
ON THE INNER AUTOMORPHISMS OF
A COMPACT GROUP
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In this note, we give a characterization of inner automorphisms in the set
of automorphisms of a compact connected group, and then apply it to give a
proof of a theorem due to K. Iwasawa on the group of automorphisms of a
compact group.υ

LEMMA. Let G be a compact connected Lie gronp and τ an automorphism
of G. Assume that τ transforms every element of G to its conjugate element.
Then τ is an inner automorphism.

Proof. Let Z be the center of G and S the maximal semi-simple subgroup
of G. Then Z and S are characteristic subgroups and G - ZS. Under our as-
sumption, T leaves fixed every element of Z and induces in S an automorphism
satisfying the same assumption in S as the one for τ in G. From these, it is
easily seen that the lemma is reduced to the case where the group G is semi-
simple.

For a semi-simple compact connected Lie group G, the following facts are
known2) and will be used later. The maximal abelian subgroups are connected
and they are mutually conjugate. Let T be one of them and / its dimension.
The Lie algebra ξ> of T is isomorphic to the /-dimensional vector group and
the exponential mapping; h->exph,S) /zeξ>, is a homomorphism of £> onto T
with discrete kernel 9ϊ. The root forms ai, . . . ? am of G may be defined as
the real-valued linear forms on £> for which ^ — lcci(h) (i=l, . . . , m) are the
eigenvalues of the adjoint mapping of an element h of €> in the Lie algebra of
G. £> is regarded as a euclidean space with respect to the positive definite

m

quadratic form ψ(h) = Σ(#t(ft))2. For a root ecu we denote by Ei the (/ — 1)-
dimensional linear subspace defined by ατι(ft)=O. Now an automorphism r of
G with the property τ(T) = T induces an orthogonal linear transformation 7 in
£) satisfying the following relation:
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1] These theorems were first proved by the second author several years ago in a different

way.

2) See e.g. [4].
3 ) exp h denotes the point Λ(l) of the one-parameter subgroup h{t) with the tangential

vector h at the identity.
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τ(exph) = exp(τ(k)),

All sucli 7's form a group ϊ . 7 is the identical transformation if and only if r
is an inner automorphism raised up by an element of T. 7 is induced by an
inner automorphism of G, if and only if it belongs to the linear transformation
group © generated by the reflections with respect to Ei (* = 1,. . . , m). Let

m

€>o = ξ>-U£/. Then the connected components of £>0 are permuted among
themselves by the transformations of %, and transitively even by those of ©.
Moreover, let 77 be any one of these connected components of ξ>o. Then 77 is
a fundamental domain of © and it contains a polyhedral domain P of which
boundary contains the origin and which is a fundamental domain of the linear
transformation group on £> generated by the transformations of © and by trans-
lations by the elements of 3ϊ. This domain P is defined as follows: Let Ei(k),
k = 0, ± 1, ± 2, . . . , be the hyperplane defined by cc%(h) = k. In the connected

00 00

components of ξ> — U UEi(k), there exists uniquely uch a component Q which

is contained in 77 and of which boundary contains the origin o. Let o, pi, pi,
. . . , pr be the elements of 9ί which are contained in the boundary of Q. P
is the set of all elements h in Q which satisfy the relation

II oftlKminllo.fr II

where I! * II denotes the distance in ξ>. The subset expP in G contains (one
and) only one conjugate element of a (regular) element of G. We remark
that P is transformed by any 7 of % to the same kind of polyhedral domain
with respect to some connected component of £)0 and especially 'τ{P)-P for
such 7 as r(77) = 771

Reserving these notations, we shall prove the lemma for a semi-simple
compact connected Lie group. Since τ(T) is a maximal abelian subgroup of
G, there is an inner automorphism σi such that σiHT) = T. Then we can con-
sider the linear transformation ΰ\τ on ©. ύ\τ transforms 77 to another connect-
ed component 77; of £>0. There exists a transformation belonging to © which
maps 77' onto 77. In other words, there is an inner automorphism σ2 such that
σ2(T) = T and that ϊ2UI') = Π. Set τ' = <j2tfir. It is clear that τf{T)=-T and
7'(77) = 771 We shall show that under our assumption on τ 7' is the identical
transformation and therefore r' is an inner automorphism, which will prove
our lemma. Since 7'(77) = 77, 7 ' ( P ) = P and hence τf{h)E:P for l ίEP. On
the other hand, since τ' satisfies the same assumption as the one for τ, τ'(exph)
= exp (~τ'(h)) is conjugate to exp h. Thus by the properties of P, we must have
τf(h) = h for hE:P. Because P is an open domain and 7' is a linear trans-
formation, 7' is the identical transformation.

THEOREM 1. Let G be a compact connected group. An automorphism r is
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an inner automorphism, if {and obviously only if) it transforms every element
of G to its conjugate element.

Proof, There exists a family {ΛΓ

α} of normal subgroups in G such that
Ga = GIN* are compact connected Lie groups and that G is the Gα-adic limit
group of {Ga) G = lim G«β By our assumption, τ(NΛ) = NΛ and hence r induces
an automorphism r« in every group Ga. It is obvious that τ* satisfies the same
condition in Ga as the one for r in G. Applying the above lemma to τa and G«?

we see that τa is an inner automorphism. It follows that there exists a set M«
in G such that for any y e M*

τ(x) ~y~ιxy mod.JV«.

Then, it is easily verified that the family of sets iM*} has the finite inter-

section property. As G is compact, there exists an element v6 Γ)Ma, for which

we have

τix) ~y~ιχy mod. iV* for all a,

hence

τ(χ) = y~ιxy.

This proves that r is an inner automorphism.
Remark, This theorem is not true without connectedness of the group,

as was shown by W. Burnside [2].

By Peter-WeyΓs theorem* for any two elements x and y which are not con-
jugate to one another, there exists a representation of the group such that for
its character 7 we have X(x) *rX(y) From this, it is easily seen that Theorem
1 is equivalent to the following

THEOREM 1'. Let G be a compact connected group and τ an automorphism
of G, If for any representation D: x -> Dix), #G=G, the represe?ιtation Dx de-
fined by D~{x) - D{τ(x)) is equivalent to D9 then τ is an inner automorphism.

Ramark. In this form the theorem has been proved by M. Abe [1], mak-
ing use of the classification of simple Lie algebras.

Lei: G be a compact group and A(G) the group of all automorphisms of G.
Λ(G) is topoiogized by taking as the neighborhoods of the identity the sets of
the following form

U(F, V)=..{τ; τGA(G), τ(x)CxV for all

where F and V are respectively any compact set and any one of the neighbor-
hoods of the identity in G. This topology coincides with the one defined as fol-
lows, For any finite number of complex-valued continuous functions fu - - - - /»
on G and ε > 0. we take as a neighborhood of the identity the set
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U(fu. . ,/»:e) = {r; τ(ΞA(G). max \fi(x)-fi(τ(x))\<e for 2 = 1, . . . , Λ}.

/(G) denotes the closed normal subgroup of A(G) which consists of all inner
automorphisms of G.

We shall prove as an application of Theorem V the following theorem of
K. Iwasawa4^ in the case where the groups under considerations are conneced.

THEOREM 2. Let G be a compact connected group. Then A(G)/I(G) is

totally disconnected.

Proof. For the character Z of a representation of G, we put

A% = {τ;τGA(G),X(τ(x))=X(x) for #6ΞG}.

Then, as was shown in [3] p. 513. A% is an open subgroup of A(G). Theorem
V asserts that KG) = ΠAχ, where X runs over the characters of all represent-

χ

ations of G. This proves the theorem.

Supplementary Remarks to the Proof of Iwasawa's Theorem. Our method
in proving this theorem is in some sense a generalization of the one which is
used in [3] for the case where the groups are abelian. In the latter case, we
may transfer to the dual automorphisms in the dual group. In our case, we
have done this transference by means of Theorem V and the automorphisms
are considered modulo inner automorphisms as dual transformations between
characters. The second topology mentioned above in A{G) may be seen to be
the topology for these dual transformations. From these points of view, we
might have two hopes. First, we may desire to give a direct proof of Theo-
rem 1' without any help of.the structure of groups so as to make our discus-
sion completely depend on the dual transformations. The writers do not suc-
ceed to do so. Secondly, since the original proof in [3] is essentially owing
to the structure of groups, it might be desirable that the use of the second
topology in it is replaced by that of direct one, i.e., the first topology in A(G)
mentioned above. This is done as follows. Keeping the notations in the proofs
of Theorems 1 and 2, the point where the second topology is needed is in
showing the above quoted fact that A% is an open subgroup. We consider the
following subgroup Aa instead of Ay.,

Then, since GΛ = G/Na is a Lie group, there exists a sufficiently small neighbor-
hood V of the identity in G such that N*V does not contain any subgroup
larger than NΛ. Let a belong to the neighborhood U(Na9 V) in the first topology
of A(G). Then we have σ(NΛ)C.Na and, as G/σ(Na) and G/NΛ are isomorphic
Lie groups, σ(N*)=Na. This shows that U{Na, V)C.A*, and therefore that

4> Theorem 1 in [3] p. 509.
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Aa is an open subgroup. We may discuss hereafter just as in the original
proof in [3] making use of Aa in place of A%.
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