
GROUPTHEORETICAL CHARACTERIZATION OF
PROJECTIVE SPACE AND CONFORMAL SPACE

MINORU KURITA

In this paper we characterize a projective space and a conformal space,
namely a space of inversive geometry of point and sphere, from the standpoint
of a homogeneous space. In such spaces a covariant differential of a vector-
field is not a vector, contrary to the case stated in my previous paper "On the
vector in homogeneous spaces." (This journal vol. 5. This paper will be re-
ferred to as [1] below.) But when we restrict a rotation about a point to a
certain subgroup of the full rotation group, we get a covariant differential
which is also a vector, and this situation holds good in a general homogene-
ous space. If the fundamental group © of a homogeneous space is generated
by the full group of rotation about a point and a commutative subgroup of 65
which operates simply transitively on our space, a translation of a vector can
be defined smoothly on the whole space. We call such a space a space of pro-
jective type, a projective space and a conformal space being such. We charac-
terize among the homogeneous spaces of projective type a projective space and
conformal space by certain properties. In particular a conformal space of di-
mension greater than 2 can be characterized as a homogeneous space of pro-
jective type whose linear group of isotropy is conformal.

1. Projective space and conformal space

1.1 Let ® be a group of projective transformations of ^-dimensional pro-
jective space, and Ao, Λi, . . . , An be a set of analytic points in the space,

n

which we can take as a frame of our space. Then putting dAi = *ΣωijAj
n

(Σω» = 0, i = 0, 1, . . . , n) we have as structure equations
i = 0

oί] + Σ LϋJQkωkύ, dωoQ -— Σ L(θoiC0i<3
Jc

Σ La)ik(θkol 9 dω

Jc i

Denoting by A an wxl matrix with Ao, Aι, . . . , An as its coefficients we can
write dAi = *Σ>ωijAj in the form dA = ΩA, Ω = (ωty\ We take any projective

3

transformation P which fixes the point Ao and whose determinant is ± 1 and
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put

= PA, P

where jί> and tf are # x 1 matrices, Po is an « x n matrix and moreover p -f
= 0, pljPol = ± 1. We denote the set of all such transformations by ©. Putting

<iA = ̂ A we get

ώ = P&P' 1 + dPP~\

When we put

where coi is a Ix^-matrix and ω2 is an « x l matrix* we get

(1.2) ωi^pωiPo1

ωoo = pωiQ + ωoo + - - , ^o = ί^iPo"*1 + PQΩOPQ1 -f

( L 3 ) P

ω2 = — (^ωoo + Poω2) + pωiq + Pô o<? + —^ pq q
P P

(1.2) is the transformation of principal relative components by a linear group

of isotropy in the projective space with points as its elements. We define a

vector in such a homogeneous space by a set of numbers v = (vι, * . . , vn)

which is transformed in such a way that

(1.4) v

by a projective transfomation which fixes AQ. We take a vectorfield which

is differentiable. Then we get by (1.2) (1.3) (1.4)

dv - ωwv + vΩa + pct>i#z7 ~ p(dv ~

Hence the term in the bracket of the second side does not give a vector. But

if we restrict the rotation about a point A> to the element of its subgroup

satisfying the relation q = 0 we get

(1.5) dv - ωoo^+ VΩQ = p(dv - ωoo# -f VΏ0)PQ1.

For such elements we have on account of the relation q = 0

(1.6) ωoi = 0? ω,o = 0,

If we add the relation p = 1 we have

(1.7) ωoί = 0, ωoo = 0? ω/o = 0,
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Now the integral manifold of the differential equation

(1.8) ω, 0 = 0

containing an identity of © forms a subgroup and if we restrict the rotation

to the elements of such a subgroup we get an affine space of dimension n. By

such a restriction of the rotation a covariant differential of a vector v which

is defined by Dv = dv- ωwv -f vΰ<> is also a vector and the geodesic can be de-

fined by the curve get by solving

do \do' do do do do

which also can be obtained by solving ωi = ddo, α>oo = 0, ω,o = 0, Ωo = 0 and is

nothing but a straight line. Next for the elements of £> satisfying p = 1 and

Po = unit matrix we get by (1.4) v = v. For such elements of £> we have

These are the guiding ideas for our investigation. When we put ω, = ωo, , 7r/y

= ωij-dijωw we get instead of (1.1) the following

(1.10)

1.2 An analogous situation holds in the conformal space with points as

its elements. We take two points Ao, A» and n spheres Ai, As, , An such

that

(AoAo) = 0, (AoA, ) - 0, (AoAco) = - 1 ,

(AiAj) = δij, ( Λ Acc) = 0, (A.Aαo) = 0

i = Σ Zo)jπjil, dωoo = Σ Cω/ω/oII, dωio =
3 i

πij = Σ Zπikπkjl + Cω/oωyD (i*j)
k

< dπu = Σ Zπikπki] + Zwtfΰϊl — Σ Eω/ω/α]

00

and take these as a frame of our space. Then putting dAi = Hj(OijAj U .7 = 0,
.7 = 0

1, . . . , n, oo) and ωOi = ωi, mj = ω# — ̂ yα)oo (i, i = 1, . . . , n) we get

ω, = Σ Zωjπjϊl, rfώoo = Σ Zωiωiol, dωio = Σ Zπij

dr.ij - Σ ίπikπkjl + CίΰftW ]̂ + [ω,αy0] ( » # j )

r/7 = — 7Γ/V (i^j), πu = — cooo.

As to (1.6) (1.7) (1.8) the assertion concerning the projective space holds good

in the conformal space too.

Thus we get the following schema of subgroups for these two spaces. In this
schema ω, = 0, mj = 0, for example, means a subgroup satisfying these conditions.
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(1.12) identity

ϊl

58,

ω

H = 0 , τr;y

: ω/ = 0,

oo == 0, ίo/o
Try = 0

« * =

= 0

1
0

>: ω, = 0

:: ω, o = O

2. Homogeneous space of projectire type

2,1 Let (S be r-parametric Lie group which operates transitively on the
space of dimension n and let an element of © be given by Sa x\ -- fi(xi9 . . ,
AΓ»; αi, . . . , βr) (ί = l, . . , 72). Let the subgroup £> of © which fixes a cer-
tain fixed point of the ^-dimensional space be closed and connected. V/e de-
note by ωi, . . . , ωn principal relative components of our homogeneous space
(S/ξ> and by ωn+i9 . . , ωr secondary relative components. We use indices in
the following manner throughout the discussion

i, j , k, I, h = 1, 2,

a,

p, q, s, ΐ, u = 1, 29 . . . , r

We have

(2.1) t?j = Σ Cpji
() (pa)

Let a frame at a point # be S«/? for which relative components are ω, , ωβ. If

we rotate the frame about the point x and get SaStR
relative components ωi, <oa of S* = SaSt the relations

v/e obtain for the

(2.2) JO)

where (τPq) = (r^ίί)) is an element of a linear adjoint group corresponding to
St and cθα0)?s are the relative components of St. As ξ) is connected we have

(2.3)

(2.4)

(2.5) Σ CstqTpq = Σ CqrpTqsTrt,

a = 0

/y = Σ Cakiω

ZLJ C$jiT$&Tjk

Moreover we assume © operates effectively on ©/© namely the transformation

which fixes all the points of (S/ξ> is nothing but the identity.

2. 2 As defined in [1] 2. 2 a vector in a homogeneous space is a set of
real numbers v = (#i, . . , , vn) corresponding to SaR which is transformed by
a frame transformation from SaR to SaStR in such a way that
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(2.6)
i

Then using the notations as in [1] 2.2 we get by [1] (2.10)

(2.7) dϋi — Σ CvkiΰvVk = Σ ?ij(dvj — Σ cakjωΛVk) — Σ c
ak j ak akhj

Putting as in [1] 2.2

(2,8)

(2.9) dBijh = Σ ( -

If we restrict the rotations about a point % to elements of ξ> satisfying

(2.10) ωi = 0, Σ CaijCrk*ωr = 0
αT

we get jB/y/j = 0 on account of (2.9) and Bijh = 0 for S* = identity. Then we

have by (2.7) that Dvt = dvi -*ΣcakiωaVk is a component of a vector. That the
ak

integral manifold of (2.10) containing the identity transformation gives a sub-

group can be verified by Frobenius's theorem in the following way.

(2.11) d(ΣCakδω*) = Σ CijaCakδ Lcoio)/] -f ΣcakδC?ja Lω?ωi3 4- ΣcakδC^ra
a (i) ?i β(3T)

(2. 12) Σ CΛkδCyrΛ = — Σ CrkiC^δ — Σ ^T^αCα^δ — Σ Ck?iCirδ ~~ Σ Ck^a
α

Hence ί/ωί9 ΛΣ^yACαΛδωα) vanish under the relation (2.10) and the integral
αδ

manifold of (2.10) containing an identity forms a subgroup. We denote this

by 3) in correspondence with that in the schema (1. 12). It can also be veri-

fied by (2.11) and (2.12) that

(2.13) ω, = 0, Σcτ* ωτ = 0

T

determines a subgroup. But the equation

(2.14) Έcrkaωr = 0
T

is, in general, not completely integrable. It is so when and only when
(2.15) Έcij*CΛkδ = 0

a

as is evident from the consideration of (2. Π).

Thus we get the following theorem

THEOREM 2.1 Let (vι, . . . , vn) be components of a vector of a differentϊ

able vectorfield on the homogeneous space corresponding to the frame SaStR (St
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e£>). Then Dvi = dvi — *ΣcΛkt(o*Vk is not in general a component of a vector.
ak

But if we restrict St to the elements of a subgroup satisfying the relations

(2.10) Dvi forms a component of a vector.

THEOREM 2.2 The equation (2.13) determines a subgoup. Let it be SB.

Even if we choose Sa suitably for each point of our homogeneous space corre-

sponding to Sσξ), a set of all SOS3 does not constitute a homogeneous space. It

is so when and only when (2.15) holds.

2. 3 Now we consider the space in which (2.15) holds. In such a space

we can define a parallel translation of a vector by restricting the frames at

each point to Sc35i?, mentioned to in theorem 2.2. Then the translation of a

vector can be defined in our space by the equation

(2. 16) DVi = dVi - Σ Cajiω*Vj = 0

and this definition is intrinsic in the sense that the equation does not depend

on the choice of the frame SaStR (S*e3?). When we translate a vector

from one point to another the resulting vector depends in general on the path

joining these two points. It is independent when and only when the equation

(2.16) is completely integrable. By Frobenius's theorem this condition can be

paraphrazed into

(2.17) Ί->CijΛCakh=0

α

as was shown in [1] 3.2. Here we state a lemma.

LEMMA. A set of all equations ^e^Cakr = 0, *Σeacakh = 0 leads to e« = 0 (cc
a a

= n + l, . . . , r).

Proof. Let Xi and X* be infinitesimal operators of our group © corre-

sponding to relative components ω, and ω*. Then the set of all operators

*ΣeΛXa such that *Σeacakτ-0, Σ£«Cαfc/ι = 0 generates a subgroup ξ>0 of ξ> which
α α a

commutes with any one-parametric subgroup generated by *Σ>aiXi and any

transformation of £>o fixes each point of ®/ξ>. Owing to the effectivity of (S

stated at the end of 2.1 £>0 reduces to an identity and hence ea = 0. That the

set of all ^ΣeΛXΛ above stated forms an infinitesimal group and commutes
a

with Σ<3/X can be verified as follows.

T cc<? c φ T

= Σ e * £ β ( - *Σc?kiCi<tδ — Σ^βJfeTCrαδ — Σ^αίd 'βδ - Σ^<»τCτβδ) = 0
αβ t T « T
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α α j β

By virtue of this lemma we get from (2.15) and (2.17)

(2.18) CijΛ = O.

This relation is equivalent to the condition that Xι, . . . , Xn generate a sub-

group of ©. Thus we get the following

THEOREM 2.3 In the homogeneous. space where Σ Cijacak6 - 0 holds the

translation of a vector is absolute when and only when Cij* = 0 hold. This con-

dition is also equivalent to the following: in ©/€> ® is generated locally by £>
and an n-parametric subgroup of &.

2.4 Now we consider a space satisfying CijΛ = 0. Then we have

β/c (βT)

and so to* = 0 is completely integrable. We can restrict a frame at each point

of the space ®/ξ> to that satisfying this relation. We get then a homogeneous

space which is transformed simply transitively, and the structure equation of

such a space is given by dωi = Σ Cjki Lcojωki. We call a transformation of our

space ($/£> satistying ω«* = 0 a translation and denote the group of all trans-

lations by 2. The commutativity of the group % can be expressed by ct jk = 0.

We call the space satisfying the relations aj* = 0 and Cijk = 0 a homogeneous

space of projective type. A projective space and a conformal space with points

as their elements are the spaces of this type. In the space of projective type

we have the relations

( 2. 19) Σ Ck?aC<tji = Σ Cj?ΛCaki, Σ Ck?aCajr = Σ Cj?aCakr
a i α α

which can easily be verified by Jacobi's identity.

2. 5 In a homogeneous space the differential equation

(2.20) <oi = 0, Σ Caijω* = 0
a

is completely integrable on account of the relations (2.1) and

(2. 21) dCΣιC*ij(0*) = Σ Ckh*Cuij[_ωkωh} + Σ£?*<*£»#[ωpωjfe] -f- Σ c?rac
α (fcΛ)tf βfc<* (βT)ot

(2. 22 ) Σ C^aCctij = ~" Σ CrikCkpj - Σ CipkCkrj.

In fact dcoi^O, d(Σcaij(oΛ) =0 under the condition (2.20).

Thus we have a schema of subgroups in a general homogeneous space.
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(2.23) identity

— 33: Σ

α

on-

Cϋi

= 0

— U, S ι
cc

= 0! !

i

; = 0
= 0

): ω/ = 0

In the homogeneous space of projective type we have the following. We give

attention to the correspondence with (1.12).

(2.24)

21: (Oi = 0, Σ cΛij(ύΛ = 0
>: (ύi = 0

identity [
ω, =
α/?ωα = 0 | _ ^ * Σ cβ(; cτ/}βωτ = 0

6 : ω* = 0 β/pωβ = 0

3. Characterization of projective space

3.1 In a homogeneous space of projective type we have

(3.1) dm = Σ Cttji Lω*ωjl

(3.2) dω* =

In contrast with the equation in the case of projective space (1.10) we put

(3.3) 7Γ(/=-Σ*.tf<o«.

Then we have

( 3 . 4 ) dcoi = χ ι Γojy7r/f 1 a

3

By virtue of (2.21) (2.19) (2.22) and the relation ckh* = 0 we get

α ' A;

In a projective space we have by (1.10)

(3.6) dmj = Cω/oωy] + Σ CTΓ̂ ΓΓ̂  ] (ί # / ) .

So if there exist such Aiβ that

we obtain (3.6) by putting
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(3.8) ω/o = Σ-AfoWp.
β

(3.7) being assumed we get from (3.8)

(3.9) dcύio = Σ Aιp(Σ CTΛP lωτcokl + ΣCrδβ [ωτωδ]).
β TA: (Tδ)

In order that this reduces to

(3.10) dωm = Σ tπikωkol
k

with ω;0? 7r/y defined by (3.8) and (3.3) it is sufficient that we have the re-

lations

(3.11) Σ A ?cτ*β = 0
β

(3.12) Σ Aiders? = ~ ΣCrikAks + Σ CsikAkτ.

β fc fc

Next we consider the condition in order that

(3.13) dπa = Σ ίπikπkil + Cω,oω,D — Σ L<oj(θjό}
k j

holds. By (3,3) and (3.7) we have

(3.14) dπu = — Σ β
ξik

= Σ Ak? ίωβωkl - Σ A,? Ccoβίo,] - Σ Cαi/Cβία Cωβω, ]
Λβ β |i

and by (3,3) and (3.8) we have

(3. lδ) Σ Lπikπkf] + Cωίoωi] —

= Σ C Σ Caikcoa, Σ CpwωpD + Σ Ai$ {_ω$ωϊ\ — Σ Aip
A; α β β βi

That the coefficients of Lω?w^ in (3.14) and (3.15) are the same can be veri-

fied by the Jacobi's identity (2.22 )e As for the coefficients of [cυβωj it is suf-

ficient that

(3.16) Σvtfίv = 24
α

holds. Thus we get (3.7) (3.11) (3.12) (3.16) as sufficient conditions in order

that (1.10) except dω^ = ΣCω, £θ, o] holds for 7r/y, 7r/o given by (3.3) (3.8). Now
i

we remark that (3.12) is a consequence of other relations. In fact if we take

k which is not equal to /, the dimension of the space being assumed to be

greater than one, then we have Aj? = Σ Ci?acakk and hence
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(3 . 17) Σ Ai^Cyδζί = Σ CrδvCipaCakk
p αp

= Σ ( Σ CδijCjfa + Σ CδίβCβϊct + Σ CirjCjδa +
α 3 p .? P

By (3. 7) (3.16) (2.19) we have

Σ CδijCjraCakk = Σ CδijAjr + Cδ/Jfe-AjfeT

Σ CδivCptaCakk = — Σ £διp(Σ CrkjCjpk 4" Σ Ck^jCjrk)

Σ SΓΛ \~Λ

CδiflCpkkCrkk — ^Li CδipCpkkCrkk ~~ - Z J CkδpCβUCirk = : t-rί
β P P

Similarly *ΣcirjCjδaCakk = — Σ^T/y-Ayδ — CrίfcAfeδ;. Σ Cirpc^aCakk = "~ c<5/fc.Afcr. Putt ing
ce^ .; α p

these into the right side of (3.17) we get (3.12). The verification of the case

n = 1 is more easy. Thus we obtain a set of conditions

( I ) Ciίk = 09 £,•;* = 0

7Γ Σ CiξiaCaii = Σ Ci^aCxjj = Σ ί
ώ α α α

(ΠI) Σ A ?Cτfcp = 0.
P

Under these conditions we get the structure equations of a projective space

(1.10) when we put

— . _ NT1 •» "SΓ̂  Λ 1 %Π ~

« p /ί H- 1 αi

The formula for ωOo can be verified as follows. We have by virtue of the re-
n

lation Σ con = 0

n n

Σ7r« = Σ ( ω « — ωoo) = — (n + l)ωoo.
t=l i=l

Hence ωOo = Σ ^ « ω β . That this satisfies the equation dωQo = Σ Eα), ω l0]
W + 1 αi ^ <

can be verified as follows.

(Σ^;>^α» Cωyωp] + Σ
n + 1 αi'jp «(pT)<

~ΣCωy, Σ eypαcβιiα)p] 4 r Σ
\\ P W + 1 (3T)

y y p p
3 α*P W + 1 α(3T)t

— — Σ C ω y , (w + l)ΣilypωpII Σ(Σ
n-\ l 3 p /I + 1 (prj to
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3.2 The geometrical interpretation of the relation (I) was given in 2.
Now we will interprete (II). In the homogeneous space of projective type we
restrict to the frames satisfying Σcφύ) β = 0 as was mentioned to in 2.2, then

a

a translation of a vector is defined by Dvi = dυi — Σ cakW*Vk = 0 and a geodesic
ak

can be defined as the curve obtained by solving

da^da' ak da da

with a suitably chosen parameter a. The curve can also be obtained by solv-
ing

(3.18) ωi^adσ, ωa = 0 (a = const.).

The discussion is analogous to that of [1] 4.1. We call the frames along the
geodesic satisfying (3.18) adapted frames corresponding to the geodesic. Let
these be SaR and operate on them infinitesimal rotations Sε. Relative displace-
ment of these frames SaS R is (SaS*)~1Sa+daS? = S^1(Sά1S«+jα)Sε and its relative
components are given by 'ΣrpkCkda where (τPq) is an element of a linear ad-

k

joint group corresponding to S s. Hence by (2.4) we have for an infinitesimal
change of relative components corresponding to the frame transformation from
SaR tθ SaSςR

δtoi = Σ CakiCaCkda, δωΛ = Σ c$h

where (0, . . , 0, en+l9 . . . , er) axe parameters for S*. Thus if we neglect
terms of higher order with respect to eΛ we get for secondary relative com-
ponents of SαSzR ωα + δωΛ = δωα = Σ c^h^Chdα. When we attach to each point

of a curve in the homogeneous space a fixed frame, we can define a trans-
lation of a vector v along the curve relative to the frames by the equation

Dvi = dvi - Σ c*jiω*Vj = 0

although the translation thus defined is not intrinsic with respect to the curve.
In this sense of parallelism c = (ci, . . . , cn) is parallel with respect to the
frames SαR.

Let c- (cι, . . . , Cn) be a vector which determines the geodesic (3.18)
and we assume for any geodesic and Sε that

("when we translate a vector c with respect to frames SaSζR the di-
(3.19) I rection of c is invariant except for a second order ivith respect to

\ the parameters of S* "

Then we get (II) as follows. The property (3.19) means that
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is proportional to a. Hence we can put ̂ ΣjCakiC^haeφChCk-CiP. As e? is arbi-

trary we get

( 3. 20 ) Σ CakiC?h<tChCk = CiP$.
akh

Hence *ΣjCakiCphaChCk/ci = P β does not depend on /. As a is arbitrary /^ must
akh

be a linear combination of ci, . . . , o*. Hence

(3.21) ΣcPΛ<*Cce*i = 0 ( Λ # ι

and so

Pfl — Σ CpiaCaiiCi -f Σ CΣcpiaCaji 4" Σ C$jaCΛii)Cj.
a j(φi; α α

As we have Σ c^acaji = Σ c^acaii by (2.19) we can put
α α

(Q 9 9 ^ 'SΓ1 /• . /• — _ 9 Λ "S^ / . . / » . . _ _ _ ϋ (* ±- i\
a a

Thus we obtain (II).

3.3 New we will show that if the dimension of our space is greater than

one the relation (III) is a consequence of (ID. We begin with the case of the

dimension greater than 2. Then we can take for any i and k a positive inte-

ger j such that i*rj, k^j. By virtue of the relation (II) and (2.19) we get

In the case of dimension 2 such j as we used above can be taken except for
ΣAi?Ci2? and ΣΛ>?Cπp. In this case we proceed as follows. We get by (3.22)

(2.19)

Similarly Σ A 2̂ ri», = 2 Σ c-,-2β-Ai?. Hence Σ A^Cr^ = ΣAipCτ2,̂  = 0.

In the case of dimension one I can not give a geometric interpretation to
the relation (III) namely

Σ AifiCnp = 'ΣcrinCpiaCaii = 0.
fi a?

Thus we get a characterization of a projective space which can be stated
as follows:

THEOREM 3.1 A homogeneous space of projective type ivhose dimension is

greater than one can be locally imbedded into the projective space of the same
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dimension preserving the group-theoretical structure if it satisfies the following
condition: zvhen ive operate on all the adapted frames along any geodesic any
infinitesimal rotation S?, the vector which is tangent to this geodesic and has
constant components does not change its direction by the translation with re-
spect to the rotated frames, except for an order greater than one.

This condition is rather complicated. It is desirable to replace it by one
which is simpler. The rotation group about a point when it is imbedded into
the projective space is in general a subgroup of that of the projective space.

In one-dimensional case (I) (II) are always satisfied. Hence we get the
following theorem.

THEOREM 3.2 A one-dimensional homogeneous space satisfying the relation
Σ^ri^.utfCβπ = 0 can be imbedded into the one-dimensional projective space pre-

serving the group-theoretical structure.

Although a projective space with points as its elements is of projective type
and satisfies (3.19) the converse of theorem 3.1 is not true. A simple example
shows that there exists a homogeneous space which can be imbedded into the
projective space of the same dimension and yet is not of projective type. A
homogeneous space which can be imbedded into the projective space of the
same dimension and whose fundamental group contains a group of all trans-
lations is of projective type. In fact in such a space (1.10) holds, where mj,
ωio are linear combinations of relative components ωi, ω* with constant coef-
ficients. The differential equations mj = 0, ω/0 = 0 are completely integrable,
though mj, ω,o are not always independent. We take frames satisfying these
relations. Then owing to the assumption that the fundamental group contains
a group of all translations ω/'s (i = l, . . . , n) are independent even when we
put mj = 0, ωio - 0. So we can take secondary relative components ω* anew
such that 7r/7 , ω/0 are linear combinations of ωa with constant coefficients. Then
we get djk = 0, cjj* = 0 and hence a space of projective type. We have in ad-
dition (3.3) (3.8), and (3.19) is satisfied.

4. Characterization of conf ormal space

4.1 Now we treat the case of a conformal space which is simpler than
that of the projective space. In a conformal space we have by (1.11)

Hence the linear group of isotropy is conformal. We take a homogeneous
space of projective type and seek for the conditions in order that it can be
imbedded into a conformal space. In the first we put
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( 4. 1) πij = — Σ CΛij(Oa

to get dωi^'ΣLωjπjil from (3.1). We assume that a linear group of isotropy
3

of our space is conformal, namely

(4.2) Caij=-C(tji (i*j), Ca.it =C*.

We have by (2.19) Σc*p*Cαyι = Σcyp«CαJW. So if we put Σ£*?*£*/,• = Pkji we have
ot a. a

Pkji = Pjki and by virtue of the assumption (4.2) Pkji = - Pkij for i^j. Hence

for i^j^k we get

Pkji = - Pkij = -Λ*y = Λy* = Pjik = - Py*/ = - Λjί.

Hence P ^ = 0 (i^j^k). For other cases we get

S = - Σ^>c β = - Piii

Hence putting Σ Ci^ca = Ai9 we get
α

(4.3)
^LjCipaCaji = — J?LlCi?aCctij — ^LjCjpaCaii =z Aj$ \t ^F J)

ex a. α

As our space is of projective type we have by (3.5)

Tij = Σ CΪΛ
k

So for i±?j we obtain by (4.3)

dπij = Σ CipaCajj L<Op(Ojl + Σ Ci?aCaij Z(O$<θi] + Σ L7Γ/,

β

If we put

(4.4)
we get

(4.5) dπi,

From (4.4) we get

βϊA:

and this reduces to

(4.5)

if the relations
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(4.6) Σ AiflCrδp = - Σ CτijAjδ + Σ CδijAj

(4.7)

jr
3

are satisfied. The former is a consequence of other relations as is shown in
the following. We have by (4.3)

2LΔ AiftCrδβ = — 2-lCχδ^C^iaCa. — jLjCδijCjτaCa 4" Σ CδifφjrβCα + Σ CiτpC$δaCΛ + Σcπ\/C;δ<χCα
(i αβ jα βα αβ ja

(4.8) ΣCβταCβiϊ = — ΣCrikCk?i - ΣCi?kCkri = ΣC&iCrik — ΣCpkiCrik = 0,

α fc & fc ίc

and so we get

Σ AiβCvδβ = Σ CδijCjraCa -\-^CirjCj8aC<t

As for (4.7) we can proceed as in 3.3 if n>2 and i^k but if n>l and i =
we proceed as follows. Let i^j then we have by (4.2) (2.19)

αβ αβ β

Hence Σ A>cT/> + Σ AjtCrjp = 0.

From the equations obtained from this by putting j , k and k, i in place of /, j
we get (4.7), and so (4.7) holds good if n>2. In the case n = 2 we get only

βα βα

and in order that each term reduces to 0 it is necessary and sufficient that

. 9 2-j c-ΐ\°ιC\*ι<tC<t = 2Lι Cr2β^2βαC(χ.

αβ αβ

When n = 1 we have

As to 7ZU- -o^oo= - Σ ^ t f ^ α we have
α

CZ(J)QQ Z— x CaiiC^ka \-Oi$Cθk-\ί ~f" ^ ) CaiiC^Ύrt L ^ β ^ T J —- ""~ <̂  ) J*-k$ L ^ β ^ . ^ J ~r ^ ι Cy?rtCrtii LWβCOγ J
αβλ: a.t:?>Ύ) βλ α(βT)

and we get dωw = Σ [ω /̂fe0] by virtue of (4.8).

Thus if ??>2 and the relations
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j , Caii = CΛ

are satisfied we get (1.11) by putting

TTίj = — Σ Caijίύa., CύQO = — 7Γ/i = ^ j Cα^α , Cϋ/o = Σ Ci>ιΛCaωji.

In the case w — 2 we must add one more condition (4.9). The case of dimen-
sion one reduces to theorem 3. 2.

Hence we get the following.

THEOREM 4.1 A homogeneous space of projective type whose dimension is
greater than 2 and whose linear group of isotropy is conformal can be locally
imbedded into a conformal space of the same dimension preserving the group-
theoretical structure. If the dimension of the space of projective type is 2 and
the linear group of isotropy is conformal and {4.9) holds, the space can be im-
bedded into the conformal space of dimension 2.
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