REMARKS ON THE DIFFERENTIAL FORMS OF THE FIRST KIND ON ALGEBRAIC VARIETIES

YÛSAKU KAWAHARA

§1. A differential form ω on a complete variety U^n is said to be of the first kind if it is finite at every simple point of any variety which is birationally equivalent to U. Let k be a common field of definition for U and ω , and let P be a generic point of U over k. If ω is of the first kind, then $\omega(P)$ is of course a differential form of the first kind belonging to the extension k(P) of k. With respect to the converse, we prove the following

Theorem 1. Let k be a field of definition for a complete variety \mathbf{U}^n and a differential form ω on \mathbf{U} , and let \mathbf{P} be a generic point of \mathbf{U} over k. Let k be a perfect 1) field or more generally let k have a perfect 1) subfield which is a field of definition for \mathbf{U} . If $\omega(\mathbf{P})$ is a differential form of the first kind belonging to the extension $k(\mathbf{P})$ of k, then ω is of the first kind.²⁾

Proof. Let V be a variety which is birationally equivalent to U and let K be a field of definition of the birational correspondence between U and V. We may assume without loss of generality that K is algebraically closed and contains k and that P is a generic point of U over K. We want to show that ω is finite at every simple point of V. It suffices to show that $\omega(P)$, considered as the differential form belonging to the extension K(P) of K, is of the first kind or that $\omega(P)$ is finite at every prime divisor $\mathfrak P$ in the sense of Zariski of K(P) (= valuation of K(P) of dimension n-1 over K), namely, that $\omega(P)$ is of the form

$$\omega(\mathbf{P}) = \sum z_{\alpha 3} \dots dv_{\alpha} dv_{3} \dots$$
;

 $z_{\alpha\beta}$..., y_{α} , y_{β} , etc. being in the valuation ring of \mathfrak{P}^{3} .

We first prove

Lemma. Let K be a field, k a subfield of K; let (x) be a set of quantities, such that K and k(x) are independent over k. Then if v is a valuation of K(x)

Received April 22, 1953.

¹⁾ If we omit the condition of perfectness this theorem does not hold in general.

²⁾ If the problem of the reduction of the singularity over perfect field is solved affirmatively, this theorem is an immediate consequence of theorem 1 of S. Koizumi's paper; On the differential forms of the first kind on algebraic varieties, Journal of the Mathematical Society of Japan, Vol. 2. However it would not be meaningless to give a simple direct proof.

^{3:} See Y. Kawahara, On the differential forms on algebraic varieties, this journal, Vol. 4, Theorem 1.

of dimension s over K, the induced valuation v' of k(x) is of dimension not smaller than s over k.

Proof. Let R denote the valuation ring of v in K(x), A its valuation ideal, and let R' denote the valuation ring of v' in k(x), A' its valuation ideal. As v is of dimension s, there are s elements y_1, \ldots, y_s in R which are algebraically independent mod A over K. Let K_0 be a finite extension field of k, such that all y_1, \ldots, y_s belong to $K_0(x)$. Then v induces the valuation of $K_0(x)$ of dimension $\geq s$ over K_0 . Therefore we may assume that K is a finite extension field of k.

$$R/A \supseteq R'/A' \supseteq k$$
,
 $R/A \supseteq K \supseteq k$.

Let the dimension of K over k be t. Then R/A is of dimension s+t over k. On the other hand the dimension of R/A over R'/A' is $\leq t$. For, if Z_1, \ldots, Z_{t+1} are t+1 elements in R, then as the dimension of K(x) over k(x) is t, there is an algebraic relation among them:

$$\sum a_{r_1 \ldots r_{t+1}} Z_1^{r_1} \ldots Z_{t+1}^{r_{t+1}} = 0$$

where all $a_{r_1...r_{l+1}}$ belong to k(x). We may assume that all $a_{r_1...r_{l+1}}$ belong to R' and there is an element among them which does not belong to A'. Considering this relation mod A, we see that the dimension of R/A over R'/A' is $\leq t$. Therefore the dimension of R'/A' over k is $\geq s$.

From this lemma we see that \mathfrak{P} induces in $k(\mathbf{P})$ the valuation \mathfrak{p} of dimension at least n-1. As $\omega(\mathbf{P})$ is the differential form of the first kind belonging to the extension $k(\mathbf{P})$ of k, $\omega(\mathbf{P})$ is finite at \mathfrak{p} ; hence $\omega(\mathbf{P})$ is finite at \mathfrak{P} . This completes the proof of Theorem 1.

§ 2. We prove the following

Theorem 2. Let U^n be a projective model without singular point and let ω be a differential form on U^n , defined over k. Let U'^{n-1} be the generic hyperplane section of U^n (over k) on which ω induces the differential form ω' of the first kind. Then ω is of the first kind.

Proof. Let U' be the intersection of U^n and a hyperplane H defined by a homogeneous equation

$$\sum_{i=0}^{N} u_i X_i = 0$$

in \mathbf{P}^{N} , where u_0, u_1, \ldots, u_N are algebraically independent over k. Let \mathbf{W}^{n-1} be a subvariety of \mathbf{U}^{n} which is algebraic over k and let \mathbf{W}'^{n-2} be a component of $\mathbf{W} \cap \mathbf{H}$, which is contained in \mathbf{U}' .

⁴⁾ This theorem has been proved also by S. Koizumi.

Without loss of generality we may assume that \mathbf{W}^{n-1} has a representative \mathbf{W}_0^{n-1} . Put $K = k(u_0, \ldots, u_N)$ and let P = (x) be a generic point of U_0' over \overline{K} and Q a generic point of \mathbf{W}_0' over \overline{K} . Then P is also a generic point of U_0 over K and K is a generic point of K over K. Further we may assume that K is a set of uniformizing parameters for K is a set of the differential form. We may treat the case of the differential form of the higher degrees analogously.

Let ω be defined by $\omega(P) = \sum_{i=1}^{n} a_i dx_i$, $a_i \in k(P)$. Then ω' is defined over \overline{K} by $\omega'(P) = \sum_{i=1}^{n} a_i dx_i$, where $\sum_{i=1}^{n} a_i dx_i$ is considered as the differential form belonging to the extension $\overline{K}(P)$ of \overline{K} . Now since

$$u_0 + u_1 x_1 + \dots + u_N x_N = 0,$$

 $\sum_{j=1}^{N} u_j dx_j = 0, \text{ i.e.}$
 $-u_1 dx_1 = \sum_{k=2}^{N} u_k dx_k.$

If we put $dx_k = \sum_{i=1}^n b_{ki} dx_i$, $b_{ki} \in k(P)$, $k = n + 1, \ldots, N$, we get

$$-u_{1}dx_{1} = \sum_{i=2}^{n} u_{i}dx_{i} + \sum_{k=n+1}^{N} u_{k}dx_{k}$$

$$= \sum_{i=2}^{n} (u_{i} + \sum_{k=n+1}^{N} u_{k}b_{ki})dx_{i} + \sum_{k=n+1}^{N} u_{k}b_{k1}dx_{1}.$$

$$-dx_{1} = \sum_{i=2}^{n} \left(u_{i} + \sum_{k=n+1}^{N} u_{k}b_{ki} \right) dx_{i},$$

$$\omega'(P) = \sum_{i=2}^{n} \left(a_{i} - a_{1} \frac{\left(u_{i} + \sum_{k=n+1}^{N} u_{k}b_{ki} \right)}{\left(u_{1} + \sum_{k=n+1}^{N} u_{k}b_{ki} \right)} \right) dx_{i}.$$

By the assumptions that ω' is of the first kind and x_2, \ldots, x_n form a set of uniformizing parameters,

$$A_{i} = a_{i} - a_{1} \frac{u_{i} + \sum_{k} u_{k} b_{ki}}{u_{1} + \sum_{k} u_{k} b_{k1}}$$

is in the specialization ring of Q in $\overline{K}(P)$, therefore A_i has a finite specialization over $P \to Q$ with respect to \overline{K} , and hence it has a finite specialization over $P \to Q$ with respect to $k(u_1, \ldots, u_N)$. Now as P is a generic point of U_0^n over $k(u_1, \ldots, u_N)$ and Q is a generic point of W_0^{n-1} over $\overline{k}(u_1, \ldots, u_N)$, either a or 1/a is in the specialization ring $\mathbb O$ of Q in $k(u_1, \ldots, u_N)(P)$, where a is an arbitrary

element in $k(u_1, \ldots, u_N)(P)$. Therefore A_i must be in the specialization ring \mathbb{Q} ; moreover since $1/(u_1 + \sum_{k=n+1}^{N} u_k b_{k1})$ is in \mathbb{Q} ,

$$A_i/(u_1+\sum_k u_k b_{k1})=a_i u_1+a_1 u_i+\sum_{k=n+1}^N u_k \ (a_i b_{k1}+a_1 b_{ki})$$

is in $\mathbb O$ for $i=2,\ldots,n$, where a_i and b_{kj} are in k(P). As u_1,\ldots,u_N are algebraically independent over k(P), a_i and a_1 must belong to the specialization ring of Q in k(P). This shows that $\omega(P)$ is finite at Q. Since ω is finite at the generic point of every (n-1)-dimensional subvariety of U, ω is of the first kind.

Mathematical Institute, Nagoya University

⁵⁾ See A. Weil's book, Foundations of Algebraic Geometry, Prop. 8 in Chapter IV.

⁶⁾ See Prop. 4 of Koizumi's paper loc. cit. 2).