ON THE IMBEDDING PROBLEM OF NORMAL ALGEBRAIC NUMBER FIELDS

EIZI INABA

Let G and H be finite groups. If a group \bar{G} has an invariant subgroup \bar{H}, which is isomorphic with H, such that the factor group \bar{G} / \bar{H} is isomorphic with G. then we say that \bar{G} is an extension of H by G. Now let G be the Galois group of a normal extension K over an algebraic number field k of finite degree. The imbedding problem concerns us with the question, under what conditions K can be imbedded in a normal extension L over k such that the Galois group of L over k is isomorphic with \bar{G} and K corresponds to \bar{H}. Brauer connected this problem with the structure of algebras over k, whose splitting fields are isomorphic with K. Following his idea, Richter investigated its local aspect using the norm theorem in the class field theory. Considering the case, where G is a p-group and the order of K is p, Scholz, Reichardt, and Tannaka succeeded to construct a normal extension over k, whose Galois group is a given p-group with $p \neq 2$. Scholz also solved the case, where G and H are both abelian. In spite of the efforts of these mathematicians the general case remains in a situation very difficult to approach. In the present paper we shall investigate the case, where G is arbitrary and H abelian of type (p, \ldots, p) for a prime number p. In view of the fact, that every solvable group has a chief series $\left\{G_{i}\right\}$ such that the factor groups G_{i} / G_{i+1} are abelian of type (p, \ldots, p), the following investigation shall be available for the construction of normal extensions with solvable groups.

In the following we identify \bar{H} with H. Let $g_{s} \in \bar{G}$ be a representative of the coset, which corresponds to $s \in G$. We denote with $s h$ the element $g_{s} h g_{s}^{-1}$ $\in H$, which is uniquely determined for $s \in G$ and $h \in H$ irrespective of the choice of g_{s} from the coset. H becomes a G-module by this operation and yields a representation A of G. If the rank of H is n, then every element in H can be regarded as an n-dimensional vector, whose components are integers mod. p. If it corresponds a matrix $\Lambda(s)$ for $s \in G$ in the representation A, then $s h=\Lambda(s) h$. From $g_{s} g_{t}=A(s, t) g_{s t}$ with $A(s, t) \in H$ it follows

$$
\begin{equation*}
A(s, t)+A(s t, u)=A(s, t u)+\Lambda(s) A(t, u), \tag{1}
\end{equation*}
$$

where $A(s, t)$ is called the factor set of the extension \bar{G} of H by G. If we take $g_{s}^{\prime}=B(s) g_{s}$ with $B(s) \in H$ in place of g_{s}, then we have a factor set $A^{\prime}(s, t)$, which

[^0]is equivalent to $A(s, t)$, and
$$
A^{\prime}(s, t)=A(s, t)+B(s)-B(s t)+A(s) B(t) .
$$

The transformation of the basis of H gives rise to a representation $D A D^{-1}$, which is equivalent with Λ. In this case we obtain the factor set $D A(s, t)$ in place of $A(s, t)$. It is well known that the extension of H by G is uniquely determined up to isomorphism by the class of representations and the class of factor sets.

Now let S be a subgroup of G. If there exists $B(\sigma) \in H$ for every $\sigma \in S$ such that

$$
A(\sigma, \tau)=B(\sigma)-B(\sigma \tau)+A(\sigma) B(\tau)
$$

for every $\sigma, \tau \in S$, then we say that $A(s, t)$ splits relative to S. In this case $A(s, t)$ is equivalent to a factor set $A^{\prime}(s, t)$ such that $A^{\prime}(\sigma, \tau)=0$ for every σ, $\tau \in S$.

Lemma. v being any fixed element in $G, A(v) A\left(v^{-1} s v, v^{-1} t v\right)$ is a factor set, which is equivalent to $A(s, t)$.

This lemma can be easily verified, if we choose $g_{s}^{\prime}=g_{v} g_{v-1 s v} g_{v}^{-1}$ as the representative of the coset $g_{s} H$ in place of g_{s}. From this lemma we have readily

Theorem 1. If $A(s, t)$ splits relative to S, then it splits also relative to any conjugate subgroup $v^{-1} S v$ of S.

Theorem 2. Let S be a p-Sylow subgroup of G. If $A(s, t)$ splits relative to S, then it splits relative to G. Two factor sets are equivalent to each other, if their difference splits relative to S.

Proof. Let $t_{i} S, i=1, \ldots, r$, be all left cosets of S in G. We can assume that $A(\sigma, \tau)=0$ for every $\sigma, \tau \in S$ and $A\left(t_{i}, \sigma\right)=0, i=1, \ldots, r$, for every $\sigma \in S$, if we put $g_{t_{\imath} \sigma}=g_{t_{i}} g_{\sigma}$. Since we have from (1) $A(s, \sigma)=0$ for every $\sigma \in S$ and $s \in G$, it follows $A(s, t)=A(s, t \sigma)$ from (1). If we put

$$
B(u)=\sum_{i=1}^{r} A\left(u, t_{i}\right)
$$

for every $u \in G$, then $B(u)$ is determined uniquely irrespective of the choice of the representatives t_{i} in the cosets $t_{i} S$. Then we have from (1)

$$
B(u)-B(u v)+\Lambda(u) B(v)=r A(u, v)
$$

for every $u, v \in G$. Since the index r of S is prime to $p, A(u, v)$ splits relative to G.

By this theorem we see that the extension \bar{G} is completely determined by the representation Λ and the part of the factor set for a p-Sylow subgroup S. When in particular the order of G is prime to p, then \bar{G} is determined completely by A. Next we consider the case, where A is irreducible. This means that the
G-module H is irreducible, i.e. H has no proper subgroup, which is an invariant subgroup of \bar{G}. In this case the extension \bar{G} is called irreducible. When \bar{G} is not irreducible, it can be obtained by repeating irreducible extensions. In fact, choose an irreducible G-submodule H_{1} of H. Then \bar{G} becomes an irreducible extension of. H_{1} by \bar{G} / H_{1} and \bar{G} / H_{1} an extension of H / H_{1} by G, and so forth. Now let \bar{S} be the subgroup of \bar{G}, which corresponds to S in the natural homomorphism $\bar{G} \rightarrow G$. By a theorem on finite groups it follows that the intersection of H and the center of \bar{S} has a vector, which is different from zero, since \bar{S} is a p-group. Consequently there exists $h \neq 0$ in H, such that $\sigma h=h$ for every $\sigma \in S$. The submodule of H, which is generated by $t_{i} h, i=1, \ldots, r$, is a G module and hence is identified with H, since H is an irreducible G-module. Then we can assume that $t_{1} h, \ldots, t_{n} h$ form a basis of H, where $n \leqq r$. If in particular S is invariant, then H becomes a G / S-module and yields an irreducible representation A of the factor group G / S.

Every element $u \in G$ induces a permutation of all left cosets $t_{i} S$ with $u t_{i} S$ $=t_{i(u)} S$ and hence a permutation $i \rightarrow i(u)$ of indices i with $i(u v)=i(v)(u)$. Let the matrix $\Lambda_{0}(u)=\left(\lambda_{i j}(u)\right)$ be determined such that $\lambda_{i j}(u)=1$, if $i=j(u)$, and $\lambda_{i j}(u)=0$, if $i \neq j(u)$. Then $A_{0}(u)$ yields a representation Λ_{0} of G, which is induced by the identical representation of S. If in particular S is invariant, then A_{0} is the regular representation of the factor group G / S. We can assume that t_{1} is the identity of G and, putting

$$
h_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) \text {, }
$$

we have

$$
h_{i}=t_{i} h_{1}=A_{9}\left(t_{i}\right) h_{1}=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right) .
$$

We denote with H_{0} the G-module, which is gererated by $h_{i}, i=1, \ldots, r$. An extension \bar{G}_{0} of H_{0} by G with the representation A_{0} shall be called regular. The following theorem asserts that every irreducible extension can be obtained by means of a certain regular extension, if S is invariant.

Theorem 3. Let \bar{G} be an irreducible extension of H by G. If the p-Sylow subgroup S of G is invariant, then there exists a regular extension \bar{G}_{0} of H_{0} by G and a submodule \bar{H} of H_{0}, such that \bar{G} is isomorphic with \bar{G}_{0} / \bar{H} and H corresponds to H_{0} / \bar{H}.

Proof. Since the order of G / S is prime to p, its regular representation Λ_{0}
is completely reducible. There exists a submodule H_{1} of H_{0} with $H_{0}=H_{1}+H_{2}$, such that H is operator-isomorphic with H_{1}. If Λ is the irreducible representation of G by H, then we have

$$
D A_{0} D^{-1}=\left(\begin{array}{cc}
\Lambda & 0 \\
0 & X
\end{array}\right)
$$

Let $A(s, t)$ be the factor set of the extension \bar{G}. Putting

$$
A(s, t)=\left(\begin{array}{c}
a_{1}(s, t) \\
\vdots \\
a_{n}(s, t)
\end{array}\right)
$$

we consider the r-dimensional vector

$$
\bar{A}(s, t)=\left(\begin{array}{c}
a_{1}(s, t) \\
\vdots \\
a_{n}(s, t) \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Then this becomes a factor set for the representation $D A_{0} D^{-1}$ and yields a regular extension \bar{G}_{0} of H_{0} by G. The factor group \bar{G}_{0} / H_{2} is now an extension of H_{0} / H_{2} by G, where H_{0} / H_{2} is isomorphic with H. Its factor set can be identified with $A(s, t)$, the representation being Λ. Hence \bar{G} is isomorphic with \bar{G}_{0} / H_{2} and H corresponds to H_{0} / H_{2}.

If S is invariant, then $\Lambda(\sigma)$ is the unit matrix for every $\sigma \in S$. Hence every component $a(\sigma, \tau)$ of the factor set $A(\sigma, \tau)$ for an irreducible extension satisfies the relation

$$
\begin{equation*}
a(\sigma, \tau)+a(\sigma \tau, \varphi)=a(\sigma, \tau \varphi)+a(\tau, \varphi) \tag{2}
\end{equation*}
$$

for $\sigma, \tau, \varphi \in S$. This is also satisfied by every component of the factor set for a regular extension, since $\Lambda_{0}(\sigma)$ is the unit matrix for $\sigma \in S$. From the preceding lemma we have

$$
\Lambda_{0}\left(t_{i}\right) A\left(t_{i}^{-1} \sigma t_{i}, t_{i}^{-1} \tau t_{i}\right)=A(\sigma, \tau)+B(\sigma, i)-B(\sigma \tau, i)+\Lambda_{0}(\sigma) B(\tau, i) .
$$

If we consider only the i-th components, then this implies

$$
a_{1}\left(t_{i}^{-1} \sigma t_{i}, t_{i}^{-1} \tau t_{i}\right)=a_{i}(\sigma, \tau)+b_{i}(\sigma, i)-b_{i}(\sigma \tau, i)+b_{i}(\tau, i) .
$$

Now, putting

$$
A^{\prime}(\sigma, \tau)=\left(\begin{array}{c}
a_{1}\left(t_{1}^{-1} \sigma t_{1}, t_{1}^{-1} \tau t_{1}\right) \\
\vdots \\
a_{1}\left(t_{r}^{-1} \sigma t_{r}, t_{r}^{-1} \tau t_{r}\right)
\end{array}\right), \quad B^{\prime}(\sigma)=\left(\begin{array}{c}
b_{1}(\sigma, 1) \\
\vdots \\
b_{r}(\sigma, r)
\end{array}\right),
$$

we have

$$
A^{\prime}(\sigma, \tau)=A(\sigma, \tau)+B^{\prime}(\sigma)-B^{\prime}(\sigma \tau)+A_{0}(\sigma) B^{\prime}(\tau)
$$

for $\sigma, \tau \in S$. If we choose $B^{\prime}(s)$ arbitrarily, when s does not belong to S, then we can extend $A^{\prime}(\sigma, \tau)$ to a factor set $A^{\prime}(s, t)$, which is equivalent to $A(s, t)$ by theorem 2, such that

$$
A^{\prime}(s, t)=A(s, t)+B^{\prime}(s)-B^{\prime}(s t)+A_{0}(s) B^{\prime}(t)
$$

The vectors $A^{\prime}(\sigma, \tau)$ can be determined only by the values of the first components $a_{1}(\sigma, \tau)$ of $A(\sigma, \tau)$ for all $\sigma, \tau \in S$. The set of values $a_{1}(\sigma, \tau)$ is called the fundamental component of the factor set for the regular extension and denoted with $a(\sigma, \tau)$ in place of $a_{1}(\sigma, \tau)$. We say that two fundamental components $a(\sigma, \tau)$ and $a^{\prime}(\sigma, \tau)$ are equivalent, if there exist integers $b(\sigma)$ mod. p such that

$$
a^{\prime}(\sigma, \tau)=a(\sigma, \tau)+b(\sigma)-b(\sigma \tau)+b(\tau)
$$

for all $\sigma, \tau \in S$. Two fundamental components yield a same regular extension up to isomorphism, if and only if they are equivalent. We suppose that it holds

$$
D . A_{0} D^{-1}=\left(\begin{array}{cccc}
\Lambda_{1} & 0 & \cdots & 0 \\
0 & \Lambda_{2} & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \Lambda_{m}
\end{array}\right)
$$

where A_{i} are irreducible. Then the factor set $D A^{\prime}(\sigma, \tau)$ decomposes into $A_{i}(\sigma, \tau)$, $i=1, \ldots, m$, where $A_{i}(\sigma, \tau)$ is referred to Λ_{i} respectively. We observe that the fundamental component $a(\sigma, \tau)$ of a regular extension is a linear combination of components of factor sets of all irreducible extensions, which can be obtained from the regular extension. Conversely every such irreducible extension is completely determined by Λ_{i} and $a(\sigma, \tau)$. We say that each irreducible extension, which can be obtained by $a(\sigma, \tau)$, is referred to $a(\sigma, \tau)$.

We shall now pass to the imbedding of a normal extension K over k, whose Galois group is G. Let Ω be the subfield of K, which corresponds to the p-Sylow subgroup S of G. We assume that k contains a primitive p-th root ζ of unity. If $a(\sigma, \tau)$ is a fundamental component of the factor set for a regular extension, then the $a(\sigma, \tau)$-th powers of ζ become a factor set with respect to S and K by virtue of (2). If $a(\sigma, \tau)$ and $\boldsymbol{a}^{\prime}(\sigma, \tau)$ are equivalent, then they yield associated factor sets with respect to S and K. If there exists $\xi_{0} \in K$ such that the $a(\sigma$, $\tau)$-th power of ζ is equal to $\sigma\left(\xi_{\tau}\right) \tilde{\xi}_{\sigma \tau}^{-1} \xi_{\sigma}$ for all σ, τ from S, then we say that it splits.

Theorem 4. Suppose that k contains a primitive p-th root ζ of unity and the p-Sylow subgroup S of G is invariant. The necessary and sufficient condition, under which the imbedding of K for every irreducible extension by G referred to a fundamental component $a(\sigma, \tau)$ is possible, is that the factor set $\zeta^{a(\sigma, \tau)}$ with respect to S and K splits.

First we shall prove that the condition is necessary. Let \bar{G} be an irreducible extension of H by G with the fundamental component $a(\sigma, \tau)$ and the Galois group of L over k be \bar{G}, where K corresponds to H. We choose $h \in H$ such that $t_{1} h, \ldots, t_{n} h$ constitute a basis of H, where $\sigma h=h$ for all $\sigma \in S$. To the subgroup H_{i} of H, which is generated by all elements of the basis except $t_{i} h$, corresponds a subfield $L_{i}=K\left(\sqrt[b]{\alpha_{i}}\right)$ of L with $\alpha_{i} \in K$. We can assume that $t_{i} h$ induces the automorphism of L_{i} with $\sqrt[p]{\alpha_{i}} \rightarrow \zeta \sqrt{\alpha_{i}}$. An automorphism g_{o} of L over k induces $\beta \rightarrow \sigma(\beta)$ for $\beta \in K$. Since H_{i} is an invariant subgroup of \bar{S}, the field L_{i} is normal over Ω. Hence we have $g_{0}\left(\sqrt[म]{\alpha_{i}}\right)=\sqrt[\downarrow]{\alpha_{i}} \xi_{0}$ with $\xi_{\sigma} \in K$. Now let $g_{0} g_{\tau}=A(\sigma, \tau) g_{0 \tau}$ with $A(\sigma, \tau) \in H$ and $a_{i}(\sigma, \tau)$ be the i-th component of $A(\sigma, \tau)$. Then the automorphism $A(\sigma, \tau)$ induces

$$
\sqrt[p]{\alpha_{i}} \rightarrow \zeta^{a_{i}(0, \tau)} \sqrt{\alpha_{i}} .
$$

It follows then from $g_{0} g_{\tau}\left(\sqrt[p]{\alpha_{i}}\right)=A(\sigma, \tau) g_{o \tau}\left(\sqrt[\downarrow]{\alpha_{i}}\right)$ the relation

$$
\sqrt[p]{\alpha_{i}} \xi_{0} \cdot \sigma\left(\xi_{\tau}\right)=\zeta^{a_{i}(\rho, \tau)} \sqrt{\alpha_{i}} \overline{\xi_{0 \tau}} .
$$

Hence the $a_{i}(\sigma, \tau)$-th power of ζ splits. Since $a(\sigma, \tau)$ is a linear combination of all components $a_{i}(\sigma, \tau)$ for all irreducible extensions, which are referred to $a(\sigma, \tau)$, we can readily see that the $a(\sigma, \tau)$-th power of ζ splits.

Next we prove that the condition is sufficient. By Speiser's theorem we have $\xi_{\sigma}^{p}=\alpha^{\sigma-1}$ with $\alpha \in K$ for all $\sigma \in S$. We choose a prime ideal q in Ω with degree one, such that q is prime to all conjugates of α and does not ramify in K. Choose a number c in Ω under following conditions: (1) c is divisible by q and not divisible by the square of q, (2) c is prime to all conjugate prime ideals of q except q. Putting $\alpha c=\beta$ we have $\beta^{\sigma-1}=\xi_{\sigma}^{p}$. We put $\beta_{i}=t_{i}(\beta)$ and $\gamma=\Pi \beta_{i}{ }^{i}$, where c_{i} are rational integers. Then γ becomes a p-th power of a number in K, if and only if all c_{i} are divisible by p. Now let L be a field generated over K by adjoining ali numbers $\sqrt[\downarrow]{\sqrt{\beta}}, i=1, \ldots, r$. The extension L is normal over k and abelian over K with the Galois group H_{0}, which is abelian of type (p, \ldots, p) and of rank r. H_{0} has a basis h_{1}, \ldots, h_{r}, where h_{i} induces
 for $u \in G$ with $\varphi \in S$. we choose the automorphism g_{u} of L / k with

$$
\stackrel{d}{\sqrt[\beta_{i}]{ } \rightarrow t_{i(u)}\left(\xi_{\varphi}\right) 中^{\neq} \overline{\beta_{i(u)}} .}
$$

Then we can readily see that it holds $g_{u} h_{i} g_{u}^{-1}=h_{i, u)}$ and hence H_{0} yields the
representation A_{0}. Also it is easily verified that we obtain $g_{o g_{\tau}}=A(\sigma, \tau) g_{\sigma \tau}$, where $A(\sigma, \tau)$ is a product of $a\left(t_{i}^{-1} \sigma t_{i}, t_{i}^{-1} \tau t_{i}\right)$-th powers of $h_{i}, i=1, \ldots, r$. Therefore the Galois group of L over k is the regular extension of H_{0} by G with the fundamental component $a(\sigma, \tau)$. The imbedding is now possible for every irreducible extension referred to $a(\sigma, \tau)$ by Galois theory and theorem 3 .

Corollary. If the order of G is prime to p and k contains a primitive p-th root ζ of unity, then the imbedding of K is possible for every irreducible extension of H by G.

The case, where a p-Sylow subgroup of G is not invariant, is rather complicated and seems difficult to obtain a simple condition, under which the imbedding is possible.

References

[1] R. Brauer, Über die Konstruktion der Schiefkörper, die von endlichem Rang in bezug auf ein gegebenes Zentrum sind. J. reine angew. Math. 168 (1932).
[2] H. Reichardt, Konstruktion von Zahlkörpern mit gegebener Galoisgruppe von Primzahlpotenzordnung. J. reine angew. Math. 177 (1937).
[3] H. Richter, Über die Lösbarkeit einiger nicht-abelscher Einkettungsprobleme, Math. Ann. 112 (1936).
[4] A. Scholz, Über die Bildung algebraischer Zahlkörper mit aufösbarer Galoisscher Gruppe, Math. Z. 30 (1929).
[5] A. Scholz, Reduktion der Konstruktion von Körpern mit zweistufiger metabelscher Gruppe, Heidelberger Akad. Sitzungsber. (1929).
[6] A. Scholz, Konstruktion algebraischer Zahlkörper beliebiger Gruppe von Primzahlpotenzordnung I, Math. Z. 42 (1937).
[7] T. Tannaka, Über die Konstruktion der galoischen Körper mit vorgegebener p-Gruppe, Tôhoku Math. J. 43 (1937).
[8] H. Zassenhaus, Lehrbuch der Gruppentheorie.

Maihematical Institute,
Ochanomizu University

[^0]: Received September 19, 1951.

