
BOUNDARY COMPONENTS OF RIEMANN SURFACES*

MAKOTO OHTSUKA

Introduction. The boundary components of an abstract Riemann surface

were defined by B. v. Kerekjartό [71 and utilized in the book [14] written by

S. Stoϊlow.υ It is the purpose of the present paper to investigate their images

under conformal mapping and to solve the Dirichlet problem with boundary

values distributed on them.

Suppose that the universal covering surface of a Riemann surface SR is of

hyperbolic type, that is, conformally equivalent to the disc U : \z \ < 1. The

work [15] by M. Tsuji shows that the linear measure of the image on Γ : \z\

= 1 of the set &$ of all boundary components of S is 0 or 2π according as 5ft

has a null or positive boundary. The writer in [8] studied topologίcally the

image on Γ of each boundary component, In Chapter I of the present paper

we shall continue this study.

The set 6^ may be regarded as a topological space, as was done by Stoϊlow

[14]. We are naturally led to consider the Dirichlet problem on SR with boundary

values on (%, with respect to this topology. We shall treat this problem in

Chapter II by the Perron-Brelot's method it was proposed in [8] but left open

there.2)

Chapter I. Boundary Correspondence

1. Definition of boundary components. Throughout this paper let 3ft be an

Received December 20, 1953.
* This is the work indicated at the footnote 5) of [10]. The essential part of the pre-

sent paper was first reported to the Annual Meeting of Japanese Mathematical Society held
in Tokyo, Japan, in June, 1952, and then to the conference at Michigan, U.S.A., in 1953
(see [11]).

*> KeYόkjartό and Stoϊlow called them Randstϋcke and eΊέments-frontieres respectively.
The writer used the term "ideal boundary component" in [8] but now drops the word
" ideal."

2> It was pointed out in the lecture given by M. Brelot at the conference at Michigan
in 1953 (see [4]) that the solution of this problem follows also from the results in [5],
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open Riemann surface of connectivity at least three.3) We take an exhaustion

{3tn}9 3ϊ«C3ίn+i, of 9ϊ, where 3Rn means the closure of 9ϊ* and is compact in 3ί.

We select {SRn} so that each 3tn is bounded by a finite number of simple closed

analytic curves, each of which divides 9ΐ into two non-simply-connected

domains, and that any two of the boundary curves of ίRi are not homotopic to

each other. Let the boundary curves of 5Ri be γl9 γ2, . . . , 7μ, and the domain,

outside 3?i and bounded by n, be A. Let the boundary curves of 3ϊ2, lying in

A, be π,i? Π,2, . . . , n.μd), and the domain, outside % and bounded by nj, be A,y,

and so on. Thus we get domains {Dij,...,k} such that A,/, . . . ,JO A,y,...,*,...,/,

and their relative boundaries {nj k) in 3ί. We shall call these domains ele-

mentary domains. Here we may, and do, add an assumption that nj,...,k and

Tij,...,k,ι are not homotopic to each other on SR unless Dij,...,k is doubly-con-

nected.

With each nested infinite sequence A D Dij D . . . we associate a boundary

component and call the sequence the determining sequence of the component.

Let Di,j,...,k be an elementary domain, and add to it all boundary components

determined by the sequences which begin with A D A,/ D . . . D Dij,...,k. We

denote this set by A,/,...,£. We take both all {A,y,...,&} and a countable open

base of 91 as a countable open base in the space 9ΐ H- (%, where §<$ denotes the

set of all boundary components of 3ϊ. Then it is easily shown that 9£ 4- % is

a compact space with respect to this topology. Since it is a Hausdorff space,

it is normal and hence metrizable. Further % is a null-dimensional space as

is seen from the definition.

Let Pφ be a boundary component and {Dij,...,k) its determining sequence.

Pβ is said to belong to the first class if and only if one of {Dijt...tk) is of

planar character, and, otherwise, to the second class. We now suppose that one of

{Dijt...tk} is of planar character, and map it conformally and in a one-to-one

manner onto a plane domain D by the Koebe's uniformization theorem. If the

images in D of the boundaries {nj,...,k} converge to an isolated boundary point

of D, P(£ is called parabolic. Any non-parabolic boundary component, regardless

3 ) This means that, if the genus of Sft is zero, SI shall be conformally equivalent to a
plane domain with at least three boundary components.

If we admit the case when 3ft is simply- or doubly-connected, we must make special
mentions of these cases often in the sequel, while the treatment of them is easy. Therefore
we omit these cases in this paper.
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of its class, is called hyperbolic,

2. Regular and singular points with respect to a Fuchsian or Fuchsoid

group. Under our assumption that SR is of connectivity at least three, the uni-

versal covering surface 9Γ of 9i is mapped conformally onto U : \z\ < 1. We

shall denote the corresponding function mapping U onto 3ΐ by f(z), and the

Fuchsian or Fuchsoid group, with respect to which f(z) is automorphic, by ©.

This group does not contain any elliptic substitution. The fixed points of para-

bolic and hyperbolic substitutions of @ lie on Γ : \z \ — 1 and are called para-

bolic and hyperbolic fixed points respectively. If there is a sequence of points

{zn) in U such that zn tends to a point z0 on Γ and f(zn) tends to a point Po

of SR as n^> vz, ZQ is called a singular point. If at Zo there exists no such se-

quence, Zo is called a regular point. It can be shown as in the case where 91

is a plane domain (cf. El]) that the set of all singular points coincides with

the closure of the set of all fixed points on Γ. Hence the set of all regular

points is decomposed into disjoint open arcs, and each of them is called a regu-

lar arc, and its closure a closed regular arc. If the end-points of a regular arc

are fixed points, the arc is called a completely regular arc. Under our assump-

tion on 9ΐ every completely regular arc has two fixed points of a single hyper-

bolic substitution as its end-points.

Since the boundary curve of any elementary domain is not homotopic to

zero on 9?, its image in U consists of curves terminating at certain parabolic

or hyperbolic fixed points. For later use we prove

LEMMA 1. Under the mapping 9?10 -> U the image of any simple closed curve

γ on 11, non-homotopic to zero on 9?, consists of curves which have no end-points

in common on Γ. Furthermore, let γ' be another simple closed curve on 9ΐ, which

is homotopic neither to zero nor to γ on 9?, and disjoint from γ. Then any two

respective image-curves of γ and γ( have no end-points in common on Γ.

Proof. We select a finite or infinite number of simple closed curves {C«}

on 9?, which are disjoint both from γ and f and from each other, such that, by

cutting 9t along them 9ΐ becomes a domain 9ΐ' of planar character. We take

infinitely many replicas of 9ϊ' and connect them along the opposite edges of {Cn)

such that two replicas have at most one curve in common and no free edges

are left. The resulting surface is a Schottky covering surface of 9ΐ and is
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mapped conformally and in a one-to-one manner onto a plane domain JB. Under

this mapping γ and γf are transformed to at most countably many disjoint simple

closed curves {L} in B, which are neither homotopic to zero nor to each other

in B. The universal covering surface B™ of 3 is conformally equivalent to W°

and hence we can interpose B* between the mapping Si* -* U. The images in

U of γ and γf may be regarded as the images of {L} under the mapping B™

-> U. Since the assertion in our lemma is known to be true in the case

where 3i is a plane domain, it follows that Lemma 1 holds good.

3. Images of boundary components. Let Pg be a point of 6*R, and {D{n)}

its determining sequence of domains with boundaries {r(w)h Under the mapping

of 9ϊ°° onto U we can choose a nested sequence {Gn} of simply-connected do-

mains which are images of {D{n)) : D(n) =/(Gn). As n -* oo the closure Gn of

Gn tends to a point or to a closed arc on Γ. We shall call this an a-imagev

or distinctively a point-image or an arc-image of Pg? and the nested sequence

{Gn} the fundamental sequence of the α-image, Each Gn is bounded by one

or countably many cross-cuts4) which are images of γ{n\ and one of them sepa-

rates 2 = 0 from Gn, where we suppose that z ~ 0 lies in a certain image of 3?i

( = the fir§t domain of the exhaustion). We denote this separating cross-cut by

/«, and call {ϊn\ the fundamental sequence of cross-cuts of the αr-image. On

account of Lemma 1 these cross-cuts have no end-points in common unless D{n)

is doubly-connected.

We shall say that two fundamental sequences {Gn) and {Gn} are different

if there is a number n0 such that Grt0 =¥ Gn0. Then iί is clear that Gn and Gn

{n ^ no) are disjoint from each other.

THEOREM 1. Let 9ί be an open Riemann surface of connectivity at least

three. On mapping W onto U3 the different fundamental sequences determine

disjoint a-images on Γ.

Proof. Let {Gn} and {Gn) be two different fundamental sequences, and let

Gn0 # G'n0. Each boundary cross-cut of Gnΰ borders a domain which is some

component of the open set U- G%0, and Gn0 is located in one of them, say in M

with boundary cross-cut /. We connect any point on / with any point of G'ns>

by a curve running inside M9 and let V be the boundary cross-cut of Gnύ which

4> The end-points of a cross-cut may, or may not, coincide.
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the curve meets at the first time. Since / and /' have no end-points in common by

Lemma 1, and since Gn0 and Gn0 He along the opposite edges of them, Gnϋ and G«o

have no points in common. Therefore the two αr-images Π Gn and Π Gka are
n n

disjoint from each other.

4. Correspondence between boundary components and their α -images. We

assumed in § 1 that γ{n+ι) is not homotopic to γ[n) unless D{n) is doubly-connected.

It is immediately shown that Pg is an isolated boundary component of the first

class if and only if some domains of its determining sequence are doubly-con-

nected. For such boundary components we have

THEOREM 2. Let 9? be an open Riemann surface of connectivity at least

three. Under the mapping of 3ϊ°° onto U, the a-images on Γ of a parabolic

boundary component consist of a class of equivalent^ parabolic fixed points, and

conversely, any such class forms the a-images of a certain parabolic boundary

component. The isolated hyperbolic boundary components of the first class and

the classes of equivalent closed completely regular arcs correspond to each other

in the similar manner.

Remark, Each domain of the fundamental sequence of such an αr-image, with

the exception of a finite number of domains, is bounded by a single cross-cut

terminating at the point-image (i.e., at the parabolic fixed point), or at the two

end-points of the arc-image (i.e., at the two hyperbolic fixed points).

The proof of this theorem was given in [8], Chap. IIL6) Other proofs for

the correspondence of parabolic boundary components may be found in [9] and

[12].

Next we shall study the <*-images of a non-isolated boundary component

of the first class or of any boundary component of the second class.

Let Pgbe such a boundary component and {D{n)} its determining sequence

with relative boundaries {r(w)K Since the connectivity of D{n) is infinite, each

image of D{n) is bounded by countably many cross-cuts, which are images of

δ> When a point or a set on ί / + Γ is transformed to another point or set by a substi-
tution of ©, the two points or sets are called equivalent (under ©) to each other.

6> At this juncture the writer wishes to correct some errors in Chap, III of [8].
p. 112, line 6 is to be read as : small, the inside of Wc denned below is divided into..,
p. 112, line 18 is to be read as: sufficiently small, the inside of Wo is divided into.. .
p. 114, line 4 is to be read as : . ..components of the first class of R correspond t o . . .
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γ{n). Furthermore each image of D{n) contains a countable set of the images

of D{n+l) in it. Therefore, the ways to select a sequence of nested images of

{D{n)} have the power of the continuum. Thus the power of the α-images on

Γ of P(£ is of the continuum, because different fundamental sequences determine

disjoint α-images according to Theorem 1. Since the possible set of arc-images

is countable, there are always an uncountable number of point-images of Pg.

Let now z0 be a point-image on Γ, which is not a parabolic fixed point, and

{In) the fundamental sequence of cross-cuts determining it. If zQ were a hyper-

bolic fixed point, there would exist a closed curve C in 9ί whose image c termi-

nates at ZQ. Then there would be a number no such that, for any n > no, In

intersects c in U. However, this contradicts the fact that the images {γ{n)} of

{In) do not intersect C on 3ί for n sufficiently large. Hence z0 can not be a

fixed point, but, since clearly it is not a regular point, it is a non-fixed singular

point.

Let us turn to an arc-image ziz2 on Γ, which is not a completely regular

arc. For the same reason as above, both z\ and z2 are non-fixed singular points.

Further no inner point of z7i> is a singular point, because near any singular

point there are always hyperbolic fixed points. Thus zTz2 is a closed regular

arc with two non-fixed singular end-points. Obviously the disjoint arc-images

are countable in number. So then, equivalent (under ®) arc-images being

brought together into a class, how many such classes correspond to one bound-

ary component ? We can show without difficulty by examples that the number

may be finite or countable.

We summarize the results in

THEOREM 3. Let 3f be an open Riemann surface, and let Pg be a non-iso-

lated boundary component of the first class or a boundary component of the

second class. On mapping iff00 onto U, the set of the a-images of P$ consists

of an uncountable set of non-fixed singular points and, possibly, of an at most

countable set of classes of equivalent closed non-completely regular arcs.

5. Paths converging to the boundary of 3ϊ. We shall call a curve

C = {Pit) 0 ^ t < 1}, lying in 31 and tending to the boundary of 5R as t -> 1,

a path converging to the boundary of SR or simply a path. It is seen easily

that a path converges to a certain point of (£$ with respect to the topology of
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5R + ̂ ^. Let {Gn} be a fundamental sequence in U and c = {z(t) 0 != ί < 1}

be a curve in £7". If, for every Gn, there is a number U, 0 < to < 1, such that

{z(t) fo ^ ί < 1} lies in Gn, c will be said to converge to the (point- or arc-)

image determined by {Gn}. We can show easily that any image of a path con-

verging to Pg converges to a certain ct-image of Pg. Conversely, for any image

a of a boundary component Pg there is a curve which converges to a. It is

obvious that its image on 3ί converges to Pg. Therefore, to a set of curves

on 3ϊ which converge to Pg, there corresponds a set of curves in U which con-

verge to the αr-images of Pg, and vice versa.

Let Ci - iPι(t) 0 £ t < 1} and C2 = {P2U) 0 ^ ί < 1} be two paths on 31

which converge to the same point Pg of (%, and {Kit) ', 0 ^ t <l} be a set

of curves on SR such that, for every t, 0 < t < 1, 2Πf) connects PiU) with P2U)

and tends to Pg as ί -> 1. If {Kit)} can be chosen such that the closed curve,

consisting of four parts: {Λ(r) 0 ^ r έ ί}, ϋC(/), {P2(r) 0 ^ r ^ ί} and ΛΓ(O),

is homotopic to zero on 3ί for every ί ( 0 < ί < l ) , Ci and C2 will be called

homotopic to each other on SR.()

THEOREM 4. 7/* αwJ only if two paths are homotopic to each other on 9?,

their image-curves in U converge to the images, equivalent under (§, of a bound-

ary component to which the paths converge.

Proof. Let Ci = {PiU)} and C2 = {P2(t)} be homotopic to each other and

{Kit}} a set of curves with the property stated above. Let Cι = {zι(t)} be an

image of d in U and a the «-image to which C\ converges. We take the func-

tion-element at Pi(0), corresponding to the point 2i(0), continue it analytically

along the curve K(0) + C2 and denote the image of C2 by c2. Since the closed

curve, consisting of four parts: (Pi(r) 0 ^ r ^ t), Kit), {Piiτ) 0 ^ τ ^ t}

and KiO), is homotopic to zero, we obtain images {k(t)} of {Kit)} which con-

nect c\ and Ci. It is obvious that, given a domain Gn of the fundamental

sequence determining a,k{t) lies in Gn for ί sufficiently large. This shows that

an end-part of c2 lies in GM. Hence c% converges to a.

Conversely, let CΊ and C2 be two curves whose images cx = {zi(t)} and

c2-{z2(t)} converge to the same α-image with fundamental sequence {Gn}.

7> Compare it with the definition of accessible boundary points by R. Nevanlinna. See

[6].
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We can select {tn}, tn -> 1, such that Zi(tn) and Zz(tn) lie in Gn* We connect

Zι(t) with 22(ί) for /, tn<t < tn+i9 by curves running in Gn. Their images

play the role of {Kit)} required for the homotopicity of Ci and C2.

No difference has been seen, up to this place, between the non-isolated

boundary components of the first class and the boundary components of the

second class, so far as their images on Γ are concerned. However, it is desira-

ble that a certain effective characterization of the distinction between these

images is obtained.

6. Points of Γ which are not contained in α-imageso We know that all

parabolic fixed points and all closed regular arcs are a-images, and that no

hyperbolic fixed point is contained in an α-image unless it is an end-point of

a certain completely regular arc. In this section we shall study on non-fixed

points on 7" which are not contained in αr-images.

First we consider an arbitrary connected component of the image in U of

3ϊM, and denote it by D. This domain is bounded by a countable set of cross-

cuts and by their accumulating points. The boundary δ of D is regarded as a

Jordan curve which has no double points except for possible parabolic fixed

points onv it. Since the set of singular points on δ is a perfect set5 it has the

power of the continuum. Fixed points being countable, all non-fixed singular

points on δ are uncountable. Suppose that such a non-fixed singular point Zo

is contained in an α-image, and let {h) be the fundamental sequence of cross-

cuts which determines this α-image. Then {h) intersect D except for a finite

number of them. However, on 9ϊ the images of {h} do not intersect 3ΐ« for

sufficient large k. Thus we get a contradiction and it is shown that any non-

fixed singular point on δ is not contained in any #-image.

Next let Zo be a non-fixed point on Γ which is neither contained in any a-

image nor on the boundary of any component of the image of any 3ΐ«. We

take all images of the curves {nj,...,k) which separate zQ from 2 = 0 and enu-

merate them in {h) so that h separates z-Q from h+i. By Lemma 1 these

{h) have different end-points. If the images of {h) on 3i were contained in a

certain 3ϊM, z0 would be a boundary point of a component of the image of the

9tn. Therefore the images of {h) are not compact in 3ί. Since ZQ is not con-

tained in any ct-image, the images on 3ί of {/&} do not converge to a boundary

component. The image on 9ϊ of any curve terminating at 2o is neither compact
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in SR nor a path in the sense of § 5. Conversely, if every curve terminating at

2o has this property, or if there is a sequence {/*} of cross-cuts whose images

on 9ϊ are neither compact in 3i nor converge to a boundary component, zQ is a

non-fixed point which is not contained in any α-image. The ways of selection

of such {Ik) have the power of the continuum if 91 is of infinite connectivity.
Thus we have

THEOREM 5. Let 9ί be an open Riemann surface with connectivity at least

three. On mapping 3t°° onto U, the set of non-fixed points, which lie on the

boundary of a component of the image of 9?w but not contained in any a-image,

have the power of the continuum, for every n. If and only if 9ϊ has infinite

connectivity, there are non-fixed points of the ponoer of the continuum, which

are neither contained in a-images nor lie on the boundary of any component of

the image of any 9trt.

Chapter II. Dirichlet Problem

7. Perron-Brβlot's method. We shall treat in this chapter the Dirichlet

problem on 9t with boundary functions on (£$ by means of the Perron-Brelot's

method (cf. [2], [31 See also footnote 2)).

For a real-valued function φ (admitting ± oo) defined on (%, the lower

class llf is defined by all continuous subharmonic functions {u(P)} bounded

from above on 9ϊ such that lim u{P) ^ <p{P&), where ϊίm is taken with respect

to the topology introduced in § 1 and — oo is added to Uj. The upper cover

Hf(P) ( = t h e supremum at each point) of uf is harmonic or equal to the

constant -f oc or — oo on SR on account of the Perron-Brelot's principle. Simi-

larly the upper class φf and its lower cover Sf(P) are defined for superhar-

monic functions, and Sf(P) has the similar character as Sf(P). On account

of the maximum principle there holds Hf(P) ^ Hf(P) and the equality at a

point induces their identity. When Hf(P)~Hf(P) we shall denote it by

Hf(P) and call it the general solution, and if, in addition, it is finite, φ will be

called a resolutive boundary function. For any fixed point P, H?{P) is a posi-

tive ( ^ 0 for ψ ^ 0) linear functional defined on the class of resolutive bound-

ary functions.

Our main concern in this chapter is to decide the class of resolutive

boundary functions.
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When 9i has a null boundary there is no non-constant continuous subhar-

monic function bounded from above on 3t (Lemma 1, 2 of [8]). Therefore

H$(P)=\niφ and J5^(P) = sup^, and hence Hf(P) * ϊlf(P) unless ψ is a

constant. Accordingly we assume hereafter that 5ft has a positive boundary.

Preparing for later use, we shall prove

LEMMA 2. Let {φn} (n = l, 2, . . .) be non-negative resolutive boundary
00

functions on Sgft and put Σ ψn = ψ. Then
n = l

(l) af(p) = fff(p) = Σ#?M(P).

Proof. Given ε > 0 and PoG 5R, we take a non-negative function un(P) of

class Ufn and vn(P) of class 3Sfn such that vn(Po) - un{Po)'< e/2*. If Σ W P o )

= oo? let JV be a number for which Σ#n(Po) is greater than any assigned posi-
71 = 1

tive number M. It is easily shown that Σ « n ( P ) e llf, whence M < Σw«(P0)
n = 1 w = J

^β'f'ίPo). From this relation, equalities (1) follow at once.

We next suppose Σ«*(Po)< «>. Since Σ ^ ( P 0 ) < Σ««(Po) + Σε/2 n

n = l n = l n = l n = l
00 00 00

= Σ«n(Po)-he, the series Σ^n(Po) converges. Hence *Σvn(P) is a super-

harmonic function on R and U52 Σ^«(P) ^ ^(P©), but it might be discontinu-

ous. We replace it, therefore, by the harmonic function, with the same bound-

ary value, in every 9?2n+2 - $?* in ^ 0 , % = empty set), and then harmonize the

resulting function again in every 3ϊ2«+i- 3t%n-i (n ^ 1). Thus obtained function
oo

VQ(P) belongs to SS®, and vQ{P) ^ Σ^«(P). We take a sufficiently large num-
n = l

00

ber p so that Σ vn(Po) < ε. Then

oo p oo V V

\Ct) ^mjVn\Λθ) """ s } Un\ xft ) — f i Vn\*θ) i f J Vft V -*0 * " * ^ i ^ « ( P n / "C 2i £.
n = l n = l n = p+l n = l π = l

Since Σ ^ n ( P ) belongs to the class llf, there hold

(3) Σ««(P) ^ ί ί f (P) έ fff(P) 3

On the other hand we have

P

(4) Σi
n = l
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e being arbitrarily small, (1) follows from (2), (3) and (4).

8. Lower and upper integrals. We shall define in this section lower and

upper integrals for arbitrary real-valued functions, which may take ± °o, in

order to make use of them to represent Hf(P) and /if (P).

Let 6 be a <;-algebra8) of sets in (£$, and suppose that it contains all open

sets and hence the Borel class S3 in GΛR. Let μ(E) be a finite-valued measure

defined on S. It will be called regular if, for every set E G 6, /ΛE) = inf {μ(G)

G~DE, G = an open set}. On the other hand μ(E) will be called complete if

the conditions E& ®, E1 C E and μ(E) = 0 imply that E1 e 6.

Let now μ(E) be a finite-valued regular complete measure defined on (£.

For an arbitrary real-valued function ψ on ^^ we define the lower integral

L <f(Q)dμ(Q) by

sup s \ ψ(Q)dμ(Q) \ ψ is bounded from above and ©-measurable, and ψ ^ φ\,

where the value — oo may be taken by ψ. Similarly we define the upper inte-

gral f φ(Q)dμ(Q) by

inf I \ ψ(Q)dμ{Q) I ψ is bounded from below and ©-measurable, and ψ ^ <p\*

where the value -f oo may be taken by ψ. Then we have

LEMMA 3.

Φdμ I ψ is bounded from above and upper semicontinuous,

and ψ ^ (pu

where — oo may be taken by ψ, and

\_ fdμ^mίWπ φdμ \ φ is bounded from below and lower semicontinuous,

and φ ̂  ψ \ 9

where + °° may be taken by φ.

From the definition of lower (resp. upper) integral we see that it is neces-

8 ) That is, (£ is a non empty class of sets closed under the formation of complements
and countable unions.
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sary to prove this lemma only for every ©-measurable function ψ bounded from

above (resp. below). For such φ, however, the lemma is valid in virtue of the

regularity of μ.9)

Since μ is a complete measure we can show without difficulty

LEMMA 4. If ψ is (<£, μ)-integrable,10) there holds

Conversely, if — oo < 1 φdμ= L. ψdμ< + °°, #*£# f is (@, μ)-integrable in

/fê  narrow sense.

COROLLARY. Let 7.Λ be the characteristic function of a set Ad (%. Then

A belongs to ® if and only if L XAdμ= \ XAdμ.

9. Resolutivity of the characteristic function of any open set. Let

/) = Dij,...,k be an elementary domain on 3ί and γ be its relative boundary in

3i We take the characteristic function of the set 25 - D C GΛR as a boundary

function on (£sft, and denote it by X. We shall show its resolutivity in the first

place.

Let ω(P, γ, D) and ω(P, γ, Dac) be the harmonic measures of γ with respect

to the domains D and Σfc = 3{ - (D U r). Since Dϊ has a positive boundary, one

of them is not a constant and its infimum is zero. Suppose inf ω(P} γ, Dac) = 0,
jyac

Then 0 is inf iΉfiP) - Hf{P)) tf inf Bf(P) ί inf ω(P, γ, Jfc) = 0. If inf ω(P, r, /))

= 0, then O^inf ( (1-Λ?(P))-( l-Sf(P)))^ inf {l-H${P)) ^miω(P,γ,D)
9t D " X)= 0. Thus there holds always

(5) inf(/f?(P)-#£(P))=0.

We define a boundary function ψ for domain £) by Ilf(P) on γ and by 1

on V Π % . The function H%(P) is defined as the upper cover of the lower class

Itφ consisting of all continuous subharmonic functions {u^{P)), 0 ̂  uΛP) ^ 1,

with the property that Πm ««,(P) ^ πf(Q). We define /?£(/>) in a similar way.

Then the inequality H%(P) ̂  H$(P) holds clearly. Since Eξ(P) £ 1, it belongs

95 See the proof of Vitali-Caratheodory's theorem in [13].
1 0 ) The value of the integral may be infinite. When it is finite, we shall say that the

function is integrable in the narrow sense.
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to U£. Hence 3ξ(P) έ g ? ( P ) έ # ? ( P ) έ flf (P). Thus JΪ*(P) = S f ( P ) in D.

Accordingly Hyt(P) is equal to the upper cover of US in Zλ

Next let ψf be the boundary function of D defined by //?(P) on γ and by

1 on B l Ί % The identity H^(P)=ΪΪ?AP) is shown easily, but some con-

sideration is necessary in order to prove Hγ(P) =H®(P). It is clear that

Πf(P) *έ HΌ

V{P). Suppose now that H$(P) < H^iP) and put HΏΛP,) - g f (A)

= β > 0 at an arbitrarily fixed point Po G D. Let w(P) be a function of the lower

class Uf such that 0 £H$(P)-u(P)<a on γ. If a boundary function ψ" of

Z) is defined by u(P) on r and by 1 on ~D Γ) % 9 obviously holds u(P)£g*»(P)

Ξ / / J , / ( P ) . We replace u(P) by Hl»{P) in D. Then the resulting function on

SΓc still belongs to U?. Hence H%»(P) ̂  H${P) in D. Especially at Po? H^(Po)

- H%»{Po) = β + g f (Po) - ^ψ-(Po) ̂  «. However, this contradicts the inequality

H2>(P) - HΪΛP) ^ maxiψ' - ψ") < a, which holds everywhere in D. Thus it

is shown that H°ΛP)=H®(P) in D. Therefore in D the function /?f(P)

equals the lower cover of upper class S8ψ/.

Let « t ( P ) ε H ί and vψ/(P)e 95"/. The bounded continuous subharmonic

function «Ψ(P) - v r ( P ) has the upper limit less than Sf(Q) -Hf(Q) ^ 0 as P-*

QE:γ and its upper limit as P-> P@; G 23 Π 5SR is non-positive. Hence «Ψ(P)

- VΦ,(P) ^ max(Sf(O) -H$(Q)). Since the upper cover of the left hand side

is ϊίf(P)-Hf(P), we have # ? ( P ) -Hf(P) έ max (Sf(Q) - g f ( Q ) ) in Λ

Similarly we can show that this inequality holds in Dac, too. In virtue of the

maximum principle this function reduces to a constant on 3ϊ, and this constant

must be zero by (5). Therefore πf(P)=Hf(P). That is, 1 is a resolutive

boundary function.

Let now G be any open subset of SSR. We took in §1 {Dij,...,kf\^} and

the empty set φ as a countable open base of (%. We shall denote this class

by ©. Each of them is open and closed, and any two of them are disjoint from

each other or one is contained in the other. Therefore G is represented as a

countable disjoint union of them : G = *ΣiDn. On account of Lemma 2 we have
n

(6) Hfβ(P) = H%(P) = ΈHfOn(P).
n

We may state

THEOREM 6. Let SR be an opeii Riemann surface with positive boundary.



78 M. OHTSUKA

Then the characteristic function of any open or closed subset of (£$R is resolutive.

The resolutivity of the characteristic function XF of any closed set F C ϋ ^

follows from the equality XF = 1 — XG, where G — ^ — F and is an open set.

10. Integral representation. Given a point PG R, we define a set func-

tion for an arbitrary set I C % by

(7) μP(X)=inί{mΣH%i(P) XCΌGi and every G, is open}.

This is an outer measure on % and 0 ^ μP(X) £ 1. Since HfUGi(P) ^ # f

= Σ#f ( ? ί (P) by Lemma 2, we may write (7) in the following manner:

= 'mi{HfG(P) I C G and G is open}.

Therefore μp(G) = HfG(P) for any open set G.

In order to prove that any open set is measurable with respect to this

outer measure, it is sufficient to prove the measurability of any set of Φ, because

any open set is the countable union of certain sets of © and the class (£F of all

/immeasurable sets is a <;-algebra. We take any A G ©. We have only to prove

μp(X)^μp(XΓ\ D0)+μP(X- A ) for any set I C % For given ε > 0, we

choose an open set G such that G D I and μp(X) + ε ^ HfG(P). Since both

GO A and G - A are open, there holds HfG(P) = H$GnDo(P) +HfG-Dΰ(P)

^μP(XnDo) + μP(X-DQ). Hence μP(X) + e fe / ( I Π A) + μP(X~ A). e

being arbitrarily small, it is concluded that any set of % is immeasurable.

Thus any open set and hence any Borel set is /immeasurable.

Let us regard /IP as a measure defined on ®F and denote it by μp. This is

clearly regular and complete. Conversely, it can be shown that if a regular

complete measure is defined on a <;-algebra of sets in (£$ containing all Borel

sets, and if its value is equal to H%(P) for every open set G, then the <7-algebra

coincides with @p and the measure does with μp.

Let ψ be any upper semicontinuous function bounded from above. First

we assume ψ < 0. We take a sequence 0 = aι> a2> . . . -*> - oo, and put {P;

ψ(P) < an} = Gn (n = 1, 2, . . . ) and {P ψ(P) = - oo } = Fo. Then each Gn is

open and Fo is closed, and (% is equal to the disjoint union Σ ( G « - Gn+i) -f FQ.
n = ί

We define boundary functions as follows:

ψn = an(Xan - XaH+ι) - ~/F0 and ψn = αΛ+i(Ztfn - Zσn+1) - Z F 0 (W = 1, 2, . . . ) .
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CO CO

Each of them is non-positive and resolutive, and there holds

on (%. Hence by Lemma 2 we have

Σ (an/AGn - Gn+i) - μP(F0))^

i Σ (an+1μ
p(Gn - Gn+ί) -

n = l

Since both the first and the last members tend to the same limit \^ ψdμp as

sup(an- an^i) -> 0, there holds

(8) Hf(P) = Hf(P) = \n φdμP.

If <f<M< oo? then Hf-M(P) =5f-«(P)= L (<f-M)dμp, whence (8) holds

for any upper semicontinuous function f bounded from above. Since S-<u(

- -ϊϊf(P), the same relation is true for any lower semicontinuous function φ

bounded from below.

Finally let <f be an arbitrary function. We define a boundary function

ψiPcs) by lim u(P) ( ̂  <f (Pπ)) for any w(P)e llf. Then 0 is an upper semicon-

tinuous function bounded from above for which (8) holds, and the inequality

u(P)^Hf{P) ^sf(P) is valid on 3ί. Therefore the upper cover Hf(P) of

llf is equal to the upper cover of {//f (P)}, where {ψ} are upper semicontinuous

functions, bounded from above and not greater than <f. Making use of Lemma

3 and (8) there follows Hf(P) = supi/f (P) = sup L φdp = L <pdμp. Similar-

ly we obtain J5f (P) = L

THEOREM 7. L ί̂ 9ί ^^ «w oi?̂ 7ί Riemann surface with positive boundary,

and ψ be an arbitrary real-valued function defined on 6ΛR. For any given

P E 3 [ , a c-algebra 6 D 23 2/2 (ί^ «̂ ί/ a regular complete measure μp defined on

© are determined uniquely by the requirement that μP{G) - HfG(P) for every

open set G, where © does not depend upon P. Furthermore there hold

Ψdμp and Bf(P) = L ψdμp.

Taking Lemma 4 into account, we have

COROLLARY. A boundary function ψ is resolutive if and only if it is ((£, μ )-
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integrable in the narrow sense.

In Theorem 7, it is left unproved that @ does not depend upon

P £ 3ϊ. If a set E belongs to (δp° for ftGίf, there follows HfE(PQ)^HfF(PQ)

= μp°(E). Then HfE(P)=SfE(P)=[π: XEdμp=]^ XEdμp everywhere on

3ΐ, which shows by Corollary of Lemma 4 that E belongs to @P for any P G 9ϊ.

Theorem 7 is thus proved completely,

11. Relation between the solutions on 9ΐ and those in U. As we studied

in Chapter I, some set of points on Γ corresponds to each Pg £ G'gj under the

mapping Sft00 -* U, and is called the αr-images of Pg. According to Theorem 1

the it-images of different boundary components have no points in common with

each other. Denote the set of points of all αr-images by E. Then its linear

measure is 2 7r.n) For, if we regard a Green's function on 9ϊ as function in U,

it has the limit zero along almost all radii and the set EQ of the end-points of

such radii is contained in E.

The Dirichlet problem with boundary values defined almost everywhere on

Γ can be treated always in U by the Perron-Brelot's method for instance, it

is known that the general solution for a Lebesgue integrable boundary function

is the Poisson integral with the boundary value, and that a boundary function

is resolutive if and only if it is Lebesgue integrable in the narrow sense.

Given a boundary function <f(P$) on £$, we give the value ψ(P{g) to the

αr-images of Pg on Γ. In such a manner ψ is transformed to a function on E,

We shall call it the function on Γ corresponding to φ. In this section we prove

THEOREM 8. Let 3i be an open Riemann surface with positive boundary

and of connectivity at least three. Let ψ be any real function on §<& and, on

mapping 3iro onto U, use the same notation ψ to denote the corresponding func-

tion on Γ. Then there hold

Hf(f(z))=Hu,(z) and

Proof We supply the function <f, defined on E, with the value zero on

Γ — E, and use the same notation ψ to denote the resulting function on Γ. The

ambiguity of the range of definition of <f will not infer nor arouse any confusion.

We take any function u{P) of class \xf and denote u(f(z)) by u(z). This

n) This fact with the following proof was given in [15].
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is bounded from above, continuous and subharmonic in U, and lim uiz) ύ ψ

along every radius with an end-point on £Ό. Let us put lim u(re*Qϊ=ψ(etQ).

This is measurable on Γ and bounded from above. From the inequality

we have by Fatou's lemma

u(rei0) έ ϊim ^-
ΓΓ Jo β -T T — Δ pT COS vσ — ς )

Since φ(ei9)έφ(έ9) on £0, there holds HuΛz) έ H%{z). Hence u(z)£H%(z).

Consequently Hf(f(z))g Ή%(z). Similarly we have # f ( / U ) ) ^ H%(z). If,

therefore, f is a (6, //Hntegrable function, there holds the equality

When a point or an arc aCΓ is an image of a point P@; of 6^3 this

correspondence will be denoted by Pg = /(<*), and, for any set X on Γ,f(X)

will defined by {/(α) α ( Ί l ^ ί } C % Given a closed set FCΓ, the /Ip-

measurability of f{F) is shown as follows:

We enumerate the images in U of the elementary domains {Z)/}(1 = i ^ ^)

in an arbitrary way : Gi, G2, . . . . In G&, which is an image of Di, let the

enumerated images of {Di,j} (I ^ j ^ μ(i)) be G*, i, G ,̂ 2, . . . . In such a

manner any image a on Γ of a Pg is determined by a nested sequence of

domains GkZ)Gk, iD . . . , or by a sequence of numbers k, / , . . . . We put

Ajfe,/,...,m = T)i,j,...,h U βgt, if Gk,ι,...,m is an image of A,y H and if the inter-

section of FΓ\E with the boundary Gl,...,m of Gk,...,m is not empty. Otherwise

we put Ak,...,m=Φ for any finite sequence of positive integers. Then if

a(ΛF ^ φ, and if {Gk,...,m} is the determining sequence of a, /(a) - Ak Π Λ4&,/

Π . . . Π 4 A , / « Π . . . eCsR. But if αr(ΊF = 0, and if {G^, /,,..., w } is the

determining sequence, then Ak> Π Ak>, ι> Π . . . Π A*/f //,..., m> Π . . . = Φ, because

F is a closed set and hence there is a Gk>,i;...tm'9 such that GJt,//,..., w Π F

Π £ = 0. H e n c e / ( F ) = U (Ak Π -A*,/ Π . . . Γ\Ak.ι,....m Π . . . ) . The set
{k,i,...,m,...}

of the right hand side is the nucleus of the Souslin?s graph {Ak, /,..., mK Since

every Aktι,...,m is /Immeasurable, the nucleus/(F) is so too (cf. [13], pp. 47-50).
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Let now ψ be any real-valued function on @$, and ψ be an upper semicon-

tinuous function, bounded from above on Γ and not greater than <f. We define

a function ψ'{P<g) on % by sup ψ(z), where z e a with f(a) = Pβ. For any

number ft there holds /({z ^(2) > ft}) = {P$ 0'(Pg) > ft}. Since {2 0(2) > ft}

is a countable union of closed sets, the left hand side is a /Immeasurable

set Therefore ψ'{P§) is a /Immeasurable function bounded from above on (%.

We use the same letter ψ1 to denote the corresponding function on Γ. Then

H$(f(z)) = H%,(z) and ψ ^ ψ1 ^ ψ on Γ. Hence #£(2) ̂  HΪ>(z) - #&(7(2))

£Hf(f(z)). By the arbitrariness oί ψ ^ ψ there is concluded that #£(2)

^Hf(f(z)). Since the reverse inequality has already been obtained, there

follows the equality. Similarly we get jf/f(/(z)) =HΪ(z). Thus our theorem

is proved.

Taking Theorem 7 and Corollary of Lemma 4 into account, we have

COROLLARY. A set X in (% belongs to ® if and only if its image on Γ is

linearly measurable.

Let us give a remark to our present paper. When 3ΐ is a plane domain

surrounded by curves, each curve is a point with respect to the topology of (%.

This shows that in some cases the points of % are too wide to be defined as

boundary points of 3i. It is desirable, therefore, to study conformal mappings

and Dirichlet problems for boundary points of 5ΐ defined more finely than the

points of % . 1 2 '
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