhiw, XQ, XI, . . . , Xn-i)

-f ( -l)nμ{w, XoXXiX . . . XΛΓ«~3XΛ(ΛΓn-2, ΛΓ^-i)) = 0,

by (23).

Introduce now an J2-module 9ί isomorphic to Pn'\ and let, for u G Pn~\

u$ be the element of 9i which corresponds to u. Put

(27) © = 0l®m

and define, for u e P"" 1, m e m,

(28) jv(w§-f w) = (ΛΓ2/)§ + ^(Λ:, u)+xm.

(26) secures that this makes © an A-left-module. (25) shows that its sub-

module (Qi'1)^ ®m is -Δ-isomorphic to 2)1.

Thus we have the first half of the following theorem whose second half

may be seen simply by tracing the above calculation in reverse order.

THEOREM 1. Let 331 be an A-left-module and m be its A-submodule. Let

ΐ be a left-ideal of A and assume that 9Jl/m is A-isomorphic to the A-left-
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module Q?'1 (as defined in (10), with (6)). Define f<ΞZΓ\A,m) by ((12),

(16) #m/) (20), where we consider m #s an A-double-module by putting \\\A = 0.

7/*, ^ ^ ow/y if, the class of f in HΊ+1(A, m) is 0, £/*£ A-left-module W may be

imbedded, as A-left-module, into an A-left-module L such that there is an A-

left-isomorphism of 2/m with Pn~λ which coincides on ϊft/m with the given iso-

morphism of %R/m and QΊ~X( g P"" 1).

Now, assume that our algebra A is such that its (ordinary) w-cohomology

groups are all 0. Then its ί-relative (nΛ l)-cohomology groups are all 0, by

virtue of the reduction theorem (4). So the condition (f~~Q in Hχ+1(A, m))

is always satisfied in this case. We see thus that every extension, of m, by

Qχ+1 can be imbedded in an extension by Pn~ι, But our same assumption

implies, as we have seen in Lemma 1, that the A-left-module Pn~ι is an (Mo)-

module cf. also Remark there. The splitting of an extension by Pn~ι entails

naturally the splitting of the imbedded extension by Of"*1. Thus we have

THEOREM 2. Suppose that the (ordinary) n-cohomology groups of A all

vanish. Then, with any left-ideal ί of A, the A-left-module QΊ'1 (as defined in

(10) with (6)) is an (Mo)-module (or ivhat is the same, the unitary AΊeft-

module YQ\~ι is an (Mo)-module, provided that A possesses unit element I).

For the last reduction to a unitary module, see e.g. [9], Lemmas 1, 2. We

also remark that for the submodule lPn~ι, or APn~ι generally, of Pn~ι (whence

for \Q\~1, or AQ"'1) the operation (6) of A coincides with the ordinary oper-

ation which simply operates, from the left, on the utmost left component

Remark 2. As will be shown by one of us in a paper to appear in Journ.

Polytech. Osaka City Univ., our above argument may best be seen from the

exact sequence

Hn(A, m)=H1(A,L(Pn-\ m)) -£» Hι(A, L(QΓ\ m)) -Λ Hn

x'
ι(A,m)

for an A-double-module m with mA = 0. The mapping ψ is merely a restric-

tion. The mapping δ is obtained by extending, first, any cocycle in Zι(A,

L(Q"~\ m)) to a cochain in Cι(A, L(Pn~\ m)) and then taking the coboundary

of the extension. Our argument in the first half of the present section was to

make this last construction explicit (and to interprete it module-theoretically).

We see without much difficulty that our construction of / in (20) corresponds
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to what we obtain in the alluded construction by taking the extended cochain

so as to vanish on L(Ax . . . x Ax A0, m) (where we consider L{Pn~x, m) as

the direct sum of L(Ax . . . x A°, m) and L(Q"~\ m)).

§ 3. Lemmas

Let again A be an algebra over a field Ω.

LEMMA 2. Suppose that A possesses a unit element. An A-left-module m

is an (Mo)-module if and only if Im is a direct summand of a free A-left-

module. In case A is of finite rank over the ground field Ω, m is an (Mo)-

module if and only if 1 m is a direct sum of {a finite or infinite number of)

A-submodules A-isomorphic to principal left-ideals of A generated by primitive

idempotent elements.

Proof. A-left-module annihilated by A is an (Mo)-module, and the direct

sum of two A-left-module is an (Mo)-module if and only if each summand is

an (Mo)-module see [9], It follows then easily that we have only to consider,

in order to prove our lemma, an A-left-module satisfying 1 m = m. Clearly

every such A-left-module m is A-isomorphic to a residue-module of a free A-

left-module, say m0. If in is an (Mo)-module, m is a direct summand of m0.

On the other hand, a free A-left-module is evidently an (Mo)-module. Hence

its direct summand is an (Mo)-module.

The second half of the lemma follows immediatly from the first half in

case m is of finite rank over Ω. For the case (m : Ω) = oo we merely refer to

[9], since in our applications of the second half of the lemma, which we shall

make below, m will always be of finite rank over Ω.

LEMMA 3. Let A be an extension field of Ω and n be a natural number.

All n-cohomology groups of the algebra AΛ over A vanish, if and only if all n-

cohomology groups of A vanish.

Proof. The lemma could be derived from Hochschild [5], Theorem 1.4

and the fact that, with an A-module m, the AΛ-module mA is an (Mo)-module

(of AΛ) if, and only if, the A-left-module m is an (Mo)-module (of A); this

last fact follows readily from (the first half of) Lemma 2. But our lemma can

readily be seen directly as follows, as has been communicated by Hochschild.

If m is an A-double-module, the natural mapping of Hn(A, m) into Hn(AA, mΛ)
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is evidently an (into-)isomorphism in fact we have Hn(AA, inΛ) -Hn(A, m)Λ.

Hence Hn(AA, mΛ) = 0 implies Hn(A, m) = 0. Conversely, let / be an ^-cocycle

on AA in an AΛ-double module Ή, and suppose that Hn(A, Wl) = 0. Let / be

the restriction of / to A. Then / = δg, where g is an (n- l)-cochain for A in

3JI. Let gA be the natural extension of g to an (w — l)-cochain for AΛ in 2ft.

Then, clearly, / = δgA. Th\xsΉn(A, 2ft) = 0 implies Hn(AA, 2ft) = 0.

§ 4. Separability of

So far we did not assume that A is finite over Ω (except in the latter half

of Lemma 2). But we assume now that our algebra A, over Ω, is of finite

rank, and possesses a unit element 1. Let N be the radical of A.

Let

k mκ

(29) 1 = ΣΣe«,i
K = 1 i = 1

be a decomposition of 1 into mutually orthogonal idempotent elements in A

such that the left-ideals Aeκj and Ae\j are A-isomorphic (or, equivalently,

the right-ideals eKyiA and βxjA are A-isomorphic) when, and only when, K = λ.

Put

for the sake of simplicity for general structural theory of algebras see [7]

e.g.

We first assume that A/N is separable (over Ω). By Wedderburn's theorem,

there exists a (semisimple separable) subalgebra A of A such that

(31) A =

this is in fact a consequence of the fact the 2-cohomology groups of A/N all

vanish. The idempotent elements eκ,i may, and shall be taken from A. Further,

taking ί = N in (10), we consider the A-left-module

(32) QTι = AxAx . . . xAxN (with n-2 A's).

(with the operation of A as defined in (6)). As N is a two-sided ideal, QT1

may be regarded as an A-right-module with the ordinary operation of A from

the right (which simply operates, from the right, on the last component). In-

deed QT1 becomes then an A-double-module. It is in particular an A-A-
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(double-) module. We assert generally

LEMMA 4. An A-A-module m ivith mΆ = m is an (Mo)-module, as A-Ά-

module, if and only if it is an {Mo)-module as A-left-module.

The proof depends, naturally, on the separability of A and is rather simple.

See [8].

Now we consider the case where the irreducible representations of A in

Ω are all absolutely irreducible. This is equivalent to that {eκAeκleκNeκ : Ω)

= 1 for every K, and further to that the semisimple residue-algebra AIN is a

direct sum of matric algebras (of degrees nικ) over Ω. Moreover. A/N is cer-

tainly separable and we have (31).

On assuming, with a certain n ^ 2, that all the 72-cohomology groups of A

vanish, we have that the A-left-module QT1 is, by Theorem 1, an (Mo)-module,

and hence, by Lemma 4, the A-A-module QT1 is an (Mo)-module. The same

is the case with the unitary A-A-module 1QT1. Then, by virtue of Lemma 2,

applied to the Kronecker product algebra of A and an inverse-isomorphic image

of A, 1QT1 is a direct sum of A-A-submodules isomorphic to A-A-modules of

the form AeκxeχA. Denoting by tκ,\ the number of components isomorphic

to Aeκxe\A, we write, symbolically,

<33) l Q Γ ' ^
K, λ

Then we have, for each pair μ, v, the eμAeμ — e^Ω( = £VA#V)-isomorphism

(34) eμQy~ίe*

Hence

<35) (eμQT Σ μ ,
<

where

(36) cμκ=:{eμAeκ : Ω)

axe the Cartan invariants of A (See [1] or [10] for instance).

On the other hand, we consider Qn

s~
ι as an A-left-module under the ordi-

nary left-operation. Associating x^x x2x . . . x ^ - i G f t v " 1 with the element

XiixiX . . . xxn-i) of AQT2 = 1QT2 with our left-operation (6) ( w - 1 being

replaced by n-2), we have an A-homomorphic mapping of QT1, under the
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ordinary left-operation, upon 1Q%~2 (either under the operation (6) or the ordi-

nary operation; they coincide on l(?.v~2). The mapping is also A-right-homo-

morphic, under the ordinary right-operation, and its kernel is exactly 1QT1 \

cf. [11], Lemma 4.1, or [6], Proposition 2. It induces thus a homomorphism

from eμAxAx . . . xAxNev (^QT1) onto e^QV1^, and the kernel is

eμQTιe,. Hence we have

(37) UμQΓ 1^ : Ω)=rμ(A : Ω)n'3(s, - « v) - (eμQT2e, : Ω),

where

(38) rμ = (eμA : Ω) = Σ

(39) sv = (Ae* : Ω) = Σ

observe that (iWv : Ω) - sv — mv. Similarly we have

(40) (eμ©Γ 2*v : Ω) = r μ (A : £) n ~ 4 (s v - wιv) - (^μθΓ3^v : Ω),

and

(^μOJ βv : i2) = (eμNev : Ω) = cμ v - δμv.

Hence

(41) ( ^ O Γ ^ v : ώ) = r μ ( s v - w i v ) ( Σ ± U : i?)1") + ( - l ) w (c μ v - «μV).
t = 0

(In case n = 2 the vacuous sum on the right-hand side is to mean 0.) These

are independent of our cohomology assumption. Combining this (41) with the

relation (35), which we derived from the assumption that the /ί-cohomology

groups vanish, we have that their right-hand sides are equal. Putting

(42) q[n) = (sv - wiv)( Σ ± (A :
t»0

and observing (38), we thus have

(43) Έc^mλq[n) + ( - l)ncμλ -
λ Σ

This means that the matrix (cμV)μv has an inverse with integral coefficients,

and we have
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THEOREM 3. Let A be an algebra, of finite rank, over a field Ω possessing

a unit element. Assume that the irreducible representations of A in Ω are all

absolutely irreducible, and that all the n-cohomology groups of A vanish, for a

certain natural number n. Then the matrix C = (cκ\) of Cart an invariants of

A, with integral coefficients cκχ, has a determinant \C\ = ± 1 .

Next we prove

LEMMA 5. Let A be an algebra, of finite rank, over a field Ω possessing a

unit element 1. If the semisimple residue-algebra A /N modulo the radical N is

inseparable, over Ω, then the determinant of the matrix of the Cartan invariants

of Ax is divisible by the characteristic p of Ω, where A is the algebraic closure

of Ω.

To prove this lemma, we may, and shall, restrict ourselves to the case

where Ω has no separable (algebraic) proper extension, since any separable

extension of the ground field preserves the inseparability of the residue-algebra

modulo the radical. Thus we assume that the algebraic closure A is purely

inseparable over Ω. Then, by a theorem of Noether-Kothe, every division alge-

bra (of finite rank) over Ω is commutative. Thus every eκAeκleκNeκ (* = 1, 2,

. . . , k) is commutative, and is in fact a purely inseparable (proper or im-

proper) extension of Ω. Hence each {eκAeκlcκNe^)κ is completely primary and

each eκ remains primitive in AA. The composition residue-modules of the left-

module AAeκ/NAeΛ of AA are all isomorphic to AAeκ/Meκ, where M is the radi-

cal of AΛ, and are (eκAeκleκNeκ : Ω) in number. Here {eκAeκleκNeκ - Ω) is a

power of p, say p°κ. Hence, for each λ, the number cκχ of composition residue-

modules of AAeχ = (Aeλ)χ isomorphic to AAeκ/Meκ is equal to pa< times the

number of composition residue-modules of Aex isomorphic to AexlNex. So each

cκλ is a multiple of p°κ. Now, as A/N is assumed to be inseparable, there ex-

ists a suffix K such that eκAeκ/'eκNeκ is a (purely inseparable) proper extension

of Ω. Each cκχ with this K is thus a multiple of p°κ with aκ ^ 1, and the de-

terminant of the matrix (cμλ)μλ is certainly divisible by p, which proves our

lemma.

Combining Theorem 3 and Lemma δ we obtain the case with unit element

of the following theorem, to which the case without unit element can easily

be reduced by Hochschild [4], Theorem 3.
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THEOREM 4. Let A be an algebra, of finite rank, over a field Ω. If the n-

cohomology groups of A all vanish, with a certain natural number n, then the

residue-algebra A IN modulo the radical N is separable.

§5. Sufficiency proof

The sufficiency part of our main theorem was proved already in [8].

However, we repeat its proof briefly, for the sake of completeness. Let A be

an algebra finite over its ground Ω. Assume that A IN is separable, where N

is, as before, the radical of A. Then we have (31), where A is a (separable

semisimple) subalgebra of A (isomorphic with A/N). Then we have (cf. a

somewhat similar relation (9) for m with mA = 0).

LEMMA 6. Let m be a double-module of A satisfying

(44) mN=0.

Let Z(&v~\ m) be the module of all A-right-homomorphic mappings of QT1 into

m {where we consider Q"~ι under the ordinary right operation of A), and con-

sider it as a double-module of A by the operations given in (8) {where we con-

sider QT1 under the left operation (6) of A). Then

(45) Hn{A, m)τ=H1(A, Z{QT\ m)) (n* 2) .

We repeat the proof in [8] briefly. We first prove, that if / is an n-

cochain of A in an arbitrary double-module of A, with n^\, such that δf{xi,

x 2, . . . , Xn+i) = 0 whenever xn+i G A, then there exists an n- 1 cochain g of

A in the same module such that (/— δg){xi, ΛΓ2, . . . , xn) = 0 whenever xn G A.

This we may see by a well known argument on considering the right oper-

ation of A on QT1 symmetric to (6), using naturally the separability of A

cf. for a similar, but a little different, situation Hochschild [5], Lemma 10.1

and, more generally, Rose [13] or Shih [14], pp. 6-7.

Let now n ^ 2 and Cn(A, in) be the module of all w-cochains / of A in

m such that f(xι, x*, . . . , xn) = 0 when xn G A. and put Zn{A, nt) = Zn{A, m)

Γ)Cn{A, m). The above observation shown that Hn{A, m) is isomorphic tσ

Zn{A, m)/{dCn~1{A, m) Π Cn{A, m)). For each / e Zn{A, m) we put

(46) f*{xi){x2x . . . x*«-iXv)=/Ui, . . . , xn-i, y) (y<ΞN).

T h e n we see, by the assumed property of m, t h a t / Δ G Z\A, Σ(QT\ in)). If
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f&δCn~\A9 m) Π Cn(A, m) and / = δg' (g* e Cn~ι(A, m)), then our above con-

sideration, with n replaced by w — 1, shows the existence of h G Cn~\A9 m)

such that gf-δh& Cn'ι(A, m). Setting g = g' - dh and gA(xι x . . . x xn-2><y)

= g(xu . . , Xn-2, y) (vGΛO, we have g* e Σ(Qj - 1, m). We have further

Conversely, if FeZHA, Σ{QT\ m)), we have F = / A where / is an ele-

ment of Cn(A, m), in fact of Zn(A, m), with /(#i, . . . , #«-i, J>) = F(xi)(x2

x . . . x^-!X.y) (veiV). If here F=δG with C ε Σ ( f t Γ , m), then /=<*£

where # is an element of CnΉA, m.) with g(x1: . . . , ΛΓ«-2, y) = G"(ΛΓIX . . .

XΛΓn-2X3;^ (yGN). These assure the asserted isomorphism (45).

Now, on the other hand, the right-hand side of (45) is 0, when and only

when every enlargement of the Λ-A-module m by the Λ-A-module QT1 splits

-see e.g. [11], Lemma 3.1, and observe that, every enlargement is Λ-inessential.

Further, if the w-cohomology group of A in every double-module satisfying

(44) vanishes, then the w-cohomology group of A in any double-module van-

ishes; this may easily be seen by considering a normal series of a given

double-module in which every residue-module satisfies (44) and applying a well-

known argument of considering residue-modules. Similarly, if the enlargements

by QT1 of every module satisfying (44) split, so do those of any (Λ-A-)module.

Combining these facts we see that (under the assumption of the separa-

bility of A IN, among others) the w-cohomology groups of A are all 0 if (and

only if) the A-Λ-module QT1 is an (MO-module. Here the (Mo)-module

property of QN~1 as Λ-left-module (under (6)) suffices, as we have seen in

Lemma 6. So we have the latter half of our following main theorem whose

former half has been proved in §§ 3, 4.

MAIN THEOREM. Let n ^ 2. Let A be an algebra, finite over a field Ω,

possessing a unit element 1, and let N be its radical If all the n-cohomology

groups of A vanish, then

a) A IN is separable, and

β) for every left-ideal ί of A the A-left-modide \Q\~X is an (MQ)-module,

ivhere Q"'1 is given in (10) and the left-operation of A on QΊ~ι is that given in

(6).

Conversely, if a) is the case, and if

βi) the A-left-module 1QT1 is an (MQ)-module, then all the n-cohomology
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groups of A vanish.

(The problem of algebras without unit element, whose w-cohomology groups

all vanish, may easily be reduced to that of algebras with unit element see

[4], Theorem 3.)

As an immediate consequence of (the first half of) our theorem, we men-

tion the following corollary which generalizes, as well as clarifies the back

ground of, Hochschild [5], Theorem 11.2.

COROLLARY. Let A be a non-semisimple quasi-Frobenius algebra over a field

Ω. For every natural number n there exists an A-double module m with Hn{A,

m) * 0 .

Proof. Suppose, contrary to the assertion, that for some n all the n-

cohomology groups of A are 0 we may assume naturally that n ^ 2. Then

the A-left-module \QTι is an (Mo)-module. Hence it is an (M«)-rnodule the

definition of (Mw)-moduJes is dual to that of (Mc)-modules, and quasi-Frobenius

algebras are characterized as algebras (with unit element) whose (Mo)-left-

modules are always (Mu)-left-modules and conversely ([9]). Consider the

module QTι as an A-left-module under the ordinary left-operation of A. It

has our (Af«)-module 1QT1 as an A-submodule. Hence we have Qy'1 = O

&1QT1 with an A-submodule Q of QTι. D is A-isomorphic to QTXHQT\

whence to the module 1Q"~2. On the other hand, as a direct summand in an

(Mo)-module QΓ1^ A{Q*~2'Ω)), D is an (M0)-module. Thus the A-left-module

IQN~2 is an (Mo)-module. Repeating this argument n — 2 times, we see that

the A-left-module N is an (Mo)-module, whence an (MM)-module, which cer-

tainly could not be the case, unless N were 0.
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