COHOMOLOGY RELATIONS IN SPACES WITH A TOPOLOGICAL TRANSFORMATION GROUP ${ }^{1)}$

SZE-TSEN HU

1. Introduction

Let Q be a topological transformation group operating on the left of a topological space X. Let us denote by. B the orbit space and $p: X \rightarrow B$ the projection. p is a continuous and open map of X onto B. For an arbitrary abelian coefficient group G, the continuous map p induces homomorphisms

$$
p^{*}: H^{n}(B, G) \rightarrow H^{n}(X, G), \quad(n \geq 0),
$$

of the Alexander-Wallace cohomology groups [1] ${ }^{21}$. These induced homomorphisms are, in general, not onto isomorphisms. They depend on the manner in which the topological transformation group Q operates on X.

To measure the deviation of these induced homomorphisms p^{*} from the onto isomorphisms. we introduce, in the present paper. the weakly residual coho:nology groups

$$
H_{t v}^{n}(X, G) . \quad(n \geqslant 0) .
$$

They are invariants depending on X, Q, G and the operations of Q on X. By means of these groups. we shall establish an exact sequence

$$
H^{n}(B, G)^{\underline{b}} \ldots \rightarrow H^{n}(B, G)^{b \stackrel{p}{\rightarrow}} H^{n}(X, G) \rightarrow H_{w}^{n}(X, G) \rightarrow H^{n+1}(B, G)^{p x} \ldots .
$$

This indicates that the weakly residual cohomolegy groups $H_{w}^{n}(X, G)$ might play an important role in the further studies of the cohomology structures of the orbit space.

For each point $x \in X$, there is a canonical homomorphism

$$
k_{x}^{*}: H_{w}^{n}(X, G) \rightarrow H^{n}(Q, G), \quad(n \geqslant 0) .
$$

It is proved that if Q is compact and if x and y are two points contained in a compact connected subset of X then $k_{x}^{*}=k_{y}^{*}$.

2. Preliminaries

Throughout the present paper, let Q be a topological group acting as a
${ }^{\text {i) }}$ Presented to the American Mathematical Society, September 2, 1952. This work was done under Contract N7-ONR-434, Office of Naval Research.
${ }^{2)}$ Numbers in square brackets refer to the bibliography at the end of the paper.
group of transformations on the left of a topological space X. By this we mean that, with each element q in Q, there is associated a transformation

$$
W_{q}: X \rightarrow x
$$

such that, if we use the notation $W_{q}(x)=q x$, the following conditions are satisfied.
(2.1) $\quad q x$ is continuous in q and x simultaneously;

$$
\begin{equation*}
q_{1}\left(q_{2} x\right)=\left(q_{1} q_{2}\right) x, \quad\left(q_{1} \in Q, q_{2} \in Q, x \in X\right) \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
e x=x, \quad(x \in X) \tag{2.3}
\end{equation*}
$$

where e denotes the neutral element of Q. More precisely, the condition (2.1) means that the map

$$
M: Q \times X \rightarrow X
$$

defined by $M(q, x)=q x$ for each $q \in Q$ and each $x \in X$ is continuous. Obviously, W_{q} is a homeomorphism of X for each $q \in Q$.

Two points x and y are said to be equivalent if there exists an element q in Q such that $y=q x$. This equivalence relation divides the points of X into disjoint equivalence classes called the orbits of Q in X. The orbit which contains the point $x \in X$ will be denoted by $Q x$. Hence $Q x=Q y$ if and only if x and y are equivalent. Let B denote the set of all orbits of Q in X. There is a natural map

$$
p: X \rightarrow B
$$

of X onto B defined by $p(x)=Q x$ for each $x \in X . \quad p$ will be called the projection of X onto B. Let us give B the identification topology determined by p. That is to say, a subset V in B is called open if and only if $p^{-1}(V)$ is an open set in X. The topological space B thus obtained will be called the orbit space of the transformation group $Q . \quad B$ is a T_{1}-space if and only if every orbit of Q is a closed subset in X.

The projection $p: X \rightarrow B$ is both continuous and open. In fact, the continuity of p follows from the definition of the identification topology in B determined by p. To see that p is open, let U be an arbitrary open set in X and call $V=p(U)$. It suffices to show that $p^{-1}(V)$ is an open set in X. By the definition of p, the set $p^{-1}(V)$ consists of the totality of the points $a x$ in X such that $q \in Q$ and $x \in U$. Hence $p^{-1}(V)$ is the union $Q U$ of the sets $W_{q}(U)$ for all $q \in Q$. For each q in Q, W_{q} is a homeomorphism of X. This implies that $W_{q}(U)$ is open and hence, as a union of open sets, $p^{-1}(V)$ is open.

3. The various cohomology groups

For convenience of the reader, we shall briefly recall the definition of the

Alexander-Wallace cohomology groups [1]. Let G be an abelian group used as the coefficient group of the various cohomology groups defined in the sequel.

Denote by

$$
A^{n}(X, G), \quad(n \geqslant 0),
$$

the group of all n-functions $\phi: X^{n+1} \rightarrow G$ on X into G and

$$
A_{0}^{n}(X, G), \quad(n \geqslant 0),
$$

the subgroup of $A^{n}(X, G)$ consisting of the n-functions with empty support, where the support $S(\phi)$ of an n-function $\phi: X^{n+1} \rightarrow G$ is the closed set of X defined by the following assertion:
(3.1) A point $x \in X$ is not in $S(\phi)$ if and only if there exists an open neighborhood U of x in X such that

$$
\phi\left(x_{0}, x_{1}, \ldots, x_{n}\right)=0
$$

whenever $x_{i} \in U$ for all $i=0,1, \ldots, n$.
The coboundary homomorphism

$$
\begin{equation*}
\delta: A^{n}(X, G) \rightarrow A^{n+1}(X, B) \tag{3.2}
\end{equation*}
$$

is defined as usual, namely ${ }^{3)}$

$$
(\delta \phi)\left(x_{0}, \ldots, x_{n+1}\right)=\sum_{i=0}^{n+1}(-1)^{i} \phi\left(x_{0}, \ldots, \hat{x}_{i}, \ldots, x_{n+1}\right)
$$

for arbitrary $\left(x_{0}, \ldots, x_{n+1}\right) \in X^{n+2}$. Obviously we have

$$
\delta\left(A_{0}^{n}((X, G)) \subset A_{0}^{n+1}(X, G) .\right.
$$

Let

$$
C^{n}(X, G)=A^{n}(X, G) / A_{0}^{n}(X, G)
$$

Then δ in (3.2) induces a coboundary homomorphism

$$
\begin{equation*}
\delta: C^{n}(X, G) \rightarrow C^{n+1}(X, G) \tag{3.3}
\end{equation*}
$$

The elements of $C^{n}(X, G)$ are called the n-cochains of X over G. For each n-function $\psi \in A^{n}(X, G)$, we shall denote by $[\phi]$ the n-cochain which contains ϕ, that is,

$$
[\phi]=\phi+A_{0}^{n}(X, G),
$$

We say that ϕ represents [ϕ].
Let $Z^{n}(X, G) \subset C^{n}(X, G)$ denote the kernel of δ in (3.3), and $B^{n+1}(X, G)$ $=\delta\left(C^{n}(X, G)\right)$. Further, we define $B^{0}(X, G)=0$. Since $\delta \delta=0$, we have

The quotient group

$$
\begin{aligned}
& B^{n}(X, G) \subset Z^{n}(X, G), \quad(n \geq 0) \\
& H^{n}(X, G)=Z^{n}(X, G) / B^{n}(X, G)
\end{aligned}
$$

[^0]is called the n-dimensional cohomology group of X over G.
An n-function $\phi \in A^{n}(X, G)$ is said to be strongly invariant under Q if
$$
\phi\left(q_{0} X_{0}, \ldots q_{n} x_{n}\right)=\phi\left(x_{\jmath}, \ldots, x_{n}\right)
$$
for all $x_{i} \in X$ and all $q_{i} \in Q, i=0, \ldots$. An n-cochain $c \in C^{n}(X, G)$ is said to be strongly invariant under Q if c contains an n-function $\phi \in A^{n}(X, G)$ which is strongly invariant under Q. Obviously the strongly invariant n-cochains of X over G form a subgroup
$$
C_{s}^{n}(X, G) \subset C^{n}(X, G)
$$
and
$$
\delta\left(C_{s}^{n}(X, G) \subset C_{s}^{n+1}(X, G),\right.
$$
hence the o in (3.3) defines a coboundary homomorphism
\[

$$
\begin{equation*}
\grave{o}: C_{s}^{n}(X, G) \rightarrow C_{s}^{n-1}(X, G) \tag{3.4}
\end{equation*}
$$

\]

Let $Z_{s}^{n}(X, G) \subset C_{s}^{n}(X, G)$ denote the kernel of δ in (3.4) and $B_{s}^{n+1}(X . \mathrm{G})$ $=\delta\left(C_{s}^{n}(X, G)\right)$. Further, we define $B_{s}^{0}(X, G)=0$. Then evidently we have

$$
Z_{s}^{\prime \prime}(X, G)=Z^{n}(X, G) \cap C_{s}^{n}(X, G)
$$

The quotient group

$$
H_{s}^{n}(X, G)=Z_{s}^{n}(X, G) / B_{s}^{n}(X, G)
$$

is called the n-dimensional stronsly invariant cohomology group of X over G (under the topological transformation group Q).

For each integer $n \geqslant 0$, let

$$
C_{w}^{n}(X, G)=C^{n}(X, G) / C_{s}^{n}(X, G)
$$

The elements of $C_{w}^{n}(X, G)$ are called the weakly residual n-cochains (with respect to Q) of X over G. Since the coboundary homomorphism o in (3.3) maps $C_{s}^{n}(X, G)$ into $C_{s}^{n+i}(X . G)$, it induces a coboundary homomorphism

$$
\begin{equation*}
o: C_{w}^{n}(X, G) \rightarrow C_{w}^{n-1}(X, G) . \tag{3.5}
\end{equation*}
$$

Let $Z_{w}^{n}(X, G) \subset C_{w}^{n}(X, G)$ denote the kernel of o in (3.5) and $B_{w}^{n+1}(X, G)$ $=o\left(C_{t v}^{n}(X, G)\right)$. Further, we deine $B_{w}^{0}\left(L_{1}, G\right)=0$. The quotient group

$$
H_{w}^{n}(X, G)=Z_{w}^{n}(X, G) / B_{w}^{n}(X, G)
$$

is called the n-dimensional weakly residual cohomology group of X over G (with respect to the topological transformation group Q).

Let us denote respectively by

$$
\begin{aligned}
: & : C_{s}^{n}(X, G) \rightarrow C^{n}(X, G), \\
\pi & : C^{n}(X, G) \rightarrow C_{w}^{n}(X, G)
\end{aligned}
$$

the natural inclusion and projection homomorphisms. Since both : and π commute with the coboundary operator δ. they induce homomorphisms

$$
\begin{gather*}
\iota^{*}: H_{s}^{n}(X, G) \rightarrow H^{n}(X, G), \tag{3.6}\\
\pi^{*}: H^{n}(X, G) \rightarrow H_{w}^{n}(X, G) \tag{3.7}
\end{gather*}
$$

for each integer $n \geqslant 0$. We are going to define a homomorphism

$$
\begin{equation*}
\delta^{*}: H_{w}^{n}(X, G) \rightarrow H_{s}^{n+1}(X, G) \tag{3.8}
\end{equation*}
$$

for every $n \geqq 0$ as follows. Let α be an arbitrary element of $H_{w}^{n}(X, G)$. Choose a weakly residual n-cocycle $c_{w} \in C_{w}^{n}(X, G)$ which represents α. Since π maps $C^{n}(X, G)$ onto $C_{w}^{n}(X, G)$, there is an n-cochain $c \in C^{n}(X, G)$ with $\pi c=c_{w}$. Since $\pi \delta c=\delta \pi c=\delta c_{u^{\prime}}=0$, we have $\delta c \in Z_{s}^{n+1}(X, G)$. Hence δc represents an element β of $H_{s}^{n+1}(X, G)$. It is not difficult to see that,β depends only on α. We define the homomorphism δ^{*} by taking

$$
\delta^{*}(\alpha)=\beta
$$

The following theorem is a direct consequence of a general theorem of Kelley and Pitcher [2].

Theorem I. The sequence of groups and homomorphisms
is exact in the sense that the image of each homomorphism coincides with the kernel of the following one.

4. The isomorphism \boldsymbol{p}_{s}^{*}

The projection $p: X \rightarrow B$ induces a homomorphism

$$
\begin{equation*}
p^{*}: A^{n}(B, G) \rightarrow A^{n}(X . G) \tag{4.1}
\end{equation*}
$$

of the n-functions $A^{n}(B, G)$ of the orbit space B into the n-functions $A^{n}(X, G)$ of X as follows. Let $\phi \in A^{n}(B . G)$ be an arbitrarily given n-functions of the orbit space B into G. The n-function $p^{*} \phi \in A^{n}(X, G)$ is defined by

$$
\left(p^{*} \phi\right)\left(x_{i}, \ldots, x_{n}\right)=\phi\left(p x_{0}, \ldots p x_{n}\right)
$$

for every $\left(x_{0}, \ldots, x_{n}\right)$ of X^{n+1}. Since

$$
p(q x)=p(x)
$$

for every $x \in X$ and every $q \in Q, p^{*} \phi$ is strongly invariant under Q. Let us denote by

$$
A_{s}^{n}(X . G)
$$

the subgroup of $A^{n}(X, G)$ which consists of the strongly invariant n-functions. Then (4.1) may be written in the following more precise form

$$
\begin{equation*}
p_{s}^{*}: A^{n}(B, G) \rightarrow A_{s}^{n}(X, G) . \tag{4.2}
\end{equation*}
$$

(4.3) Lemma. p_{s}^{*} maps $A^{n}(B, G)$ isomorphically onto $A_{s}^{n}(X, G)$.

Proof. That p_{s}^{*} is an isomorphism is a consequence of the fact that p is onto. In fact, suppose that $\phi \in A^{n}(B, G)$ and $p_{s}^{*} \phi=0$. Let $\left(b_{0}, \ldots, b_{n}\right)$ be an arbitrary point of B^{n+1}. Since p maps X onto B, there are $n+1$ points x_{0}, \ldots, x_{n} in X such that $p x_{i}=b_{i}$ for each $i=0, \ldots, n$. Then we have

$$
\phi\left(b_{0}, \ldots, b_{n}\right)=\left(p_{s}^{*} \phi\right)\left(x_{1}, \ldots, x_{n}\right)=0 .
$$

Since $\left(b_{0}, \ldots, b_{n}\right)$ is arbitrary, this proves that $\phi=0$ and hence p_{s}^{*} is an isomorphism.

To prove that p_{s}^{*} maps $A^{n}(B, G)$ onto $A_{s}^{n}(X, G)$, let

$$
\psi: X^{n+1} \rightarrow G
$$

be an arbitrary strongly invariant n-function. Define an n-function

$$
\phi: B^{n+1} \rightarrow G
$$

as follows. Let $\left(b_{0}, \ldots, b_{n}\right)$ be any point in B^{n+1}. Choose $n+1$ points x_{0}, \ldots, x_{n} in X such that $p x_{i}=b_{i}$ for each $i=0, \ldots, n$. Then ϕ is defined by taking

$$
\begin{equation*}
\phi\left(b_{0}, \ldots, b_{n}\right)=\psi\left(x_{0}, \ldots, x_{n}\right) \tag{4.4}
\end{equation*}
$$

To justify this definition, it suffices to show that $\phi\left(b_{0}, \ldots, b_{n}\right)$ does not depend on the choice of x_{0}, \ldots, x_{n}. In fact, let y_{0}, \ldots, y_{n} be any $n+1$ points in X with $p y_{i}=b_{i}$ for each $i=0, \ldots, n$. Then there are q_{0}, \ldots, q_{n} in Q such that

$$
y_{i}=q_{i} x_{i}, \quad(i=0, \ldots, n) .
$$

It follows from the strong invariance of ψ that

$$
\psi\left(y_{0}, \ldots, y_{n}\right)=\psi\left(q_{0} x_{0}, \ldots, q_{n} x_{n}\right)=\psi\left(x_{0}, \ldots, x_{n}\right) .
$$

This justifies the definition of ϕ. By (4.4), it is clear that $\psi=p_{s}^{*} \phi$. Hence p_{s}^{*} maps $A^{n}(B, G)$ onto $A_{s}^{n}(X, G)$. This completes the proof of (4.3).
(4.5) Lemma. p_{s}^{*} maps $A_{0}^{n}(B, G)$ onto $A_{s}^{n}(X, G) \cap A_{0}^{n}(X, G)$.

Proof. Let $\phi \in A_{0}^{n}(B, G)$ and $x \in X$ be arbitrarily given. Call $b=p x$. Since ϕ is of empty support, there is an open neighborhood V of b in B such that

$$
\phi\left(b_{0}, \ldots, b_{n}\right)=0
$$

whenever $b_{i} \in V$ for each $i=0, \ldots, n$. It follows from the continuity of p that there exists an open neighborhood U of x in X with

$$
p(U) \subset V
$$

Then we have

$$
\left(p_{s}^{*} \phi\right)\left(x_{0}, \ldots, x_{n}\right)=\phi\left(p x_{0}, \ldots, p x_{n}\right)=0
$$

whenever $x_{i} \in U$ for each $i=0, \ldots, n$. Hence x is not in the support of $p_{s}^{*} \phi$. Since x is arbitrary, $p_{s}^{*} \phi$ is of empty support. This and (4.3) prove that

$$
p_{s}^{\sharp}\left(A_{0}^{n}(B, G)\right) \subset A_{s}^{n}(X, G) \cap A_{0}^{n}(X, G) .
$$

Next, let $\psi \in A_{s}^{n}(X, G) \cap A_{0}^{n}(X, G)$ be arbitrarily given. By (4.3), there is an n-function $\phi \in A^{n}(B, G)$ such that $\psi=p_{s}^{*} \phi$. It remains to show that the support of ϕ is empty. Let $b \in B$ be any given point. Since p maps X onto B, there is a point $x \in X$ with $p x=b$. Since ψ is of empty support, there is an open neighborhood U of x in X such that

$$
\psi\left(x_{0}, \ldots, x_{n}\right)=0
$$

whenever $x_{i} \in U$ for each $i=0, \ldots, n$. Call

$$
V=p(U)
$$

Since p is an open map, V is an open neighborhood of b in B. Let $\left(b_{0}, \ldots, b_{n}\right)$ be any point in B^{n+1} with $b_{i} \in V$ for each $i=0, \ldots, n$. Choose $n+1$ points x_{0}, \ldots, x_{n} in U such that $p x_{i}=b_{i}$ for each $i=0, \ldots, n$. Then we have

$$
\phi\left(b_{0}, \ldots, b_{n}\right)=\psi\left(x_{0}, \ldots, x_{n}\right)=0 .
$$

This proves that b is not in the support of ϕ. Since b is arbitrary, the support of ϕ must be empty. This completes the proof of (4.5).

Since p^{*} maps $A_{0}^{n}(B, G)$ into $A_{0}^{n}(X, G)$ by (4.5), it induces a homomorphism

$$
\begin{equation*}
p^{\#}: C^{n}(B, G) \rightarrow C^{n}(X, G) \tag{4.6}
\end{equation*}
$$

By (4.3), $p^{\#}$ in (4.6) maps $C^{n}(B, G)$ into $C_{s}^{n}(X, G)$. Hence (4.6) may be written in the following more precise form

$$
\begin{equation*}
p_{s}^{\#}: C^{n}(B, G) \rightarrow C_{s}^{n}(X, G) . \tag{4.7}
\end{equation*}
$$

(4.6) and (4.7) are connected by the following obvious relation

$$
\begin{equation*}
\epsilon p_{s}^{*}=p^{\#}, \tag{4.8}
\end{equation*}
$$

where $九: C_{s}^{n}(X, G) \rightarrow C^{n}(X, G)$ denotes the inclusion homomorphism.
(4.9) Lemma. p_{s}^{*} maps $C^{n}(B, G)$ isomorphically onto $C_{s}^{n}(X, G)$.

Proof. To prove that p_{s}^{*} maps $C^{n}(B, G)$ isomorphically into $C_{s}^{n}(X, G)$, let $c \in C^{n}(B, G)$ be any n-cochain of B such that $p_{s}^{*} c=0$. Choose an n-function $\phi: B^{n+1} \rightarrow G$ which represents c. $p_{s}^{*} c=0$ implies that $p_{s}^{*} \phi$ is of empty support. By (4.3) and (4.5), this implies that the support of ϕ is empty. Hence $c=0$ and p_{s}^{*} is an isomorphism.

To prove that p_{s}^{*} maps $C^{n}(B, G)$ onto $C_{s}^{n}(X, G)$, let d be any strongly invariant n-cochain of X over G. Choose a $\psi \in A_{s}^{n}(X, G)$ which represents d.

By (4.3), there is a $\phi \in A^{n}(B, G)$ such that $p_{5}^{*} \phi=\psi$. ϕ represents an n-cochain $c \in C^{n}(B . G)$ and obviously $p_{s}^{*} c=d$. This completes the proof of (4.9).

Since both p^{*} and p_{S}^{*} commute with the coboundary operator $\dot{\delta}$. they induce homomorphisms

$$
\begin{equation*}
p^{*}: H^{n}(B . G) \rightarrow H^{\prime \prime}(X . G) \tag{4.10}
\end{equation*}
$$

for each integer $n \geqq 0$. The relation (4.8) gives

$$
\begin{equation*}
p_{s}^{*}=p^{*} \tag{4.12}
\end{equation*}
$$

The following theorem is an immediate consequence of (4.9).
Theorem II. p_{s}^{*} maps $H^{n}(B, G)$ isomorphically onto $H_{s}^{n}(X . G)$.

5. The exact sequence

Let us call

$$
d^{*}: H_{w}^{n}(X . G) \rightarrow H^{n+1}(B . G)
$$

the homomorphism defined by

$$
\begin{equation*}
d^{*}=\left(p_{s}^{*}\right)^{-1} \hat{\sigma}^{*} \tag{5.1}
\end{equation*}
$$

Then the following theorem is a consequence of the theorems I and I together with the relations (4.12) and (5.1).

Theorem III. The sequence of groups and homomorphisms $H^{0}(B, G) \xrightarrow{p^{*}} \ldots \xrightarrow{d *} H^{n}(B . G) \xrightarrow{p^{*}} H^{n}(X . G)^{\pi^{*}} H_{w}^{n}(X, G) \xrightarrow{d^{*}} H^{n+1}(B . G)^{p^{*}} \ldots$ is exact.

6. The canonical homomorphism k_{x}^{*}

Let $x \in X$ be a given point. We are going to construct a canonical homomorphism

$$
\begin{equation*}
k_{x}^{*}: H_{w}^{n}(X, G) \rightarrow H^{n}(Q, G) \tag{6.1}
\end{equation*}
$$

for each integer $n \geq 0$.
Let $\alpha \in H_{w}^{n}(X, G)$ be arbitrarily given. α is represented by a weakly residual n-cocycle $c_{w} \in Z_{w}^{n}(X, G)$ and c_{w} itself is represented by an n-function $\phi \in A^{n}(X$. G) such that

$$
\begin{equation*}
\delta \phi=\hat{\xi}+\eta, \quad \hat{\xi} \in A_{s}^{n+1}(X, G) . \quad \eta \in A_{0}^{n+1}(X, G) . \tag{6.2}
\end{equation*}
$$

We may assume that

$$
\begin{equation*}
\phi(x \ldots x)=0 \tag{6.3}
\end{equation*}
$$

In fact. if $\phi(x . \ldots x)=a \neq 0$, we define a strongly invariant n-function $\psi_{a} \in A_{s}^{n}(X$. $G)$ by taking

$$
\psi_{a}\left(x_{1} \ldots \ldots x_{n}\right)=a
$$

for each point $\left(x_{0} \ldots x_{n}\right)$ of X^{n+1}. Then, we replacc ϕ by $\phi-\psi_{a}$ which represerts the same weakly residual n-cocycle c_{w} that ϕ does.

Now let us define an n-function $k^{*} \phi \in A^{n}(Q, G)$ of Q over G by taking

$$
\left(k^{\#} \phi\right)\left(q_{0}, \ldots q_{n}\right)=\phi\left(q_{0} x, \ldots, q_{n} x\right)
$$

for each point $\left(q_{0} . \ldots, q_{n}\right)$ of Q^{n+1}.
(6.4) Lemma. The coboundary $\delta k^{*} \phi$ of $k^{*} \phi$ is of empty support.

Proof. Let q be an arbitrary point in Q. It suffices to show that q is not in the support of $o k^{*} \phi$. By (6.2). we have

$$
\grave{\partial} \phi=\xi+r,
$$

where $\xi \in A_{s}^{n+1}(X . G)$ and $\eta \in A_{0}^{n+1}(X, G)$. Since η is of empty support. there is an open neighborhood U of the point $q x$ ih X such that

$$
\eta\left(x_{0} \ldots \ldots x_{n}\right)=0
$$

whenever $x_{i} \in U$ for all $i=0$. . . . n. Then there exists an open neighborhood V of q in Q such that

$$
V x \subset U
$$

On the other hand. we have $\eta(x, \ldots, x)=0$. It follows that, for any point ($q_{n} \ldots \ldots q_{n+1}$) of Q^{n-2} such that $q_{i} \in V$ for all $i=0, \ldots, n+1$, we have

$$
\begin{aligned}
\grave{\delta} k^{7} & \phi\left(q_{n} \ldots, q_{n+1}\right)=\sum_{i=0}^{n+1}(-1)^{i} k^{*} \phi\left(q_{0} \ldots, \hat{q}_{i}, \ldots, q_{n+1}\right) \\
& =\sum_{i=0}^{n-1}(-1)^{i} \phi\left(q_{0} x, \ldots \widehat{q_{i} x} \ldots, \ldots q_{n+1} x\right)=\delta \phi\left(q_{0} x, \ldots, q_{n+1} x\right) \\
& =\xi\left(q_{0} x \ldots . \ldots q_{n+1} x\right)+\eta\left(q_{0} x, \ldots, q_{n+1} x\right)=\xi(x, \ldots, x) \\
& =o \phi(x \ldots, \ldots x)-\eta(x, \ldots, x)=0 .
\end{aligned}
$$

This proves that q is not in the support of $\partial k^{\sharp} \phi$ and hence completes the proof of (6.4).

By (6.4). the n-cochain $\left[k^{*} \phi\right] \in C^{\prime \prime}(Q, G)$ which contains the n-function $k^{7}!$; defined above is an n-cocycie of Q over G and hence it represents an elemen: $k_{:}^{*}(\alpha)$ of $H^{\prime \prime}(Q, G)$.
(6.5) Lemma. The element $k_{x}^{*}(\alpha)$ does not dopend on the choice of the a function $\phi \in A^{n}(X . G)$ which represents the given element $\alpha \in H_{w}^{n}\left(X . G^{\prime}\right.$.

Proof. First assume $n>0$. Let ϕ^{\prime} be any n-function which represents a and such that $\phi^{\prime}(x \ldots \ldots x)=0$. Then

$$
\phi^{\prime}-\phi=\delta \psi+\theta+\tau
$$

where $\psi \in A^{n+1}(X, G), \theta \in A_{s}^{\prime \prime}(X, G)$ and $\tau \in A_{0}^{n}(X, G)$. Define an ($n-1$)-function $\zeta \in A^{n+1}(Q, G)$ of Q over G by taking

$$
\zeta\left(q_{v}, \ldots, q_{n-1}\right)=\psi\left(q_{0} x, \ldots, q_{n-1} x\right)-\psi(x, \ldots, x)
$$

for each point $\left(q_{0} \ldots, q_{n-1}\right)$ of Q^{n}. In order to prove (6.5) for $n>0$, it suffices to show that

$$
k^{*} \psi^{\prime}-k^{\#} \phi-\delta \zeta
$$

has empty support. Let q be an arbitrary point in Q. Since the support of τ is empty, there is an open neighborhood U of the point $q x$ in X such that

$$
\tau\left(x_{0}, \ldots x_{n}\right)=0
$$

whenever $x_{i} \in U$ for all $i=0 \ldots$. . . . Let V be an open neighborhood of q in Q such that

$$
V x \subset U
$$

Then, for each point $\left(q_{0}, \ldots . q_{n}\right)$ of Q^{n+1} with $q_{i} \in V$ for all $i=0, \ldots, n$, we have

$$
\begin{aligned}
\left(k^{\#}\right. & \left.\phi^{\prime}-k^{*} \phi-\delta \zeta\right)\left(q_{0}, \ldots, q_{n}\right) \\
& =\left(\phi^{\prime}-\phi\right)\left(q_{0} x, \ldots, q_{n} x\right)-\delta \phi\left(q_{0} x, \ldots, q_{n} x\right)+\delta \phi(x, \ldots, x) \\
& =\theta\left(q_{n} x, \ldots, q_{n} x\right)+\tau\left(q_{0} x, \ldots, q_{n} x\right)+\delta \psi(x, \ldots, x) \\
& =\theta(x, \ldots, x)+\delta \psi(x, \ldots, x) \\
& =\phi^{\prime}(x, \ldots, x)-\phi(x, \ldots, x)=0 .
\end{aligned}
$$

Hence q is not in the support of $k^{\#} \phi^{\prime}-k^{\#} \phi-\delta \zeta$. Since q is arbitrary, this proves that the support of $k^{*} \phi^{\prime}-k^{\#} \phi-\partial \zeta$ is empty.

It remains to dispose of the trivial case $n=0$. Let ϕ and ϕ^{\prime} be any two 0 -functins which represent the same element $\alpha \in H_{w}^{0}(X, G)$ and such that $\phi(x)$ $=0=\phi^{\prime}(x)$. Since $A_{0}^{0}(X, G)=0$, we have $\phi^{\prime}-\phi \in A_{5}^{0}(X, G)$. In order to prove (6.5) for $n=0$, it suffices to show that $k^{\#} \phi^{\prime}-k^{\#} \phi=0$. Let q be an arbitrary point in Q. Then we have

$$
\left(k^{\#} \phi^{\prime}-k^{\#} \phi\right)(q)=\left(\phi^{\prime}-\phi\right)(q x)=\left(\phi^{\prime}-\phi\right)(x)=0
$$

Since q is arbitrary, we have $k^{*} \phi^{\prime}-k^{*} \phi=0$. This completes the proof of (6.5).
The correspondence $\alpha \rightarrow k_{x}^{*}(\alpha)$ obviously defines a homomorphism of $H_{w}^{n}(X$, G) into $H^{n}(Q, G)$. This completes the construction of the canonical homomorpism (6.1).

7. Relations between the canonical homomorphisms

Theorem IV. If Q is compact and if x and y are two points contained in a compact connected subset K of X, then $k_{x}^{*}=k_{y}^{*}$.

Proof. Let $n \geqq 0$ be an arbitrary integer and $\alpha \in h_{w}^{n}(X, G)$ be an arbitrary element. It is required to prove that

$$
k_{x}^{*}\left(\not(f)=k_{y}^{*}(\alpha) .\right.
$$

The element α is represented by an n-function $\phi \in A^{n}(X, G)$ such that

$$
\grave{o} \phi=\dot{s}+\eta, \quad \dot{\xi} \in A_{s}^{n_{i} 1}(X, G), \quad \eta \in A_{0}^{n+1}(X, G) .
$$

According to the construction of the canonical homomorphism k_{z}^{*} for an arbitrary point $z \in X$. the element $k_{z}^{*}(\alpha)$ of $H^{n}(Q, G)$ is represented by the n-function

$$
k_{z}^{\stackrel{z}{z} \phi}: Q^{n+1} \rightarrow G
$$

defined by

$$
\left(k_{z}^{\star} \phi\right)\left(q_{0} . \ldots, q_{n}\right)=\phi\left(q_{0} z, \ldots, q_{n} z\right)-\phi(z, \ldots, z)
$$

for each point (q_{0}, \ldots, q_{n}) of Q^{n+1}.
Now, for any two points a and b of X and any ($n+1$)-function $\psi \in A^{n+1}(X$, G), let us define an n-function

$$
D_{a, b} \psi: Q^{n+1} \rightarrow G
$$

of Q by taking

$$
\left(D_{a, b} \psi\right)\left(q_{0}, \ldots q_{n}\right)=\sum_{i=0}^{n}(-1)^{i} \psi\left(q_{0} a, \ldots q_{i} a, q_{i} b, \ldots q_{n} b\right)
$$

for each point $\left(q_{0}, \ldots \boldsymbol{q}_{n}\right)$ of Q^{n+1}. Let $E_{\alpha, b} \psi$ denote the constant n-function of Q defined by

$$
\left(E_{a, b} \psi\right)\left(q_{0}, \ldots q_{n}\right)=\left(D_{a, b} \psi\right)(e, \ldots e)
$$

for each point (q_{0}, \ldots, q_{n}) of Q^{n+1}, where e denotes the neutral element of Q.

$$
D_{a, b} \stackrel{A}{\varsigma}=E_{a, b} \stackrel{\xi}{\vdots} .
$$

If $n>0$. direct calculation shows that

$$
\begin{align*}
k_{c}^{\#} \phi-k_{a}^{*} \phi & =\left(\delta D_{a, b} \phi+D_{a, b} \delta \phi\right)-\left(\grave{o} E_{a, b} \phi+E_{a, b} \partial \phi\right) \tag{7.1}\\
& =\delta\left(D_{a, b} \phi-E_{a, b} \phi\right)+D_{a, b} \eta-E_{a, b} \eta
\end{align*}
$$

since $\partial \phi=\hat{今}+\gamma$ and $D_{a, b} \hat{\xi}=E_{a, b} \hat{\xi}$. If $n=0$, then we have

$$
\begin{equation*}
k_{b}^{\#} \phi-k_{a}^{\sharp} \phi=D_{a, b} \grave{\partial} \phi-E_{a, b} \delta \phi=D_{a, b} \eta-E_{a, b} \eta . \tag{7.2}
\end{equation*}
$$

Since η is of empty support, there exists for each point z in X, an open neighborhood U_{z} of z in X such that

$$
\eta\left(x_{0}, \ldots x_{n+1}\right)=0
$$

whenever $x_{i} \in U_{z}$ for each $i=0 . \ldots n+1$. It follows from the simultaneous
continuity of the operations of Q on X that, for each $z \in X$ and $w \in Q$ there exist an open neighborhood V_{w} of z in X and an open neighborhood W_{w} of w in Q such that

$$
W_{w} V_{w} \subset U_{w z}
$$

Since Q is compact. there are a finite number of points w_{1}, \ldots, w_{m} such that the open sets

$$
\mathfrak{W}_{z}=\left\{W_{w_{1}}, \ldots, W_{w_{m}}\right\}
$$

form an open covering of Q. Call

$$
V_{z}=V_{w_{1}} \cap \ldots \cap V_{w_{m}} .
$$

Then V_{z} is an open neighborhood of z in X.
Now let a and b be any two points in V_{z}. We are going to show that both $D_{a, a} \eta$ and $E_{a, b} \eta$ are of empty supports. Let q be an arbitrary point in Q. Choose an open set $W_{w_{j}}$ from the covering \mathfrak{W}_{z} which contains q. Then we have

$$
W_{w_{j}} V_{z} \subset U_{w_{j}} z
$$

Let $\left(q_{0}, \ldots, q_{n}\right]$ be any point of Q^{n+1} such that $q_{i} \in W_{w_{j}}$ for each $i=0, \ldots$, n. Then the points

$$
q_{0} a, \ldots, q_{n} a, q_{0} b, \ldots, q_{n} b
$$

are all contained in $U_{w_{j}} z$. Hence we have

$$
\left(D_{a, b \eta} \eta\right)\left(q_{0}, \ldots, q_{n}\right)=\sum_{i=0}^{n}(-1)^{i} \eta\left(q_{0} a, \ldots, q_{i} a, q_{i} b, \ldots, q_{n} b\right)=0 .
$$

This proves that q is not in the support of $D_{a, b} \eta$. Since q is arbitrary, the support of $D_{a, b} \eta_{7}$ must be empty. This implies that

$$
\left(E_{a, b \eta}\right)\left(q_{0}, \ldots, q_{n}\right)=\left(D_{a, b \eta}\right)(e, \ldots, e)=0
$$

for every point (q_{0}, \ldots, q_{n}) of Q^{n+1}. That is to say, $E_{a, b} \eta_{\eta}=0$ and hence $E_{a, b} \eta$ is of empty support. Then it follows from (7.1) and (7.2) that

$$
\begin{equation*}
k_{a}^{*}(\alpha)=k_{b}^{*}(\alpha) . \tag{7.3}
\end{equation*}
$$

Since x and y are contained in a compact connected subset K of X, there exist a finite number of points z_{1}, \ldots, z_{r} of X such that $x \in V_{z_{1}}, y \in V_{z_{r}}$, and the intersection $V_{z_{i}} \cap V_{z_{i+1}}$ is nonvoid for every $i=1, \ldots, r-1$. Cnoose a point t_{i} from $V_{z_{i}} \cap V_{z_{i+1}}$ for each $i=1, \ldots, r-1$ and call $t_{0}=x t_{r}=y$. Thus we obtain a finite sequence of points

$$
x=t_{0}, t_{1}, \ldots, t_{r-1}, t_{r}=y
$$

such that $V_{z_{1}}$ contains t_{i-1} and t_{i} for each $i=1, \ldots, r$. By (7.3), this implies that

$$
k_{t_{i-1}}^{*}(\alpha)=k_{t_{i}}^{*}(\alpha)
$$

for each $i=1$, .., r. Hence we obtain $k_{x}^{*}(\alpha)=k_{y}^{*}(\alpha)$. This completes the proof of Theorem IV.

A topological space X is said to be compactly connected if every pair of points x and y of X are contained in some compact connected subset of X. Compact connected spaces and arcwise connected spaces are examples of compactly connected spaces.

The following theorem is an immediate consequence of Theorem IV.
Theorem V. If a compact transformation group Q operates on a compactl. v connected topolcgical space X, then the canonical homomorphism k_{x}^{*} does not depend on the choice of the basic point $x \in X$ and hence it may be denoted by

$$
k^{*}: H_{w}^{n}(X, G) \rightarrow H^{n}(\mathrm{Q}, G)
$$

Bibliography

[1] E. H. Spanier, Cohomology theory for general spaces, Ann. of Math. (2), Vol. 49 (1948), pp. 407-427.
2] J. L. Kelly and E. Pitcher, Exact homomorphism sequences in homology theory, Ann. of Math. (2), Vol. 48 (1947), pp. 682-709.

Titlane Uriversity and
The Institute for Advanced Study

[^0]: 3) The circumflex over x_{i} indicates that x_{i} is omitted.
