ON THE PRODUCT OF $L(1, \chi)$

TIKAO TATUZAWA

Let $k(\geqslant 3)$ be a positive integer and $\varphi(k)$ be the Euler function. We denote by $\%$ one of the $\varphi(k)$ characters formed with modulus k, and by $\%$ the principal character. Let $L(s, \%)$ be the L-series corresponding to $\%$ Throughout the paper we use c and $c(\varepsilon)$ to denote respectively an absolute positive constant and a positive constant depending on parameter $\varepsilon(>0)$ a.lone, not necessarily the same at their various occurrences. We use the symbol $Y=O(X)$ for positive X when there exists a c satisfying $Y \leqq c X$ in the full domain of existence of X and Y.

It is well known that

$$
\begin{equation*}
L(1, \%)=\mathrm{O}(\log k), \text { for } \% \neq \% \tag{1}
\end{equation*}
$$

On the other hand. we know from [7] and [5] (numbers in square brackets refer to the references at the end of the paper) that

$$
\begin{equation*}
L(1, \%)^{-1}=\mathrm{O}(\log k), \quad \text { for } \quad \% \neq \%, \tag{2}
\end{equation*}
$$

with one possible exception, and if such a exceptional character exists, it is a real one. Let us cenote it by $\%$. If there exists no exceptional character, we take any non-principal character as $\%$. Then, by Siegel's theorem (see [3] and [8]),

$$
\begin{equation*}
c(\varepsilon) k^{-₹}<\left|L\left(1, \chi_{1}\right)\right| \tag{3}
\end{equation*}
$$

for any positive s.
The object of this paper is to estimate $\prod_{\chi=\lambda_{0}} L(1, \%)$ and $\prod_{x(-1)=-1} L(1, \%)$ as precisely as possible, and make some additions to the results of R. Brauer [2]. Ankeny and Chowla [1].

1. In what follows, we denote by p and p, the primes.

Lemma 1. $\quad \sum_{p \equiv x} p^{-1}=\mathrm{O}(\log \log x)$, for $x \geqslant 3$.
Lemma 2. $\quad c(\log x)^{-1}<\prod_{i \equiv p \cong x}\left(1-p^{-1}\right)<c(\log x)^{-1}$.
These are obtained by Theorem 7 of [4].
Let $7 \leqq p_{1}<p_{2}<\ldots<p_{m}$. We denote by $F\left(x ; k, l ; p_{1}, p_{2}, \ldots, p_{m}\right)$ the Received August 1, 1952.
number of z satisfying

$$
0<z \leqq x, \quad z \equiv l(\bmod k), \quad \text { and } \quad p_{\nu}+z \quad \text { for } \quad \nu=1,2, \ldots, m .
$$

If we take positive integers $m=m_{0}, m_{1}, \ldots, m_{h-1}$ such that

$$
\begin{gather*}
m=m_{0}>m_{1}>m_{2}>\ldots>m_{h-1}>m_{h}=0, \\
L_{\nu}=\prod_{m_{\nu-1} \geqq r>m_{\nu}}\left(1-p_{r}^{-1}\right) \geqslant \frac{5}{4}, \text { for } \nu=1,2, \ldots, h, \\
\left(1-p_{m_{\nu}}^{-1}\right) L_{\nu}<\frac{4}{5}, \text { for } \nu=1,2, \ldots, h-1, \tag{4}
\end{gather*}
$$

then we have
Lemma 3. $F\left(x ; k, l ; p_{1}, p_{2}, \ldots, p_{m}\right)<2 x k^{-1} \prod_{v=1}^{h} L_{v}+\prod_{\nu=0}^{h-1}\left(2 m_{\nu}\right)^{2}$, for (k, l) $=1$.
The proof is similar to that of Theorem 79 and Theorem 86 of [6].
Lemma 4. If $x=2 \varphi(k)$, then

$$
\pi(x ; k, l)<c \frac{x}{\varphi(k) \log (x / \varphi(k))},
$$

for $(k, l)=1$, where $\pi(x ; k, l)$ denotes the number of primes p satisfying $p \leqq x$ and $p \equiv l(\bmod k)$.

Suppose that $x \geqq 7^{a}, a(>1)$ being a positive number to be determined later. We arrange all primes between 7 and $\sqrt[a]{x}$ except the prime factors of k such that

$$
7 \leqq p_{1}<p_{2}<\ldots<p_{m} \leqq \sqrt[a]{\sqrt{x}} .
$$

If we write

$$
D(w, k)=\prod_{\substack{c p \equiv \\ \nu|k| c}}\left(1-p^{-1}\right)^{-1},
$$

then

$$
\begin{equation*}
\prod_{v=1}^{h} L_{\nu}=\prod_{r=1}^{m}\left(1-p_{r}^{-1}\right)=\prod_{\tau \equiv p \leqq V_{\bar{x}}}\left(1-p^{-1}\right) D(\sqrt[a]{\sqrt{x}}, k) \tag{5}
\end{equation*}
$$

By Lemma 2,

$$
\prod_{r=1}^{s}\left(1-p_{r}^{-1}\right)<c\left(\log p_{s}\right)^{-1} D\left(p_{s}, k\right)<c(\log 2 s)^{-1} D(\sqrt[a]{x}, k)
$$

for $s=1,2, \ldots, m$, it follows therefore that

$$
\log \left(2 m_{\nu}\right)<c D(\sqrt[a]{\sqrt{x}}, k) \prod_{r=1}^{m \nu}\left(1-p_{r}^{-1}\right)^{-1}
$$

$$
\begin{align*}
& =c D(\sqrt[a]{x}, k) \prod_{r=1}^{m}\left(1-p_{r}^{-1}\right)^{-1} L_{1} L_{2} \ldots L_{v} \\
& =c \prod_{\tau \equiv p \equiv q_{\bar{x}}}\left(1-p^{-1}\right)^{-1} L_{1} L_{2} \ldots L_{v} \\
& <(c / a)(\log x) L_{1} L_{2} \ldots L_{\nu}<(c / a)(14 / 15)^{\nu} \log x \tag{6}
\end{align*}
$$

by (4), whence follows

$$
\begin{equation*}
\prod_{v=1}^{h-1}\left(2 m_{v}\right)^{2}<x^{c / a} \tag{7}
\end{equation*}
$$

On the other hand

$$
\begin{align*}
\prod_{y=1}^{h} L_{v} & <c a(\log x)^{-1} D(\sqrt[a]{x}, k) \leqq c a(\log x)^{-1} \prod_{p \mid k}\left(1-p^{-1}\right)^{-1} \tag{8}\\
& =c a(\log x)^{-1} k \stackrel{(}{l}(k)^{-1},
\end{align*}
$$

by (5) and Lemma 2.
Inserting (7) and (8) for the right of Lemma 3, we obtain

$$
F\left(x ; k, l ; p_{1}, p_{2}, \ldots, p_{m}\right)<c a_{\varphi(k)} \underset{\log x}{x}+x^{c / a}
$$

for $(k, l)=1$, provided that $x \geqslant 7^{a}$. This, together with the inequality

$$
\pi(x ; k, l) \leqq F\left(x ; k, l ; p_{1}, p_{n}, \ldots, p_{m}\right)+m,
$$

gives

$$
\begin{equation*}
\pi(x ; k, l)<c a \frac{x}{\varphi(k) \log x}+2 x^{c / a} \tag{9}
\end{equation*}
$$

by (6), where we may suppose that the constants c in both terms of the right are the same and $c>1$.

Suppose first that $x \geqslant 7^{2 c} \varphi(k)$. Then we have

$$
\begin{equation*}
\Delta=\frac{x}{\varphi(k)} / \log \left(\frac{x}{\varphi(k)}\right) \geqslant \sqrt{\frac{x}{\varphi(k)}} \geq 7^{c} . \tag{10}
\end{equation*}
$$

we can easily verify from (10) that the restriction $x \geqq 7^{a}$ is satisfied, if we put

$$
a=\frac{c \log x}{\log \Delta} .
$$

Inserting this in (9), and using the first inequality of (10), we get

$$
\pi(x ; k, l)<c_{\varphi(k) \log \Delta}^{x}+2 \Delta<2\left(c^{2}+1\right) \Delta,
$$

which is just what the Lemma claims.
Next we consider the trivial case, $2 \varphi(k) \leqq x<7^{2 c} \varphi(k)$. Then

$$
\pi(x ; k, l)<\left[\frac{x}{k}\right]+1 \leqq \frac{x}{k}+1<\frac{2 x}{\varphi(k)}<4 c(\log 7) \Delta
$$

Thus the Lemma is completely proved.
2. We write for simplicity

$$
Q(x)=\sum_{x \neq x_{0}, X_{1}} \sum_{n \equiv x} \nVdash(n) A(n),
$$

where $A(n)$ is $\log p$ if n is a positive power of a prime p and is 0 otherwise.
Lemma 5 . If $k \leqq \exp (\sqrt{\log x})$ and $\chi \neq \%_{0}, \chi_{1}$, then

$$
\sum_{n \equiv x} \chi(n) .1(n)=\mathrm{O}(x \exp (-c \sqrt{\log x})) .
$$

This is the result of Page [7].
Lemma 6. If $x \geqslant \exp (\log k)^{3}$, then $Q(x)=\mathrm{O}\left(x(\log x)^{-1}\right)$.
By Lemma 5,

$$
\begin{aligned}
Q(x) & =\mathrm{O}(k x \exp (-c \sqrt{\log x}))=\mathrm{O}(x \exp (\log k-c \sqrt{\log x})) \\
& =\mathrm{O}\left(x \exp \left((\log x)^{\frac{1}{2}}-c(\log x)^{\frac{1}{2}}\right)\right)=\mathrm{O}\left(x(\log x)^{-1}\right),
\end{aligned}
$$

since $\log k \leqq \sqrt[3]{(\log x)}$.
3. Let a, b and n be positive integers.

Lemma 7. If $(a, k)=1$. then the number of solutions of

$$
x^{n} \equiv a \quad(\bmod k)
$$

is at most $n^{v(k)+1}$ where $\omega(k)$ denotes the number of prime factors of k.
This follows from the fact that the number of solutions of $x^{n} \equiv a(\bmod$ $\left.p^{b}\right),(a, p)=1$, is at most n if p is an odd prime, and n^{2} if $p=2$.

Lemma 8. $\quad \omega(k)=\mathrm{O}\left(\log k(\log \log k)^{-1}\right)$.
Suppose that

$$
\omega(k)=r, k=p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{r}^{b_{r}} \quad \text { and } \quad p_{1}<p_{2}<\ldots<p_{r} .
$$

By the prime number theorem,

$$
\begin{equation*}
c r \log p_{r}^{\prime}<\sum_{\nu=1}^{r} \log p_{\nu}^{\prime} \leqq \sum_{v=1}^{r} \log p_{v} \leqq \log k, \tag{11}
\end{equation*}
$$

where p_{r}^{\prime} denotes the r-th prime. If $r>\log k(\log \log k)^{-1}$. then

$$
p_{r}^{\prime}>c r \log r>c \log k_{0}
$$

This combined with (11) gives $r<c(\log k)(\log \log k)^{-1}$.
Lemma 9.

$$
\sum_{n \geqq 2} n^{-1} \sum_{\substack{p \leqq k \\ p^{n} \equiv 1, \bmod k}} p^{-n}=\mathrm{O}\left(\omega(k) k^{-1}\right)
$$

By Lemma 7

where $\sum_{(*)}$ means that the number of terms of the sum is $\leqq *$. If we put

$$
a_{0}=0, \quad a_{n}=\sum_{\nu=1}^{n} \nu^{\omega(k)+1}
$$

for $n=1,2, \ldots$ then

$$
\sum_{n \geqq 2} n^{-1} \sum_{, n, k, k+1 .} m^{-1}=O\left(\sum_{n \geqq 1} n^{-1} \sum_{u_{n-1}<w \equiv a_{n}} m^{-1}\right) .
$$

Since

$$
\begin{aligned}
\sum_{a_{n-1}<m \cong a_{n}} m^{-1} & <\log \left(a_{n /} / a_{n-1}\right) \\
& <\log \left(\int_{0}^{n+1} x^{\omega(k)+1} d x / \int_{0}^{n-1} x^{\omega(k)+1} d x\right) \\
& =(\omega(k)+2) \log ((n+1) /(n-1))=\mathrm{O}\left(\omega(k) n^{-1}\right)
\end{aligned}
$$

for $n \geqq 2$, it follows from (12) that
4. We write

$$
\begin{aligned}
\prod_{x \neq x_{0}, x_{1}} L(1, \%) & =\exp \left(\sum_{x \neq x_{0}, x_{1}} \sum_{n \geqq 2} \nsim(n) A(n)(n \log n)^{-1}\right) \\
& =\exp \left(\sum_{1}+\sum_{2}+\sum_{3}+\sum_{1}+\sum_{5}+\sum_{6}\right), \text { say }
\end{aligned}
$$

where

$$
\begin{aligned}
& \sum_{1}=\sum_{p<A} p^{-1}\left(\sum_{X} \%(p)\right), \quad \sum_{0}=\sum_{1 \equiv p<B} p^{-1}\left(\sum_{x} \%(p)\right), \\
& \Sigma_{3}=-\sum_{p<i} p^{-1}\left(\%_{0}(p)+\%_{1}(p)\right), \\
& \sum_{1}=\sum_{p^{n}<\beta} \sum_{n \geq 2}\left(n p^{n}\right)^{-1}\left(\sum_{\chi} \not \approx\left(p^{n}\right)\right. \text {, } \\
& \sum_{5}=-\sum_{p^{n}<k} \sum_{n \geqq 2}\left(n p^{n}\right)^{-1}\left(\%_{0}\left(p^{n}\right)+\chi_{1}\left(p^{n}\right)\right), \\
& \sum_{6}=\sum_{n \leqq n} \sum_{x \neq x_{0}, x_{1}} \%(n) A(n)(n \log n)^{-1}
\end{aligned}
$$

and

$$
A=2 k . \quad B=\left[\exp (\log k)^{3}\right] .
$$

Now we shall estimate \sum using the above lemmas.

$$
\sum_{1}=\varphi(k) \sum_{\substack{\nu<1 \\ \nu \leqslant 1(\bmod k)}} p^{-1} \leqq \varphi(k) \sum_{m k+1<-1}(m k+1)^{-1}=O(1) .
$$

$$
\begin{aligned}
& \sum_{2}=\varphi(k) \sum_{\substack{A=p<B \\
p=1(\bmod k)}} p^{-1}=\varphi(k) \sum_{A \equiv n<B}(\pi(n ; k, 1)-\pi(n-1 ; k, 1)) n^{-1} \\
& =\varphi(k)\left(\sum_{A \leqq n<\beta} \pi(n ; k, 1)\left(n^{-1}-(n+1)^{-1}\right)-\pi(A-1 ; k, 1,) A^{-1}\right. \\
& \left.+\pi(B-1 ; k, 1) B^{-1}\right) \\
& =\mathrm{O}\left(\sum_{A \equiv n<B}(n+1)^{-1}\left(\log \frac{n}{\varphi(k)}\right)^{-1}+\mathrm{O}(1)\right) \quad \text { (by Lemma 4) } \\
& =\mathrm{O}\left(\int_{A}^{B} \frac{d u}{u \log (u / \varphi(k))}\right)+\mathrm{O}(1)=\mathrm{O}(\log \log k) . \\
& \sum_{3}=\mathrm{O}\left(\sum_{p<B} p^{-1}\right)=\mathrm{O}(\log \log B)=\mathrm{O}(\log \log k) \text {. (by Lemma 1) } \\
& \sum_{1}=\varphi(k) \sum_{\substack{p^{n} \leq B \\
p^{n} \equiv 1(\bmod k)}} \sum_{\substack{n \geq 2\\
}}\left(n p^{n}\right)^{-1} \leqq \varphi(k) \sum_{\substack{p \\
p^{n}=1(\bmod k)}} \sum_{n \geq 2}\left(n p^{n}\right)^{-1} \\
& =\varphi(k) \sum_{p>k} \sum_{n \geq 2}\left(n p^{n}\right)^{-1}+\varphi(k) \sum_{n \geq 2} n^{-1} \sum_{\substack{p=1(\operatorname{mcd} k)}} p^{-n} \\
& =\mathrm{O}\left(\varphi(k) \sum_{p>k}(p(p-1))^{-1}\right)+\mathrm{O}(\omega(k)) \quad \text { (by Lemma 9) } \\
& =\mathrm{O}(\omega(k)) \text {. } \\
& \sum_{5}=\mathrm{O}\left(\sum_{p} \sum_{n \geqq 2}\left(n p^{n}\right)^{-1}\right)=\mathrm{O}\left(\sum_{p}(p(p-1))^{-1}\right)=\mathrm{O}(1) . \\
& \sum_{5}=\sum_{B \leqq n}(Q(n)-Q(n-1))(n \log n)^{-1} \\
& =\sum_{B \leqq n} Q(n)\left((n \log n)^{-1}-((n+1) \log (n+1))^{-1}\right) \\
& -Q(B-1)(B \log B)^{-1} \\
& =\mathrm{O}\left(\sum_{B \leqq n} \frac{n}{\log n} \int_{n}^{n+1} \frac{\log x+1}{x^{2} \log ^{2} x} d x+\frac{1}{\log ^{2} B}\right) \quad \text { (by Lemma 6) } \\
& =\mathrm{O}\left(\int_{B}^{\infty} \frac{d x}{x \log ^{2} x}\right)=\mathrm{O}(1) .
\end{aligned}
$$

Collecting these results, we obtain

$$
\exp (-c(\log \log k+\omega(k)))<\prod_{\chi \neq x_{0}, x_{1}} L(1, \chi)<\exp (c(\log \log k+\omega(k)))
$$

This, combined with (1), (3) and Lemma 8, gives the following
Theorem 1. $\quad c(\varepsilon) k^{-\varepsilon}<\left|\prod_{\chi \neq x_{0}} L(1, \chi)\right|<\exp (c(\log \log k+\omega(k)))$.
In a similar way, we have
Theorem 2. $c(\varepsilon) k^{-\varepsilon}<\left|\prod_{x(-1)=-1} L(1, \chi)\right|<\exp (c(\log \log k+\omega(k)))$.
5. For the cychotomic field $\Omega=P(\zeta), \Omega_{0}=P\left(\zeta+\zeta^{-1}\right)$, where ζ is a l-th root of unity, l being an odd prime, it is well known that

$$
\begin{gather*}
\prod_{\chi \neq \chi_{0}} L(1, \chi)=\frac{(2 \pi)^{m} R h}{2 l \sqrt{|d|}} \tag{13}\\
\prod_{\chi \neq x_{0}, x(-1)=1} L(1, \chi)=\frac{2^{m} R_{0} h_{0}}{2 \sqrt{\left|d_{0}\right|}} \tag{14}
\end{gather*}
$$

where h, h_{0}, are respectively the class numbers of Ω and Ω_{0} and R, R_{0} the regulaturs of them, and further $m=\frac{l-1}{2},|d|=l^{l-2},\left|d_{0}\right|=l^{m-1}$ and $R=R_{0} 2^{m-1}$.

Combined (13) with Theorem 1, we can infer the following
Theorem 3. For any positive ε,

$$
2\left(\frac{l}{\sqrt{2 \pi} \pi}\right)^{l-1} c \frac{c(\varepsilon)}{l^{\varepsilon}}<R h<2\left(\frac{l}{\sqrt{2 \pi}}\right)^{l-1}(\log l)^{c} .
$$

In this special case, the result is sharper than the one obtained by R. Brauer (see [2]) for the general finite algebraic extension.

Let h_{1} be the so-called first factor of the class number of Ω. Then

$$
h_{1}=h / h_{0}=\left(l \sqrt{l}^{m} / 2^{m-1} \pi^{m}\right)_{\left.x_{1}-1\right)=-1} L(1, \chi) .
$$

Combined this with Theorem 2, we can infer the following
Theorem 4. For any positive ε,

$$
2 l\left(\frac{\sqrt{l}}{2 \pi}\right)^{\frac{l-1}{2}} \frac{c(\varepsilon)}{l^{\varepsilon}}<h_{1}<2 l\left(\frac{\sqrt{ } l}{2 \pi}\right)^{\frac{l-1}{2}}(\log l)^{c} .
$$

The second inequality is better than the result obtained by Ankeny and Chowla (see [1]) on the extended Riemann hypothesis.

References

[1] N. C. Ankeny and S. Chowla: The class number of the cyclotomic field; Proc. Nat. Acad. Sci. U.S.A, 35 (1949), 529-532.
[2] R. Brauer: On the zeta-function of algebraic number field II; American Journal of Math. 1950.
[3] T. Estermann: On Dirichlet's L-functions; Journal London Math. Soc. 23 (1948), 275-279.
[4] A. E. Ingham: The distribution of prime numbers; Cambridge, 1932.
[5] E. Landau: Über Dirichletsche Reihen mit komplexen Charakteren; Crelles Journal Bd. 157.
[6] E. Landau: Über neuere Fortschritte der additiven Zahlentheorie; Cambridge, 1937.
[7] A. Page: On the number of the primes in an arithmetic progression; Proc. London Math. Soc. 39 (1935), 116-141.
[8] T. Tatuzawa: On a theorem of Siegel; Japanese Journal of Math., 1952.

Gakushutin University, Tokyo

