SOME REMARKS ON THE EXCEPTIONAL SIMPLE LIE GROUP $\mathfrak{F} 4$

YOZÔ MATSUSHIMA

1. Let \mathbb{C} be the Cayley algebra of dimension 8 over the field R of real numbers and let \mathfrak{Y} be the set of all 3×3 Hermitian matrices

$$
X=\left(\begin{array}{lll}
\xi_{1} & x_{3} & \bar{x}_{2} \tag{1}\\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \xi_{3}
\end{array}\right)
$$

with coefficients in 6. We define the multiplication in 3 by

$$
X \circ Y=\frac{1}{2}(X Y+Y X) .
$$

Then \mathfrak{F} becomes a distributive algebra over R. A non-singular linear transformation a of \mathfrak{F} is said to be an automorphism of \mathfrak{J}, if

$$
\alpha(X \circ Y)=\alpha X \circ \alpha Y
$$

for all $X, Y \in \mathfrak{Y}$. The group \mathfrak{N} of all the automorphisms of \mathfrak{Y} is compact and the connected component containing the identity of \mathfrak{A} is the exceptional simple compact group $\mathfrak{F}_{4}{ }^{1}{ }^{1}$, Denote by E_{i} the matrix (1) with $\xi_{i}=1$, all remaining terms zero. Let \mathfrak{y} be the subgroup of \mathfrak{d}_{4} consisting of all automorphisms α such that $\alpha E_{i}=E_{i}$ for $i=1,2,3$ and let $\mathscr{S}_{i}(i=1,2,3)$ be the subgroups of \mathfrak{F}_{4} consisting of all $\alpha \in \tilde{F}_{4}$ such that $\alpha E_{i}=E_{i}$. Then the left coset spaces $\tilde{\gamma}_{4} / \mathscr{F}_{i}$ are homomorphic to the set Π of all irreducible idempotents of \mathfrak{J} and Π is geometrically the "plan projectif des octaves.")

In this note we prove the following two theorems.
Theorem 1. \mathfrak{N} is connected and isomorphic to the universal covering group $\widehat{S O}(8)$ of the proper orthogonal group $\mathrm{SO}(8)$ of 8 dimensional euclidean space.

Theorem 2. $\oiint_{\text {i }}$ are connected and isomorphic to the universal covering group $\overparen{S O}(9)$ of the proper orthogonal group $\mathrm{SO}(9)$ of 9 dimensional euclidean space.

Theorem 2 gives a proof of a result anounced by A. Borel. ${ }^{3)}$
Received October 22, 1951.
${ }^{3)}$ See, Chevalley-Schafer [2] and Freudenthal [3].
${ }^{9}$) See, Freudenthal [3] $\$ 7$ and Hirsch [4].
${ }^{3)}$ See, Borel [1], Théorème 1.
2. Proof of Theorem 1. Let F_{i}^{a} be the matrix (1) with $x_{i}=a$ and all numbers except x_{i} zero. Then $E_{i} \circ F_{i}^{a}=0, E_{j} \circ F_{i}^{a}=\frac{1}{2} F_{i}^{\mathrm{a}}$ if $i \neq j$. Let $\alpha \in ?$. Then $E_{i} \circ \alpha F_{i}^{a}=0$ and $E_{j} \circ \alpha F_{i}^{a}=\frac{1}{2} \alpha F_{i}^{a}$. It follows that

$$
\alpha F_{i}^{a}=F_{i}^{\alpha_{i} a}, \quad(i=1,2,3)
$$

where α_{i} are the linear transformtions of (5.
Now $F_{i}^{a} \circ F_{i}^{b}=(a, b)\left(E_{j}+E_{k}\right){ }^{4)}$ where $\{i, j, k\}$ is a permutation of $\{1,2,3\}$, implies

$$
\left(\alpha_{i} a, \alpha_{i} b\right)=(a, b)
$$

Denote by $O(8)$ the group of all linear transformations of $(5$ which leave the positive definite bilinear form (a, b) invariant. (i.e. orthogonal transformations of (5.) Further $F_{1}^{2 x} \circ F_{2}^{2 y}=F_{3}^{2(\overline{x y)}}, F_{2}^{2 x} \circ F_{3}^{2 y}=F_{1}^{2(x y)}$ and $F_{3}^{2 x} \circ F_{1}^{2 y}=F_{2}^{2(\overline{x y})}$ imply

$$
\left\{\begin{array}{l}
\alpha_{1}(x) \alpha_{2}(y)=\kappa \alpha_{3}(x y) \tag{2}\\
\alpha_{2}(x) \alpha_{3}(y)=\kappa \alpha_{1}(x y) \\
\alpha_{3}(x) \alpha_{1}(y)=\kappa \alpha_{2}(x y)
\end{array}\right.
$$

where $\kappa \alpha_{i}(x)=\overline{\alpha_{i}(\bar{x})}$. Let γ be the orthogonal transformation of $(5$ defined by $\gamma x=\bar{x}$ for all $x \in \mathbb{U}$. Then $\kappa \alpha_{i}=\gamma \alpha_{i r}$ and $\alpha_{i} \rightarrow \kappa \alpha_{i}$ is an automorphism of $O(8)$. We shall show that $\alpha_{i} \in S O(8)$ i.e. det. $\alpha_{i}=1$.

Lemma 1. (Frinciple of Triality.) ${ }^{5)}$ For every $\theta \in S O(8)$, there exist θ_{1} and θ_{2} in $S O$ (8) such that

$$
\theta(x) \theta_{1}(y)=\theta_{2}(x y)
$$

for all $x, y \in\left(5\right.$. If there exist the other θ_{1}^{\prime} and θ_{2}^{\prime} in $S O(8)$ such that $\theta(x) \theta_{1}^{\prime}(y)$ $=\theta_{2}^{\prime}(x y)$, then $\theta_{1}^{\prime}= \pm \theta_{1}$ and $\theta_{2}^{\prime}= \pm \theta_{2}$. The same holds also, if we start from θ_{1} or θ_{2} instead of θ.

Lemma 2. Let θ_{i} be in $O(8)$ and let

$$
\begin{equation*}
\theta_{1}(x) \theta_{2}(y)=\kappa \theta_{3}(x y) \tag{3}
\end{equation*}
$$

for all $x, y \in\left(5\right.$. Then $\theta_{3}(x) \theta_{3}(y)=\kappa \theta_{1}(x y)$ and $\theta_{3}(x) \theta_{1}(y)=\kappa \theta_{2}(x y)$ for all $x, y \in(\%$.
Proof. Multiplying the both sides of (3) by $\overline{\theta_{1}(x)} /|x|^{2},{ }^{6)}$ we have

$$
\theta_{2}(y)=\frac{1}{|x|^{2}} \overline{\theta_{1}(x)} \overline{\theta_{3}(x y)}
$$

[^0]Analogously we have

$$
-\frac{1}{|y|^{2}} \theta_{2}(y) \cdot \theta_{3}(\bar{y} \bar{x})=\overline{\theta_{1}(x)} .
$$

Let $\bar{x}=y z$. Then

$$
\frac{1}{|\bar{y}|^{2}} \theta_{2}(y) \theta_{3}(\bar{y}(y z))=\overline{\theta_{1}(\overline{y z})} .
$$

Hence $\theta_{2}(y) \theta_{3}(z)=\kappa \theta_{3}(y z)$.
Lemma 3. Let $\theta_{i} \in O(8)(i=1,2,3)$ and $\theta_{1}(x) \theta_{2}(y)=\kappa \theta_{3}(x y)$ for all $x, y \in \mathbb{K}$. Then $\theta_{i} \in S O(8)(i=1,2,3)$.

Proof. Suppose that θ_{1} is not in $S O$ (8). For every $\eta_{1} \in S O$ (8), there exist η_{2} and η_{3} in $S O(8)$ such that

$$
\eta_{1} \theta_{1}(x){r_{2} \theta_{2}(y)=\kappa \eta_{3} \cdot \kappa \theta_{3}(x y)=\kappa\left(\eta_{3} \cdot \theta_{3}\right)(x y) ~}_{\text {. }}
$$

Let us choose η_{1} such that $\eta_{1} \theta_{1}=\gamma$, where $\gamma x=\bar{x}$ for all $x \in($. Then

$$
\begin{equation*}
\bar{x} \bar{x}_{2}(y)=\kappa \zeta_{3}(x y) \tag{4}
\end{equation*}
$$

for all $x, y \in \mathbb{C}$, where $\zeta_{2}=r_{2} \theta_{2}$ and $\zeta_{3}=r_{2} \theta$. Putting $x=1$ in (4), we have $\zeta_{2}(y)$ $=\kappa \zeta_{3}(y)$. Hence $\zeta_{2}=\kappa \zeta_{3}$ and

$$
\begin{equation*}
\bar{x} \zeta_{2}(y)=\zeta_{2}(x y) . \tag{5}
\end{equation*}
$$

Putting $y=1$ in (5), we have

$$
\begin{equation*}
\zeta_{2}(x)=\bar{x} \zeta_{2}(1) . \tag{6}
\end{equation*}
$$

Let $\zeta_{2}(1)=a$. Then $a \neq 0$. It follows from (5), and (6) that $\bar{x}(\bar{y} a)=(\bar{y} \bar{x}) a$. Hence $x(y a)=(y x) a$ for all $x, y \in \mathbb{S}$. It follows that $a=0$ and this is a contradiction. Hence $\theta_{1} \in S O(8)$. We may prove analogously that θ_{2} and θ_{3} are also in $S O(8)$.

Thus $\alpha_{i}(i=1,2,3)$ in (2) are in $S O(8)$. Thus if $\alpha \in \mathfrak{R}$, then

$$
\alpha X=\left(\begin{array}{ccc}
\xi_{1} & \alpha_{2}\left(x_{3}\right) & \kappa \alpha_{2}\left(\bar{x}_{2}\right) \tag{7}\\
\kappa \alpha_{3}\left(\bar{x}_{3}\right) & \xi_{2} & \alpha_{1}\left(x_{1}\right) \\
\alpha_{2}\left(x_{2}\right) & \kappa \alpha_{1}\left(\bar{x}_{1}\right) & \xi_{3}
\end{array}\right),
$$

where X is the matrix (1) and α_{i} 's satisfy the relations (2).
Conversely let α_{1} be an arbitrary element in $S O(8)$ and let α_{2} and α_{3} be the elements in $S O(8)$ such that $\alpha_{1}(x) \alpha_{2}(y)=\kappa \alpha_{3}(x y)$ for all $x, y \in \mathbb{C}$ (cf. Lemma 1). Then the relations (2) hold for these α_{i} 's by Lemma 2. Now we define the linear transformation $\alpha\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ of \Im by (7). For every $\alpha_{1} \in S O(8)$ we have thus two linear transformations $\alpha\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and $\alpha\left(\alpha_{1},-\alpha_{2},-\alpha_{3}\right)$ (cf. Lemma 1). We may easily verify that these linear transformations are the automorphisms of \mathfrak{S} and form a closed subgroup \mathfrak{M} of the group \mathfrak{A} of all automorphisms of $\mathfrak{3}$. It is clear that every automorphism in \mathfrak{M} leaves fixed the
elements $E_{i}(i=1,2,3)$ and $\mathfrak{M} \cong \mathfrak{M}$. The mapping $f_{1}\left(\alpha\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\right)=\alpha_{1}$ is a homomorphism of \mathfrak{M} onto $S O(8)$ and the kernel of f_{1} consists of $\alpha(1,1,1)$ and $\alpha(1,-1,-1){ }^{7}$ Let \mathfrak{M}_{0} be the connected component of \mathfrak{M} containing the identity. Then $f_{1}\left(\mathfrak{M}_{0}\right)=S O(8)$. Since $f_{1}^{-1}\left(\alpha_{1}\right)=\left\{\alpha\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right), \alpha\left(\alpha_{1},-\alpha_{2},-\alpha_{3}\right)\right\}$, at least one of $\alpha\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and $\alpha\left(\alpha_{1},-\alpha_{2},-\alpha_{3}\right)$ is in \mathfrak{M}_{0}. We shall prove that $\mathfrak{M}=\mathfrak{M}_{0}$. Suppose, on the contrary, that $\mathfrak{M} \neq \mathfrak{M} l_{0}$. Since $\mathfrak{M}_{0} \cup \alpha(1,-1,-1) \mathfrak{M}_{0}$ $=\mathfrak{M}, \mathfrak{M}$ consists of two connected components and $\alpha(1,-1,-1) \bar{\in} \mathbb{M}_{0}$. Now $\alpha(-1,1,-1)$ and $\alpha(-1,-1,1)$ belong to the distinct components of \mathfrak{M}, for otherwise $\alpha(-1,1,-1) \alpha(-1,-1,1)=\alpha(1,-1,-1)$ is in \mathfrak{M}_{0}. Let, for example, $\alpha(-1,-1,1) \in \mathfrak{M}_{0}$. Let $f_{3}\left(\alpha\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)\right)=\alpha_{3}$. Then f_{3} is also a homomorphism of \mathfrak{M} onto $\mathrm{SO}(8)$ and the kernel of f_{3} is $\{\alpha(1,1,1), \alpha(-1,-1,1)\}$. Hence f_{3} is a local isomorphism and $f_{3}\left(\mathfrak{M}_{0}\right)=S O$ (8). By assumption the kernel of f_{3} is contained in \mathfrak{M}_{0} and hence $\mathfrak{M}=\mathfrak{M}_{0}$ and this is a contradiction. Hence $\mathfrak{M}=\mathfrak{M}_{0}$. Moreover we have shown that \mathfrak{M} is a two sheeted covering group of $S O(8)$. Hence \mathfrak{M} is isomorphic to the universal covering group $\overparen{S O}(8)$ of $S O(8)$. Since \mathfrak{M} is connected, \mathfrak{M} is contained in \mathfrak{F}_{4} and each automorphism in \mathfrak{M} leaves fixed
 have $\mathfrak{M}=\mathfrak{N}$ and this completes the proof of Theorem 1.
3. Proof of Theorem 2. Since the subgroups \mathscr{F}_{i} of \mathscr{F}_{1} are conjugate to each other in $\mathscr{F}_{4}{ }^{8}$, ${ }^{\text {g }}$ it is sufficient to consider the group \mathscr{F}_{1}. The derivation δ of \mathfrak{J} such that $\delta E_{1}=0$ may be represented uniquely as the sum of two derivations

$$
\delta=\tilde{A}+\Delta
$$

where $\Delta E_{i}=0(i=1,2,3)$ and

$$
A=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & a \\
0 & -\bar{a} & 0
\end{array}\right), \quad a \in \mathbb{E},
$$

and $\widetilde{A} X=[A, X]=A X-X A$. Conversely for each such a metrix A, \tilde{A} is a derivation of \Im such that $\tilde{A} E_{1}=0 .{ }^{9}$) Since Δ 's form the Lie algebra of the group $\Re, \operatorname{dim} .\{\Delta\}=28$ and $\operatorname{dim} .\{\tilde{A}\}=8$, where $\{\Delta\}$ and $\{\tilde{A}\}$ denote the linear spaces consisting of Δ 's and \widetilde{A} 's respectively. Hence the derivations which maps E_{1} to 0 form a Lie algebra of dimensions 36 and this is the Lie algebra of \mathscr{K}_{1}. Hence dim. $\mathfrak{y}=36$. Now let Π be the set of all irreducible idempotents of \mathfrak{J}^{101} Further let Π_{1} be the set of all $X \in \Pi$ such that $E_{1} \circ X=0$. Then an element $X \in \mathfrak{F}$ is in Π_{1} if and only if

[^1]\[

X=\left($$
\begin{array}{ccc}
0 & 0 & 0 \tag{8}\\
0 & \xi_{2} & x_{1} \\
0 & \overline{x_{1}} & \xi_{3}
\end{array}
$$\right),
\]

where $\xi_{2}=\xi_{2}^{2}+x_{1} \bar{x}_{1}, \xi_{2}+\xi_{3}=1$. Then $\xi_{3}=\xi_{3}^{2}+x_{1} \bar{x}_{1}$. Hence $1=\xi_{2}^{2}+\xi_{3}^{2}+2 x_{1} \bar{x}_{1}$. Now the bilinear form $(X, Y)=S p(X \circ Y)$ defined on \mathfrak{J} is positive definite and invariant under the transformations of $\mathscr{F}_{4}^{11)}$ Let $\|X\|^{2}=(X, X)$. If X is the matrix (1), then $\|X\|^{2}=\sum_{i=1}^{3} \xi_{i}+2 \sum_{i=1}^{3} x_{i} \bar{x}_{1}$. Hence if $X \in \Pi_{1}$, then $\|X\|=1$. Now let \Im_{1} be the 10 dimensional linear subspace of \mathcal{J} consisting of the matrices of the form (8), and let S^{9} be the set of all $X \in \mathfrak{F}_{1}$ such that $\|X\|=1$. Then S^{9} is a 9 dimensional sphere and Π_{1} is the intersection of S^{9} and the hyper-plane $\xi_{2}+\xi_{3}=1$ in \mathfrak{F}_{1}. Hence Π_{1} is an 8 dimensional sphere. Let $\alpha \in \xi_{1}$. Then $\alpha\left(E_{1} \circ X\right)=E_{1} \circ \alpha X$, hence $\alpha\left(\Pi_{1}\right)=\Pi_{1}$. Thus α induces a transformation R_{α} of the sphere Π_{1}. Since α is an orthogonal transformation of \mathfrak{Y}, R_{α} is an isometric transformation of Π_{1} and hence a (proper or improper) rotation. Thus $g(\alpha)=R_{\alpha}$ is a homomorphism of \mathfrak{g}_{1} into the group $O(9)$. Let \mathfrak{D} be the kernel of g. Since each $\alpha \in \mathscr{D}$ leaves fixed the elements E_{i}, α is contained in \Re. Hence $\alpha(\in \mathscr{D})$ is of the form $\alpha=\alpha\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ (see $\S 1$) and

$$
\alpha X=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi_{2} & \alpha_{1}\left(x_{1}\right) \\
0 & \kappa \alpha_{1}\left(\overline{x_{1}}\right) & \xi_{3}
\end{array}\right)=X
$$

for all $X \in \Pi_{1}$. We see easily that $\alpha_{1}=1$ and hence \mathfrak{D} is the finite group of order 2 . Since dim. $\mathfrak{g}_{1}=\operatorname{dim} . O(9)=36$, the component \mathfrak{g}_{1}^{0} containing the identity is mapped by g onto $S O(9)$. As $\mathfrak{S}_{1}^{0} \supset \mathfrak{N} \supset \mathfrak{D}$ by Theorem 1 , \mathfrak{S}_{1}^{0} is a two-sheeted covering group of $S O$ (9) and hence it is isomorphic to the universal covering group $\overparen{S O(9)}$ of $S O(9)$. We may easily see that if $\mathscr{F}_{1} \neq \mathfrak{F}_{1}^{0}$, then the order of the group $\mathscr{F}_{1} / \mathfrak{S}_{1}^{0}$ is 2 and $g\left(\mathscr{F}_{1}\right)=O(9)$. Now the mapping

$$
X \rightarrow R X=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \xi_{3} & x_{1} \\
0 & \bar{x}_{1} & \xi_{2}
\end{array}\right)
$$

is an improper rotation of the sphere Π_{1}. If $\mathscr{\oiint}_{1} \neq \mathscr{S}_{1}^{0}$, there exists $\alpha \in \mathscr{F}_{1}$ such that $\alpha X=R X$ for all $X \in I_{1}$. Then $\alpha E_{1}=E_{1}, \alpha E_{2}=E_{3}$ and $\alpha E_{3}=E_{2}$. Since $g\left(\mathfrak{\xi}_{1}^{0}\right)=S O(9)$ and $S O(9)$ is transitive on Π_{1}, there exists $\beta \in \mathfrak{g}_{1}^{0}$ such that $\beta E_{2}=E_{3}$. $\beta\left(E_{1} \circ E_{3}\right)=E_{1} \circ \beta E_{3}=0, \beta\left(E_{2} \circ E_{3}\right)=E_{3} \circ \beta E_{3}=0$ and $\beta E_{3} \circ \beta E_{3}=\beta E_{3}$ imply $\beta E_{3}=E_{2}$. Then $\beta^{-1} \alpha E_{i}=E_{i}$ for $i=1,2,3$. Thus $\beta^{-1} \alpha \in \mathbb{R} \cap \mathfrak{F}_{1}^{0}$. Hence $\alpha \in \mathfrak{g}_{1}^{0}$ and this is a contradiction. Thus \mathscr{F}_{1} is connected and isomorphic to $\overparen{S O(9)}$.

Remark. The group of all automorphisms of \mathfrak{J} is not connected. For example,

[^2]\[

X=\left($$
\begin{array}{lll}
\hat{\xi}_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & \xi_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & \hat{\xi}_{3}
\end{array}
$$\right) \rightarrow \alpha X=\left($$
\begin{array}{lll}
\hat{\xi}_{1} & x_{2} & \bar{x}_{3} \\
\bar{x}_{2} & \xi_{3} & x_{1} \\
x_{3} & \bar{x}_{1} & \xi_{2}
\end{array}
$$\right)
\]

is an automorphism of $\mathfrak{J} . \alpha$ is an improper orthogonal transformation of $\mathfrak{\zeta}$ and hence $\alpha \bar{\in} \mathscr{F}_{4}$.

References

[1] Borel, A., Le plan projectif des octaves et les sphères comme espaces homogènes, C. R. Paris, (1950).
[2] Chevalley, C. and Schafer, R. D., The exceptional simple Lie algebras F_{4} and E_{6}, Proc. Nat. Acad. Sci. U.S.A. 36 (1950).
[3] Freudenthal, H., Oktaven, Ausnahmegruppen und Oktavengeometrie, Mathematisch Instituut der Rijksuniversiteit te Utrecht, (1951).
[4] Hirsch, G., La géométrie projective et la topologie des espaces fibrés, Colloque international de topologie algebrique, Paris, (1947).

Mathematical Institute,
 Nagoya University

[^0]: 4) The positive definite bilinear form (a, b) on \mathbb{C} is defined by $(a, b)=\operatorname{Re}(a b)$, where $R e x=\frac{1}{2}(x+\bar{x})$.
 ${ }^{5}$) See, Freudenthal [3] p. 16.
 5) $|x|^{2}=(x, x)=x \cdot \bar{x}=\bar{x} \cdot x$. In the following proof, we use the formulae $|\bar{x}|=|x|,|x y|$ $=|\because||y|, \bar{x}(x a)=(\bar{x} x) a$ and $(a \bar{x}) x=a(\bar{x} x)$. See, Freudenthal [3] p. 7.
[^1]: ?) We denote by 1 and -1 the identity transformation and the transformation defined by $x \rightarrow-x$ respectively.
 ${ }^{8)}$ For, there exist α and β in \mathfrak{F}_{4} such that $\alpha E_{1}=E_{2}$ and $\beta E_{1}=E_{3}$. See, Freudenthal [3] p. 27. This fact is also proved in the following.
 ${ }^{9)}$ Chevalley-Schafer [2] and Freudenthal [3] p. 20.
 ${ }^{10)}$ See, Freudenthal [3] §5. Note that the set Π is invariant under the transformations of \mathfrak{F}_{4}.

[^2]: j) See, Freudenthal [3], §4.

