ON THE COMPACITY OF THE ORTHOGONAL GROUPS

TAKASHI ONO

It is a well known fact on Lorenz groups that a quadratic form f is definite if and only if the corresponding orthogonal group $O_{n}\left(R_{\infty}, f\right)$, where R_{∞} is the real number field, is compact. In this note, we shall show that the analogue of this holds for the case of the p-adic orthogonal group $O_{n}\left(R_{p}, f\right)$, where R_{p} is the rational p-adic number field, as a special result of the more general statement on the completely valued fields.

Let K be a field with non-trivial valuation | |, and of characteristic $\neq 2$. Let V be an n-dimensional vector space over K and let $u_{i}(i=1, \ldots, n)$ be some fixed basis of V over K. If we define norm of $x=\sum_{i=1}^{n} x_{i} u_{i} \in V$ by $\|x\|_{i}$ $=\max _{i=1, \ldots, n}\left|x_{i}\right|$, then the space V is topologized as usual. ${ }^{1)} \quad$ Now, let E be the algebra of endomorphisms of V over K. Using the above basis, we also define norm of transformation $X=\left(x_{i j}\right)$ by $\|X\|=\max _{i, j=1, \ldots, n}\left|x_{i j}\right|$. It is easy to see that "X $\cdot Y\|\leqq n\| X\|\cdot\| Y \|$. Thus, E becomes a normed algebra over K. A subset S of a normed space is called bounded if for some number $b>0$ we have $\|x\|$ $<b$ for all $x \in S$. For our normed space V, boundedness is independent of the choice of basis u_{i}. The same is true for the normed space E. If K is locally compact, then a bounded and closed subset of a normed space over K is the same thing as a compact subset. Now, let f be a non-degenerate symmetric bilinear form on V. The orthogonal group $O_{n}(K, f)$ is obviously a closed subset of E. If f and g are congruent, it is easy to see that their groups are homeomorphically isomorphic and if one of them is bounded in E so is the other. We say that a from f is of index ν if ν is the maximum dimension of $U \subset V$ such that U is a totally isotropic subspace of $V^{2)} \quad \nu=0$ means that $f(x, x)=0$ implies $x=0$.

We prove the following

[^0]Theorem 1. Let K be a completely (non-trivially) valued field with characteristic $\neq 2$ and let f be a non-degenerate symmetric bilinear form over K. Then the index ν of f is zero if and only if the orthogonal group $O_{n}(K, f)$ is bounded in E.

Proof. If $n=1$, since then $\nu=0$ always and the group is of order 2, the statement is trivial. So we assume that $n \geq 2$. Suppose that $\nu \geqslant 1$. Then f is congruent to the form g whose matrix is of type

$$
G=\left(\begin{array}{lll}
0 & 1 & \\
1 & 0 & \\
& & *
\end{array}\right)^{3)}
$$

Since ${ }^{t}\left(\begin{array}{cc}x & 0 \\ 0 & x^{-1}\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}x & 0 \\ 0 & x^{-1}\end{array}\right)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ for all $x(\neq 0) \in K$, it follows that

$$
X=\left(\begin{array}{ccccc}
x & 0 & & & \\
0 & x^{-1} & & & \\
& & 1 & & \\
& & & \ddots & \\
& & & & \\
& & & & 1
\end{array}\right)
$$

belongs to $O_{n}(K, g)$ for each $x(\neq 0) \in K$. Thus, $O_{n}(K, g)$ is not bounded in E. Hence, $O_{n}(K, f)$ is also not bounded. This proves the sufficiency. It is to be noted that we do not use the completeness of K.

Next, we shall prove the necessity. ${ }^{4)}$ Here the completeness of K is used essentially. Assume that $O_{n}(K, f)$ is not bounded. Without loss of generality, we may suppose that the matrix of f is of type

$$
F=\left(\begin{array}{ccc}
a_{1} & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&
\end{array}\right) \text { where }\left|a_{i}\right| \leqq 1, i=1, \ldots, n
$$

By our assumption, for any $N>0$ there exists an $X \in O_{n}(K, f)$ such that $\|X\|$ $>N$. Suppose that $\|X\|=\left|x_{p q}\right|$. Comparing the (q, q)-components of both sides in ${ }^{t} X F X=F$, we get $\sum_{i=1}^{n} a_{i} x_{i q}^{?}=a_{q}$. Multiplying $x_{p q}^{-2}$ on both sides, we see that

[^1]the inequality $\sum_{i=1}^{n} a_{i} x_{i}^{\prime}<\left|a_{q}\right| N^{-2}$ has a solution x_{i} such that $\left|x_{i}\right| \leqq 1,\left|x_{p}\right|=1$. Now, if K is locally compact then the unit cube, i.e. the set of x with $\|x\| \leqq 1$ in V is compact. Thus, for increasing N we may select a sequence of vectors x_{x} in the unit cube satisfying an inequality as above one of whose component, say p_{s}-th, is of value 1 . Taking a subsequence, if necessary, we may assume that p_{v} are all equal. It is obvious that $x=\lim _{x \rightarrow \infty} x_{N}$ gives a non-trivial solution of $f(x, x)=0$. Thus, the necessity is proved for our special case, i.e. the case when K is archimedean (that is, when K is real or complex field) or K is a finite extension of the Hensel p-adic number field R_{p} with some prime p or a field of power series of one variable over a finite field of characteristic $\neq 2$. Therefore, there remains to be considered a case of a non-archimedean field K. We shall construct a non-trivial solution of $f(x, x)=0$ by successive approximation. We fix an element $c \in K$ such that $|c|<1$, and put $d=2 a_{1} \ldots a_{n} \cdot c$. Then, from the above argument, the inequality $\sum_{i=1}^{n} a_{i} x_{i}^{\prime}<|d|^{3}$ has a solution x_{i} such that $\left|x_{i}\right| \leqq 1,\left|x_{p}\right|=1$. Then, we shall show by induction on μ that the inequality $\sum_{i=1}^{n} a_{i} x_{i, \mu}^{\sim}\left|<|d|^{\mu+2}\right.$ has a solution $x_{i, \mu}$ such that $| x_{i, \mu}\left|\leqq 1,\left|x_{p, \mu}\right|=1\right.$. For $\mu=1$, it suffices to take $x_{i, 1}=x_{i}$. Next, we assume that we have a solution for some μ. Put $\sum_{i=1}^{n} a_{i} x_{i, \mu}^{\prime}=d^{\mu} e, e=d^{2} f$. We have $|f|<1$. And set y $=-e\left(2 a_{p} x_{p, \mu}\right)^{-1}$. Then, we get $|y|=\left|a_{1} \ldots \stackrel{p}{.} . a_{n}\right||c||d||f|\left|x_{p, \mu}\right|^{-1}<|d|<1$. Using this y, we put $x_{i, \mu+1}=x_{i, \mu}(i \neq p), x_{p, \mu+1}=x_{p, \mu}+d^{\mu} y$. Since the valuation is non-archimedean, we have $\left|x_{i, \mu+1}\right|=\left|x_{i, \mu}\right| i=1, \ldots, n$. From the definition of y, we have $\sum_{i=1}^{n} a_{i} x_{i, \mu+1}^{?}=\sum_{i=1}^{n} a_{i} x_{i, \mu}^{?}+2 a_{p} x_{p, \mu} d^{\mu} y+a_{p} d^{2 \mu} y^{2}=d^{\mu}\left(e+2 a_{p} x_{p, \mu} y\right)$ $+a_{p} d^{2 \mu} y^{2}=a_{p} d^{2 \mu} y^{2}$. Therefore, it follows that $\left.\left|\sum_{i=1}^{n} a_{i} x_{i, \mu+1}^{2} \leqq|d|^{2 \mu}\right| y\right|^{2}<|d|^{2 \mu+2}$ $\leqq|d|^{\mu+3}$. Thus, we get n Cauchy sequences $\left\{x_{i, \mu}\right\}$ in K. Since K is complete, there exist $x_{i}=\lim _{\mu \rightarrow \infty} x_{i, \mu}$. It is obvious that $x=\sum_{i=1}^{n} x_{i} u_{i}$ is a non-trivial solution of the equation $f(x, x)=0$. This proves the necessity assertion.

As an immediate consequence of Theorem 1 we get the following
Theorem 2. Let K be a locally compactly valued field with characteristic $\neq 2$. Then, the index ν of f is zero if and only if the group $O_{n}(K, f)$ is compact. ${ }^{5)}$

[^2]Now we shall apply the above results to the orthogonal group over a field K of algebraic numbers or algebraic functions of one variable over a finite field of characteristic $\neq 2$. Let $K_{\mathfrak{p}}$ be a p-adic completion of K with respect to a place \mathfrak{p} in K. Suppose that a form f is given in K. Naturally f may be considered as a form over $K_{\mathfrak{p}}$ and $O_{n}(K, f)$ is contained in $O_{n}\left(K_{\mathfrak{p}}, f\right) .{ }^{6)}$ Let ν and ν_{p} be the global and local indices of f respectively. According to Hasse's principle, we have the relation $\nu=\min _{\mathfrak{p}} \nu_{p}$ between these indices." If $\nu \geqslant 1$, since we do not use the completeness of valuation in the proof of sufficiency in Theorem 1 , if p is any place of K, then $O_{n}(K, f)$ is unbounded with respect to the p-adic topology. Conversely, if $\nu=0$, then by the above principle we get $\nu_{p}=0$ for some \mathfrak{p}. Therefore $O_{n}\left(K_{\mathfrak{p}}, f\right)$ is compact for such \mathfrak{p} (Theorem 2) and we see that $O_{n}(K, f)$ is bounded in the p-adic topology.

Thus we get
Theorem 3. Let K be a field of algebraic numbers or algebraic functions of one variable over a finite field of characteristic $\neq 2$. Then a form f is a zero-form ${ }^{8)}$ if and only if the orthogonal group $O_{n}(K, f)$ is unbounded for all \mathfrak{p} adic topologies in K.

References

[1] E. Artin, Algebraic numbers and algebraic functions, Princeton (1951).
[2] J. Dieudonné, Sur les groupes classiques, Act. Sci. et Ind., 1040 (1948).
[3] E. Witt, Theorie der Quadratischen Formen in beliebigen Körpern, J. Reine Angew. Math. 176 (1937).
[4] J. Dieudonné, Sur les groupes orthogonaux rationnels à trois et quatre variables. Compt. rend., t. 233 (1951).

Mathematical Institute,

Nagoya University

[^3]
[^0]: Received March 29, 1954.
 ${ }^{1}$ See [1] p. 18.
 ${ }^{2}$ See [2] p. 17.

[^1]: ${ }^{3)}$ See [3] Satz 5.
 ${ }^{4)}$ The following proof is inspired by Theorem 2, Dieudonné [4].

[^2]: 5) Mr. A. Hattori has communicated to the writer an elegant alternative proof. Here we sketch his proof. Let P be the projective space corresponding to V. If we define the open set in P as the totality of lines in V each of which intersects with some given open set in V, then P becomes a compact space. If $\nu=0$, then there is a homeomorphism between P and the set S of all symmetries with respect to the hyperplanes in V. Here, the topology in S is the one induced from E. Thus S is a compact set. Therefore, $O_{n}(K, f)=S^{n}$ (CartanDieudonné) is also compact.
[^3]: ${ }^{6)}$ By Cayley's parametrization we can see that $O_{n}(K, f)$ is dense in $O_{n}\left(K_{\mathfrak{p}}, f\right)$. But this fact is unnecessary to prove our Theorem 3.
 ${ }^{7}$) See [3] Satz 19. Though only the number field case is treated in [3], we know that the principle is also valid for the function field case.
 ${ }^{8)}$ This means that f represents zero non-trivially.

