
NOTE ON AN ORDERING THEOREM
FOR SUBFIELDS

TADASI NAKAYAMA

In a recent paper [3] Tannaka gave an interesting ordering theorem for
subfϊelds of a s-adic number field, The purpose of the present note1' is firstly
to observe, on modifying Tannaka's argument a little, that his restriction to
those subfields over which the original field is abelian may be removed and in
fact the theorem holds for arbitrary fields which are not p-adic number fields,
indeed in a much refined form., and secondly to formulate a similar ordering
theorem for algebraic number fields in terms of i dele-class groups in place
of element groups,

"L Let K be a field, and let ku fa be two subfields of K such that K is
finite and separable over kiΓ\k». Put

THEOREM 1. If ki^kfa then (and only then) Mι0M 2. Indeed, provided
thai K has infinitely many elements, the index (M1M2'. Mi) is, then, infinite and,
moreover the orders of elements of MiM->/ Mi are not bounded.

Proof, We borrow an argument of Tannaka, but generalize as well as re-
fine it so as to make it suitable for our generalized and refined formulation.
Set namely n\ = ί/ί: k\), n i = (K: kz)> Let θ be a generating element of K over
kιΓ\k2* We denote by βι = 0, &>, , . . , θ,h its 7h conjugates with respect to ku
while we denote its n% conjugates with respect to k2 by θa) = 0, θ{2\ . . . , θ{?h\

is the irreducible polynomial in k2 satisfied by 0, Let a be an arbitrary element
of hΓ\kz, Then f(a) = Nκlk2(a ~0), whence

provided a*?d, which is certainly the case when K^k}p\ki as we may assume
in our proof,

Suppose now that the orders of elements of the factor group MiMjMx are
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study.

125



126 TADASI NAKAYAMA

bounded and thus all divide a certain natural number, say t. Then /(a)*/(a
- ^ ε l i . If Mx) -fix), f2ix),. . . , /«,(*) are m conjugates of fix) with

respect to fa, then fΛa)tf2(a)t . . ./Λ l(α)V (or-ft )"•*(«-ft)"1*. . . (α-ftn)* 1 '
= 1 and the polynomial

fiixVMx)'.. . A W * - (x -ft)* 2 '(* -ft)* 2 ' . . . ( * - ftO*'

has «r as its root. Since this is the case with arbitrary element a in kiΠk2, the
polynomial must be 0 provided that (K whence) faΓ\k2 has infinitely many
elements, which we shall assume for meanwhile. Hence the roots θ(1\ 0(2),. . . ,
θ{nz) oίfi(x) -fix) all appear mong ft, ft, . . . , 0Λl. Thus every θ(i) coincides
with one of 0/ and every isomorphism 0-»0(l) of KlfaΓ\k2 (into a conjugate
field) leaving fe elementwise fixed is an isomorphism of K/kι. It follows that
fa E *2.

The case when K is a finite field is rather evident. For then Mλ consists
of (K*:l)/(kf:l) elements, where K*9 kf are the multiplicative groups of K,
fa\ observe that every element of fa is a norm of K/k. Similarly M2 contains
exactly (J?*:l)/(fe*: 1) elements. If Mi iM 2 , then ikϊ'Λ) divides (fe*:l), or,
/Wl - 1 divides Γ2 - 1 , where Γz\ Z^2 are the numbers of elements in fa and £2

respectively, / being a prime number. This implies that nti divides m2, as we
readily see, and thus fa^k2.

Remark 1. Suppose, in our theorem, ki has only a finite number of roots
of unity. Then MiMjMi has, in case fc$fe and K is infinite, an element of
infinite order. For, the operation Nκikx maps M1M2/M1 isomorphically into the
multiplicative group k* of fa. Elements of finite order in M1M2/M1 are mapped
then onto roots of unity. Since (MiM2' Mi) is infinite, there must exist an
element of infinite order, if h has only a finite number of roots of unity.

Remark 2. The same is the case also if K has an uncountably infinite

number of elements, even when K (whence k) has infinitely many roots of

unity. In fact, there are then infinitely many2) mutually independent elements

of infinite order in MiM2/Mu For, otherwise there would exist an infinite

family {#,-} of elements in faf\k2 such that NκikSf(oci)l(cci — θ)n*) are all equal to

a single element γ of fa. Then fιix)/2(x) . . ./ Λ l (#) - γ(x - OιY2{x - β2Y
2, . . (x

— θnj)
n2 would vanish identically, whence fa ϋ k2.

Remark 3. Our assumption that (both Klfa and K/k2, or) K/faΓ\k2 be

separable may be weakened to that K/k2 be separable. As a matter of fact,

the condition fa^k2 may be replaced generally by k[^k[9 where k[, k2 are the

maximal purely inseparable subfields of Klfa, K/k2.

2> As many as the power of K.
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2. Let now fa be the p-adic completion of the rational number field, p be-
ing a prime number, and let K, fa, fa be finite extensions of fa such that KEku
fa. Our Theorem 1 and Remarks 1, 2 naturally apply to these K, fa, fa. The
result may be interpreted as follows in terms of the full abelian extensions
Akl9 Ak2 over fe, fe (in a certain algebraic closure of K).

THEOREM 2. If fa^fa then {and only then) Akx is not contained in KAk3

and KAk^Ak2 is infinite over KAk2 and, in fact, there exists a field X between
KAk^Ak2 and KAk2 such that the {compact) Galois group of KAk^AkJ X is hotneo-
morphically isomorphic to the additive group of p-adic integers.

Proof. Let Aκ be the full abelian extension of K. The Galois group of
AκlK may be identified, by means of norm residue symbols, with the comple-
tion K* of the multiplicative group K* of K topologized by subgroups of finite
indices as neighborhoods of unity.3) On the group of units in K the topology
coincides with the one given by the valuation of K. As the transition theorem
for norm residue symbols tells, an element of K* leaves Akx eϊementwise fixed
if and only if its norm with respect to K/fa is unity. It is clear that such an
element of K* is the limit of a sequence of units in K and is thus by itself a
unit of K. It follows that the totality of such elements is simply our Mu Thus
Mi is the subgroup of K* belonging to KAkx in the sense of Galois theory.
Similarly Mi belongs to KAk29 and MiΠM2 belongs to KAkxAk2. Thus Mil Mi
Γ\M2 is the Galois group of KAkxAkjKAk2. But M2/M1OM2, isomorphic to
M1M2/M1, contains an element of infinite order, by Theorem 1 and Remark 1
(or Remark 2). Consider the closed subgroup of M2/M1ΠM2 generated by
such an element of infinite order. Because of the well known structure of K*,
it is easy to see that either this subgroup or its subgroup is the limit of a
sequence of cyclic groups of order pι (which is homeomorphically isomorphic
to the (additive) group of p-adic integers).

3. Let us next turn to an algebraic number field K arid its subfields fa, fa.
It is needless to say that again Theorem 1 and Remark 1 apply to these fields.
We may further obtain a similar theorem for multiplicative groups of ideles,
in place of multiplicative groups of field elements. Let, for instance, $ be a
(finite) prime in K such that we have &i$/j2 for completions fa, #2 of fa, fa
with respect to ^. Then there exists in the $-adic completion K of K an ele-
ment ξ such that Nκ/k2{£) = l but iNfe/ĵ ίέ1') # 1 for ί = l , 2, . . . , according to
the φ-adic case of Theorem 1 and Remark 1. Let α be the idele of K whose
φ-component is ξ and whose other components are all 1. Then the idele α
satisfies a similar condition with respect to the operations Nκ/k2 and Njc/k,. I if
p is the prime in fafλfa divisible by $, then decompose the regular represent-

3) See for instance [1],
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ation of Kjk^C\kι into components belonging to different prime divisors of p in
K9 $ being a one. Indeed, since there are infinitely many primes which satisfy
our requirement (ki^k2), it follows that there exists an infinite family of ideles
in K whose norms with respect to ϋf/fe are all 1 such that no (non-trivial)
power-product of them has norm 1 with respect to K/ki, even when we discard
the possibility of constructing such a family with respect to a single prime $
accroding to Remark 2.

However, this argument of taking a prime $ with k\^k2 is rather indirect.
We may in fact apply Theorem 1 and Remark 1 directly to K, kι, fe, on con-
sidering them as subfΐelds of (the semi-simple algebra) ϋfp ( = Kx (^iΠfe)p
(over kχΓ\kz)), t> being a prime in fcΠfc, to obtain an element ξ of K ( ϋlζp)
such that Nxίkjξ) = 1 but NK/HSS*) *l for ί = 1, 2, . . .. Consider then the idele
whose ΰ-component (i.e. the product of components belonging to different prime
divisors (in K) of p) is ξ and whose components belong to primes not dividing
p are all 1. Then this idele has norm 1 with respect to K/k2 while no power
of it has norm 1 for K/ ki. Letting p run over all primes in kιΓ\k2, we obtain
an infinite family of such ideles which are independent in the sense as above.
(As a matter of fact, if we apply the argument of Remark 2 to the semi-simple
algebra iίp/(&iΠfe)p (generated by the same generating element θ as K/kifΛk*),
as is allowed, we can construct a similar (even uncountable) infinite family with
respect to each single prime p.)

We next turn to idele-classes. However, the transition is rather easy,
Since almost all components of each of the constructed ideles (in either con-
struction) are 1, none of the norms for K/k or its powers is principal idele.
The same is the case for any of their power-products. Thus

THEOREM 3. Let Tiί?

 SJR2 be the groups of ideles (idile-classes) in K whose
norms with respect to k\, k*, respectively, are unity idele (idele-class). If kι^k>
then {and only then) Tli^tyl2 and 9J?i9JW5DU has infinitely many independent ele-
ments of infinite order.

We observe further that the (idele- )class of an idele whose components
at a finite number of (finite) primes are =̂  1 and whose other components are
all 1 never belongs to the connected component of unity of the idele-class
group.4)5) This remark applies naturally to the above constructed ideles and
their norms with respect to Klku as well as to their power-products. Another
remark is that our element of infinite order in ΈlrΆlzlWi constructed with re-
spect to p generates a closed subgroup possessing a subgroup (homeomorphically)

4 ) The topology is the natural one employed by Artin, Dieudonne\ ϊwasavva, Weil and

others; cf [4].
Γ" This can be seen by means of the (generalized) Dirichlet theorem and a theorem of

Chevalley [2].
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isomorphic to the additive group of p-a.άic integers, p being the rational prime
divisible by J>.

Now the Galois group of the full abelian extension A& over K may be
identified with the idele-class group of K modulo its copmonent of unity, by
virtue of the class field theory. On referring to the above remarks and to the
latter of our above constructions, we have, by means of an argument similar
to Theorem 2,

THEOREM 4. Let Ak19 Ak2 be the full abelian extensions of k19 k2. If kι^k2

then (and only then) Akx is not contained in KAk2 and indeed there exists for
each prime number p a field X between KAkxAk2 and KAk2 such that the Galois
group of KAktAkJX is (homeomorphically) isomorphic with the group of p-adic
integers.

Remark 4. Conversely, the idele-class part of Theorem 3 may be derived
from Theorem 4 too, because of the fact that the image by Nκik2 of the com-
ponent of unity in the idele-class group of K is exactly the component of unity
of the idele-class group of k ^

Remark 5. Theorem 4 implies in particular that the extension KAk^AkJ KAk2

contains, in case k^k2, a (finite) cyclic extension of arbitrary given degree.
However, we shall not try to study the possible types of infinite subfields of
KAk^AkzlKAk2 (i.e. the possible types of infinite factor groups of 9JW9#iΠ^(2

(of the idele-class case) modulo the component of unity), since that would in-
volve some complicated argument foreign to the straightforward ones of the
present note, being here satisfied with our Theorem 4 which is sufficient for
our purpose to see that KAuxAkz is very much larger than KAk2 (in case k\
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