ON THE TRIAD EXCISION THEOREM OF BLAKERS AND MASSEY

SHÔRÔ ARAKI

The purpose of the present paper is to give a new proof to the triad excision theorem of Blakers and Massey [1], in case $m \geqq 2$ and $n \geqq 2$, by the aid of path spaces and in connection with a recent work of J. P. Serre [2].

1. Preliminary. Let X, A, B be topological spaces such that $X \supset A, B$. By $\Omega_{A, B}(X)$ we denote the totality of paths in X which start A and terminate in B; an element $(\sigma, I) \in \Omega_{A, B}(X)$ is represented by a continuous map $\sigma: I \rightarrow X$ of the closed unit interval I into X such that $\sigma(0) \in A$ and $\sigma(1) \in B$. Then $\Omega_{A, B}(X)$ is topologized by the compact open topology.

Let p_{s} be the projection of $\Omega_{A, B}(X)$ to A such that for $(\sigma, I) \in \Omega_{A, B}(X)$ $p_{s}(\sigma, I)=\sigma(0)$, and let $p_{t}: \Omega_{A, B}(X) \rightarrow B$ be the projection such that $p_{t}(\sigma, I)$ $=\sigma(1)$ for $(\sigma, I) \in \Omega_{A, B}(X)$.

In the sequel, it is assumed that for a triad ($X ; A, B, x_{0}$) and for spaces of paths such as $\Omega_{A, B}(X), \Omega_{A, x_{0}}(X)$, and so on, $X, A, B, A \cap B$, and spaces of paths are all arcwise connected, and that a reference point of any spaces of paths used, is taken to be an element represented by a constant map $e: I \rightarrow x_{0}$.

The following relations are obvious:
(a)

$$
\begin{equation*}
\pi_{i-1}\left(\Omega_{x_{0}, x_{0}}(X), e\right) \approx \pi_{i}\left(X, x_{0}\right) \quad \text { for all } i \supseteq 1 \text {, } \tag{b}
\end{equation*}
$$

$\pi_{i-1}\left(\Omega_{A, x_{0}}(X), e\right) \approx \pi_{i}\left(X, A, x_{0}\right)$
for all $i \geqslant 1$,
(c) $\quad A$ is a deformation-retract of $\Omega_{A, X}(X)$,

$$
\begin{equation*}
\pi_{i-1}\left(\Omega_{B, x_{0}}(X), \Omega_{A \cap P, x_{0}}(A), e\right) \approx \pi_{i}\left(X ; A, B, x_{0}\right) \quad \text { for all } i \geqq 2 \tag{d}
\end{equation*}
$$

where $\left(X ; A, B, x_{0}\right)$ is a triad.
The above isomorphisms (a), (b) and (d) are referred to as canonical isomorphisms.

Let (X, A) be a pair of topological spaces, i.e., $X \supset A$. Suppose that X is p-connected for $p \geqslant 1$ and $\left(X, A, x_{0}\right)$ is q-connected for $q \geqslant 1$, then $\Omega_{d, x_{0}}(X)$ is ($q-1$)-connected. ($\left.\Omega_{A, X}(X), p_{t}, X\right)$ has a fibred structure in the sense of J. P. Serre, the fibre of which is $\Omega_{A, x_{0}}(X)$. Considering this fibre space, we have the following exact homology sequence with respect to integer coefficients, following J. P. Serre, [2] Chap. III. prop. 5 p. 468 ;

Received March 17, 1953.

$$
\begin{gathered}
H_{p+q}\left(\Omega_{A, x_{0}}(X)\right) \xrightarrow{h^{*}} H_{p+q}\left(\Omega_{A, X}(X)\right) \xrightarrow{p_{t}^{*}} H_{p+q}(X) \xrightarrow{\Sigma^{*}} H_{p+q-1}\left(\Omega_{A, x_{0}}(X)\right) \longrightarrow H_{1}\left(\Omega_{A, x_{0}}(X)\right) \longrightarrow H_{1}\left(\Omega_{A, x}(X)\right) \longrightarrow H_{1}(X) \longrightarrow 0
\end{gathered}
$$

where \sum^{*} is transgression.
Now, we define homomorphisms

$$
c_{k}^{*}: H_{k}\left(\Omega_{A, x_{0}}(X) ; G\right) \longrightarrow H_{k+1}(X, A ; G) \quad \text { for all } k \geqslant 1
$$

by constructing chain maps, where G is an arbitrary coefficient group. For this we use singular cubical homology groups as homology groups defined by J. P. Serre, [2] p. 440.

Let $\left(u^{k}, \varphi\right)$ be a singular cube of $\Omega_{A, x_{0}}(X)$, then φ defines a map

$$
\bar{\varphi}: I \times u^{k} \longrightarrow X,
$$

which gives a singular cube $\left(I \times u^{k}, \bar{\varphi}\right)$ of X. By the correspondence

$$
c_{k}:\left(u^{k}, \varphi\right) \longrightarrow\left(I \times u^{k}, \bar{\varphi}\right)
$$

and by linearity we get a chain homomorphism

$$
c_{k}: C_{k}\left(\Omega_{A, x_{0}}(X)\right) \longrightarrow C_{k+1}(X)
$$

From the following calculations

$$
\begin{aligned}
d \circ c\left(u^{k}, \varphi\right) & =d\left(I \times u^{k}, \bar{\varphi}\right) \\
& =\left(\sum_{i=1}^{k}(-1)^{i+1} I \times\left(\lambda_{i}^{0} u^{k}-\lambda_{i}^{1} u^{k}\right)-0 \times u^{k}+1 \times u^{k}, \bar{\varphi}\right) \\
& =-\left(I \times d u^{k}, \bar{\varphi}\right)-\left(0 \times u^{k}, \bar{\varphi}\right)+\left(1 \times u^{k}, \bar{\varphi}\right) \\
& =-c{ }^{\circ} d\left(u^{k}, \varphi\right)-\left(0 \times u^{k}, \bar{\varphi}\right)
\end{aligned}
$$

where $\left(1 \times u^{k}, \bar{\varphi}\right)$ is a degenerate cube and $\bar{\varphi}\left(0 \times u^{k}\right) \subset A$, and from the fact that if $\left(u^{k}, \varphi\right)$ is degenerate cube, $\left(I \times u^{k}, \bar{\varphi}\right)$ is also degenerated, it is concluded that c_{k} induces the following homomorphism

$$
c_{k}^{*}: H_{k}\left(\Omega_{A, x_{v}}(X) ; G\right) \longrightarrow H_{k+1}(X, A ; G)
$$

Lemma 1. Let $\left(X, x_{0}\right)$ be p-connected for $p \geqslant 1$, and let $\left(X, A, x_{0}\right)$ be q-connected for $q \geqslant 1$. Then
i) c_{k}^{*} are isomorphisms onto for $k \leqq p+q-1$,
ii) c_{p+q}^{*} is a homomorphism onto.

Proof. We consider the following diagram

$$
\begin{aligned}
& H_{p+q}\left(\Omega_{A, x_{0}}(X)\right) \xrightarrow{h^{*}} H_{p+q}\left(\Omega_{A, x}(X)\right) \xrightarrow{p_{t}^{*}} H_{p+q}(X) \xrightarrow{\Sigma^{*}} H_{p+q-1}\left(\Omega_{A, x_{0}}(X)\right) \xrightarrow{h_{*}} \ldots \\
& H_{p+q-1}(X, A) \xrightarrow{\partial^{*}} \quad H_{p+q}(\dot{A}) \xrightarrow{i *} H_{p+q}(X) \xrightarrow{j^{*}} H_{p+q}(X, A) \xrightarrow{\downarrow^{*}} \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \ldots \longrightarrow H_{2}(X, A) \longrightarrow H_{1}(A) \longrightarrow H_{1}(X) \longrightarrow 0 .
\end{aligned}
$$

Let

$$
\left(u^{i+1}, \varphi\right) \in C_{i+1}\left(\Omega_{A, X}(X)\right)
$$

be given, then we have

$$
\begin{aligned}
& i \circ p_{s}\left(u^{i+1}, \varphi\right)=\left(0 \times u^{i+1}, \bar{\varphi}\right) \in C_{i+1}(A) \subset C_{i+1}(X), \\
& p_{i}\left(u^{i+1}, \varphi\right)=\left(1 \times u^{i+1}, \bar{\varphi}\right) \in C_{i+1}(X), \\
& d\left(I \times u^{i+1}, \bar{\varphi}\right)=-\left(I \times d u^{i+1}, \bar{\varphi}\right)-\left(0 \times u^{i+1}, \bar{\varphi}\right) \\
&+\left(1 \times u^{i+1}, \bar{\varphi}\right) .
\end{aligned}
$$

This proves

$$
i^{*} \circ p_{s}^{*}=\iota^{*} \circ p_{t}^{*} .
$$

Next, given

$$
\left(u^{i}, \varphi\right) \in C_{i}\left(\Omega_{A, x_{0}}(X)\right)
$$

then we have

$$
\begin{aligned}
\partial \circ c\left(u^{i}, \varphi\right) & =d\left(I \times u^{i}, \bar{\varphi}\right) \\
& =-c^{\circ} d\left(u^{i}, \varphi\right)-\left(0 \times u^{i}, \bar{\varphi}\right) \\
& =-p_{s} \circ h\left(u^{i}, \varphi\right)-c \circ d\left(u^{i}, \varphi\right)
\end{aligned}
$$

Thus the identity

$$
\partial^{*} \circ c^{*}=-p_{s}^{*} \circ h^{*}
$$

is established.
By J. P. Serre, [2] p. 469, we get the following equivalent homology sequences:

$$
\begin{aligned}
& \xrightarrow{\partial^{*}} H_{i}\left(\Omega_{A, x_{0}}(X)\right) \longrightarrow H_{i}\left(\Omega_{A, X}(X)\right) \\
& \xrightarrow{\Sigma^{*}} H_{i}\left(\Omega_{A, x_{0}}(X)\right) \longrightarrow H_{i}\left(\Omega_{A, x}(X)\right)
\end{aligned}
$$

for $1 \leqq i \leqq p+q-1$, i.e., we have $\sum^{*}=\partial^{*} \circ p_{t}^{*-1}$.
We now consider the following diagram:

$$
\begin{aligned}
& H_{i+1}\left(\Omega_{A, X}(X), \Omega_{A, x_{0}}(X)\right) \\
& \downarrow p_{t}^{\prime *} \\
& H_{i+1}(X) \searrow^{\partial^{*}} \\
& j^{*} \downarrow \\
& H_{i}\left(\Omega_{A, x_{0}}(X)\right) \\
& \begin{array}{l}
\text { i+1 }
\end{array}(X, A)
\end{aligned}
$$

Let

$$
\sum_{j}\left(u_{j}^{i+1}, \varphi_{j}\right) \in Z_{i+1}\left(\Omega_{A, X}(X), \Omega_{A, x_{0}}(X)\right)
$$

be given, then we have

$$
\begin{aligned}
& p_{t}^{\prime}\left(\sum_{j}\left(u_{j}^{i+1}, \varphi_{j}\right)\right)=\sum_{j}\left(1 \times u_{j}^{i+1}, \bar{\varphi}_{j}\right) \in Z_{i+1}(X), \\
& \partial\left(\sum_{j}\left(u_{j}^{i+1}, \varphi_{j}\right)\right)=\sum_{j}\left(d u_{j}^{i+1}, \varphi_{j}\right) \in Z_{i}\left(\Omega_{A, x_{0}}(X)\right), \\
& c \circ \partial\left(\sum_{j}\left(u_{j}^{i+1}, \varphi_{j}\right)\right)=\sum_{j}\left(I \times d u_{j}^{i+1}, \bar{\varphi}_{j}\right) \in Z_{i+1}(X, A) .
\end{aligned}
$$

Consider the following chain

$$
\sum_{j}\left(I \times u_{j}^{i+1}, \bar{\varphi}_{j}\right) \in C_{i+2}(X),
$$

we have

$$
\begin{aligned}
d\left(\sum_{J}\left(I \times u_{j}^{i+1}, \bar{\varphi}_{j}\right)\right) & =-\sum_{\partial}\left(I \times d u_{j}^{i+1}, \bar{\varphi}_{j}\right)-\sum_{j}\left(0 \times u_{j}^{i+1}, \bar{\varphi}_{j}\right)+\sum_{j}\left(1 \times u_{j}^{i+1}, \bar{\varphi}_{j}\right) \\
& =-\left(c \circ \partial-p_{j}^{\prime}\right)\left(\sum_{j}\left(u_{j}^{i+1}, \varphi_{j}\right)\right)-\sum_{j}\left(0 \times u_{j}^{i+1}, \bar{\varphi}_{j}\right),
\end{aligned}
$$

where $\sum_{j}\left(0 \times u_{j}^{i+1}, \bar{\varphi}_{j}\right) \in C_{i+1}(A)$. This proves

$$
j^{*} \circ p_{t}^{\prime *}=c^{*} \circ \partial^{*},
$$

so that

$$
c^{*} \circ \sum^{*}=j^{*} \circ \iota^{*}
$$

has been established.
$(\alpha),(\beta)$ and (δ) show that it holds some commutativity or anti-commutativity in each tetragon of the firstly mentioned diagram. As p_{s}^{*} is isomorphism onto by (c) and as ι^{*} is isomorphism onto induced by identity map, by using "five lemma," we get the first conclusion of this lemma.
$(\alpha),(\beta)$ and (γ) show that the following diagram is commutative or anticommutative:

$$
\begin{aligned}
& H_{p+q+1}\left(\Omega_{A, x}(X), \Omega_{A, x_{0}}(X)\right) \xrightarrow{\partial \prime *} H_{p+q}\left(\Omega_{A, x_{0}}(X)\right) \\
& \downarrow p_{t, p+q+1}^{\prime *} \quad \downarrow c_{p+q}^{*} \\
& H_{p+q+1}(X) \quad \xrightarrow{j *} \quad H_{p+q+1}(X, A) \\
& \xrightarrow{h^{*}} H_{p+q}\left(\Omega_{A, X}(X)\right) \xrightarrow{j^{\prime *}} H_{p+q}\left(\Omega_{A, X}(X), \Omega_{A, x_{i}}(X)\right) \\
& \left\|p_{s, p+q}^{*} \quad\right\| p_{t, p+q}^{*} \\
& \xrightarrow{\partial^{*}} H_{p+q}(A) \quad \xrightarrow{i^{*}} \quad H_{p+q}(X) .
\end{aligned}
$$

By J. P. Serre, [2] Chap. III prop. 5 cor. 1 p. 469, we have
(ε) $p_{t, p+q}^{\prime *}$ is an isomorphism onto, and $p_{t, p+q+1}^{\prime *}$ is a homomorphism onto.
Then, by using a "partial conclusion of five lemma," we get the second con-
clusion of this lemma.
(q.e.d.)

As a collorary of this lemma, we can easily prove the Hurewicz theorem in the relative case.

Lemma 2. Let (X, A, B, x_{0}) be a triple, then

$$
\pi_{i}\left(\Omega_{A, x_{0}}(X), \Omega_{B, x_{0}}(X), e\right) \approx \pi_{i}\left(A, B, x_{0}\right) \quad \text { for all } i \geqq 1
$$

Proof. Let us consider the following diagram

$$
\begin{aligned}
& \cdots \longrightarrow \pi_{i}\left(\Omega_{A, x_{0}}(X)\right) \xrightarrow{j^{\prime}} \pi_{i}\left(\Omega_{A, x_{0}}(X), \Omega_{B, x_{0}}(X)\right) \xrightarrow{\partial^{\prime}} \pi_{i-1}\left(\Omega_{B, x_{0}}(X)\right) \\
& \ldots \longrightarrow \pi_{i+1}(X, A) \quad \xrightarrow{\partial} \quad \pi_{i}(A, B) \quad \xrightarrow{i} \quad \pi_{i}(X, B) \\
& \xrightarrow{i^{\prime}} \pi_{i-1}\left(\Omega_{A, x_{0}}(X)\right) \rightarrow \ldots \\
& \text { " } k_{A} \\
& \xrightarrow{j} \pi i(X, A) \rightarrow \ldots \\
& \cdots \longrightarrow \pi_{1}\left(\Omega_{A, x_{0}}(X)\right) \longrightarrow \pi_{1}\left(\Omega_{A, x_{0}}(X), \Omega_{B, x_{0}}(X)\right) \longrightarrow \pi_{0}\left(\Omega_{B, x_{0}}(X)\right) \longrightarrow \pi_{0}\left(\Omega_{A, x_{0}}(X)\right), \\
& \ldots \pi_{2}(X, A) \longrightarrow \pi_{1}(A, B) \quad \longrightarrow \quad \pi_{1}(X, B) \longrightarrow \pi_{1}(X, A),
\end{aligned}
$$

where the upper sequence is a homotopy sequence of the pair ($\left.\Omega_{A, x_{0}}(X), \Omega_{B, x_{0}}(X)\right)$ and the lower sequence is a homotopy sequence of the triple (X, A, B, x_{0}). $k_{\text {. }}$ and k_{B} are canonical isomorphisms and p_{s} denotes also the homorphism induced by the projection p_{s}.

Firstly, we prove that (k_{A}, p_{s}, k_{B}) is a homomorphism of the sequences, i.e., that $\partial \circ k_{A}=p_{s} \circ j^{\prime}, i \circ p_{s}=k_{B} \circ \partial^{\prime}, j \circ k_{B}=k_{A} \circ i^{\prime}$.

The identity $j \circ k_{B}=k_{A} \circ i^{\prime}$ is obvious.
Let $\alpha \in \pi_{i}\left(\Omega_{A, x_{0}}(X)\right)$ be given such that a map $f:\left(E^{i}, \dot{E}^{i}\right) \longrightarrow\left(\Omega_{A, x_{0}}(X), e\right)$ represents α, then

$$
k_{A} \circ f=\bar{f}:\left(E^{i} \times I, E^{i} \times 0, E^{i} \times 1 \cup \dot{E}^{i} \times I\right) \longrightarrow\left(X, A, x_{0}\right)
$$

is defined by f canonically. The map

$$
\partial \circ k_{A} \circ f=\bar{f} \mid\left(E^{i} \times 0, \dot{E}^{i} \times 0\right) \longrightarrow\left(A, x_{0}\right) \subset(A, B)
$$

is identical to the map $p_{s} \circ j^{\circ} \circ f$, which proves the identity

$$
\partial \circ k_{A}=p_{s} \circ j^{\prime}
$$

Secondly, if $\beta \in \pi_{i}\left(\Omega_{A, x_{0}}(X), \Omega_{B, x_{0}}(X)\right)$ is represented by a map

$$
g:\left(E^{i-1} \times I, E^{i-1} \times 0, E^{i-1} \times 1 \cup \dot{E}^{i-1} \times I\right) \longrightarrow\left(\Omega_{A, x_{0}}(X), \Omega_{B, x_{0}}(X), e\right),
$$

g defines canonically a map

$$
\begin{aligned}
\bar{g}:(& E^{i-1} \times I \times I^{\prime}, E^{i-1} \times I \times 0^{\prime}, E^{i-1} \times 0 \times 0^{\prime} \\
& \left.E^{i-1} \times 1 \times I^{\prime} \cup E^{i-1} \times I \times 1^{\prime} \cup \dot{E}^{i-1} \times I \times I^{\prime}\right) \longrightarrow\left(X, A, B, x_{0}\right)
\end{aligned}
$$

Then $i \circ p_{S} \circ g$ and $k_{B} \circ \partial^{\prime} \circ g$ are the following restrictions of \bar{g} respectively:

$$
\begin{aligned}
& i \circ p_{s^{\circ}} g=\bar{g} \mid\left(E^{i-1} \times I \times 0^{\prime}, E^{i-1} \times 0 \times 0^{\prime}, E^{i-1} \times\right.\left.1 \times 0^{\prime} \cup \dot{E}^{i-1} \times I \times 0^{\prime}\right) \\
& \longrightarrow\left(A, B, x_{0}\right) \subset\left(X, B, x_{0}\right), \\
& k_{B} \circ \widehat{o}^{\prime} \circ g=\bar{g} \mid\left(E^{i-1} \times 0 \times I^{\prime}, E^{i-1} \times 0 \times 0^{\prime}, E^{i-1} \times 0 \times 1^{\prime} \cup \dot{E}^{i-1} \times 0 \times I^{\prime}\right) \\
& \longrightarrow\left(X, B, x_{0}\right) .
\end{aligned}
$$

A homotopy between two maps $i^{\circ} p_{s} \circ g$ and $k_{B} \circ \partial^{\prime} \circ g$ will be given in (E^{i-1} $\left.\because I \times I^{\prime}\right)$ as follows:

$$
G_{\theta}\left(E^{i-1} \times I \times I^{\prime}\right)= \begin{cases}\bar{g} \mid\left(E^{i-1} \times t \times 2 \theta t\right) & 0 \leqq \theta \leqq 1 / 2, \\ \bar{g} \mid\left(E^{i-1} \times(2-2 \theta) t \times t\right) & 1 / 2 \leqq \theta \leqq 1 .\end{cases}
$$

This proves the identity

$$
i \circ p_{s}=k_{B} \circ \partial^{\prime} .
$$

It follows that (k_{A}, p_{s}, k_{B}) is a homomorphism of the sequences. Since k_{A} and k_{B} are isomorphisms and since (k_{A}, p_{s}, k_{B}) is a homomorphism of the sequences it is concluded in virtue of "five lemma" that p_{s} also is isomorphism.
(q.e.d.)

Let $\left(X ; A, B, x_{0}\right)$ be a triad, then $\left(\Omega_{X, x_{0}}(X) ; \Omega_{A, x_{0}}(X), \Omega_{B, x_{0}}(X), e\right)$ is also a triad, where $\Omega_{A, x_{0}}(X) \cap \Omega_{B, x_{0}}(X)=\Omega_{A \cap B, x_{0}}(X)$. The following lemma can be proved easily by considering homotopy sequences of each triads and by the above lemma anc by "five lemma."
lemma 3. Let $\left(X ; A, B, x_{0}\right)$ be triad, then
$\pi_{i}\left(X ; A . B, x_{0}\right) \approx \pi_{i}\left(\Omega_{X, x_{0}}(X) ; \Omega_{A, x_{0}}(X), \Omega_{B, x_{0}}(X), e\right) \quad$ for all $i \geq 2$.
Lemma 4. Let $\left(X ; A, B, x_{0}\right)$ be a triad such that
$X=($ Int $A) \cup($ Int $B)$, and let $(A, A \cap B)$ be n-connected $(n \geqslant 1)$, then $(X$, $B)$ is n-connected.

Proof. Let $\alpha \in \pi_{m}(X, B)$ be represented by a map

$$
f:\left(E^{m}, E^{m-1}, J^{m-1}\right) \longrightarrow\left(X, B, x_{0}\right),
$$

where $n \leqq n$. If we put $U=f^{-1}($ Int $A)$ and $V=f^{-1}($ Int $B)$, then $\{U, V\}$ is an open covering of E^{m}.

We subdivide E^{m} simplicially such that the mesh of this subdivision is smaller than the Lebesgues number of $\{U, V\}$. Let K and L_{1} be maximal subcomplexes contained in U and V respectively. Let us put $L=L_{1}+E^{m-1}$ $+J^{m-1}$ and $M=K \cap L$, then we have $K \cup L=E^{m}$. Let

$$
g:(K, M) \longrightarrow(A, A \cap B)
$$

be a restriction of f. As K is m-dimensional, $m \leqq n$, and as $(A, A \cap B)$ is n connected, g is deformable into $A \cap B$ relative to M. Denoting this deforma-
tion by g_{t}, we have

$$
\begin{aligned}
& g_{0}=g, \\
& g_{1}(K) \subset A \cap B, \\
& g_{t}|M=g| M \quad \text { for } 0 \leqq t \leqq 1 .
\end{aligned}
$$

We define a deformation f_{t} of f as follows:

$$
\begin{array}{ll}
f_{t} \mid K=g_{t} & \text { for } 0 \leqq t \leqq 1, \\
f_{t}|L=f| L & \text { for } 0 \leqq t \leqq 1 .
\end{array}
$$

This gives a deformation of f into B relative to L, which establishes the lemma. (q.e.d.)

2. Proof of the triad excision theorem of Blakers and Massey.

Now we proceed to prove a theorem of A. L. Blakers and W. S. Massey, [1] p. 192, in case $m, n \geqslant 2$. The theorem is stated as follows.

Theorem. Let ($X ; A, B, x_{0}$) be a triad which satisfies the following conditions:
(a)
$X=(\operatorname{Int} A) \cup(\operatorname{Int} B):$
(b)
$(A, A \cup B)$ is m-connected, $m \geqq 2$, and $(B, A \cap B)$ is n-connected, $n \gtrsim 2$;
then the triad $(X ; A, B)$ is $(m+n)$-connected.
A triad with the condition (a) is said to be proper by a denomination of S. Eilenberg and N. E. Steenrod, [3] p. 34. From Lemma $4(X, A)$ is n-connected, $n \geq 2$, and (X, B) is m-connected, $m \geqslant 2$. Therefore $\Omega_{X, x_{0}}(X), \Omega_{A, x_{0}}(X)$, $\Omega_{B, x_{0}}(X)$ and $\Omega_{A \cap B, x_{0}}(X)$ are all arcwise connected. If ($X ; A, B, x_{0}$) is proper, it is obvious that $\left(\Omega_{X, x_{0}}(X) ; \Omega_{A, x_{0}}(X), \Omega_{R, x_{0}}(X), e\right)$ is also a proper triad. Thus, from Lemma 3 it is sufficient for us to consider the triad ($\Omega_{X, x_{0}}(X) ; \Omega_{A, x_{0}}(X)$, $\left.\Omega_{r, x_{0}}(X), e\right)$ instead of the given triad. As $\Omega_{X, x_{0}}(X)$ is contractible, it is sufficient to prove the theorem in a special case where X is contractible.

Proof. As (X, A) is n-connected from Lemma 4, and as X is contractible, A is $(n-1)$-connected. Thus, by Lemma 1 it is seen that

$$
\begin{align*}
& c_{i}^{*}: H_{i}\left(\Omega_{A \cap B, x_{0}}(A) ; Z\right) \approx H_{i+1}(A, A \cap B ; Z) \tag{1}\\
& \quad \text { for } 0<i \leqq m+n-2, \\
& c_{m+n-1}^{*}: H_{m+n-1}\left(\Omega_{A \cap B, x_{0}}(A) ; Z\right) \longrightarrow H_{m+n}(A, A \cap B ; Z) \tag{2}
\end{align*}
$$

is a homomorphism onto.
As (X, B) is m-connected and X is contractible, we have, from the same Lemma 1,

$$
\begin{equation*}
c_{i}^{\prime *}: H_{i}\left(\Omega_{B, x_{0}}(X) ; Z\right) \approx H_{i+1}(X, B ; Z) \quad \text { for all } i>0 \tag{3}
\end{equation*}
$$

From (1), (3) and from the excision theorem in homology theory we have

$$
\begin{align*}
& l_{i}^{*}: H_{i}\left(\Omega_{A \cap B, x_{0}}(A) ; Z\right) \approx H_{i}\left(\Omega_{B, x_{0}}(X) ; Z\right) \tag{4}\\
& \text { for } 0<i \leqq m+n-2 .
\end{align*}
$$

Next, we consider the following diagram. The commutativity of this diagram is easily seen:

$$
\begin{array}{cc}
H_{m+n-1}\left(\Omega_{A \cap B}, x_{0}(A) ; Z\right) & \stackrel{l_{m+n-1}^{*}}{\longrightarrow} H_{m+n-1}\left(\Omega_{B, x_{0}}(X) ; Z\right) \\
\downarrow c_{m+n-1}^{*} & \stackrel{*}{e_{m+n}^{*}} \\
H_{m+n}(A, A \cap B ; Z) & \stackrel{c_{m+n-1}^{\prime *}}{\approx}
\end{array} H_{m+n}(X, B ; Z)
$$

Since e_{m+m}^{*} is an excision isomorphism, and since $c_{m+n-1}^{\prime *}$ is an isomorphism by (3) and since c_{m+n-1}^{*} is a homomorphism onto by (2), we have

$$
\begin{equation*}
l_{m+n-1}^{\neq}: H_{m+n-1}\left(\Omega_{A \cap B, x_{0}}(A) ; Z\right) \rightarrow H_{m+n-1}\left(\Omega_{B, x_{0}}(X) ; Z\right) \tag{5}
\end{equation*}
$$

is a homomorphism onto.
By (4) and (5), and by considering the homology sequence of the pair $\left(\Omega_{B, r_{0}}(X), \Omega_{A \cap B, x_{0}}(A)\right)$ we can prove

$$
\begin{equation*}
H_{i}\left(\Omega_{R, x_{0}}(X), \Omega_{A \cap B, x_{0}}(A) ; Z\right) \approx 0 \quad \text { for } 0<i \leqq m+n-1 . \tag{6}
\end{equation*}
$$

From (6) and from the Hurewicz theorem in the relative case where $\pi_{0}\left(\Omega_{B, x_{0}}(X)\right) \approx 1, \pi_{1}\left(\Omega_{A \cap B, x_{0}}(A)\right) \approx 1,\left(\Omega_{B, x_{0}}(X), \Omega_{A \cap B, r_{0}}(A), e\right)$ is $(m+n-1)$-connected. This is equivalent to the fact that $\left(X ; A, B, x_{0}\right)$ is ($m+n$)-connected. (q.e.d.)

In an analoguous way as above we can also prove the theorem corresponding to the case where $m \geqslant 2, n=1$, and ($A, A \cap B$) is ($m+1$)-simple. But it is unnecessarily too long for us to put down here the proof, so that it is omitted.

We can also prove quite analogously as above a generalization of the triad excision theorem, which has been announced by J. C. Moore [4].

References

[1] A. L. Blakers and W. S. Massey: The homotopy groups of a iriad. II. Ann. of Math., vol. 55 (1952), pp. 192-201.
[2] J. P. Serre: Homologis singuliere des espaces fibres. Ann. of Math., vol. 54 (1951), pp. 425-505.
[3] S. Eilenterg and N. E. Steenrod: Foundations of Algebraic Topology, Princeton Univ. Press, 1952.
[4] J. C. Moore: Bull. Amer. Math. Soc., vol. 58 (1952), Abstract; No. 396.

Mathematical Institute,

Nagoya University

