
RIEMANN SPACE WITH TWO-PARAMETRIC

HOMOGENEOUS HOLONOMY GROUP

MINORU KURITA

The rotational part of the holonomy group of a Riemann space is called its
homogeneous holonomy group. A Riemann space, whose homogeneous holonomy
group is one-parametric? was investigated by Liber and an alternative treatment
of the same problem was given by S. Sasaki [ID. I will treat here a Riemann
space with two-parametric homogeneous holonomy group and prove the follow-
ing theorem by the method analogous to that of [ l l I thank Prof. T. Ootuki
for his kind advice.

THEOREM. If the homogeneous holonomy group of an n-dimensional Riemann
space is two-parametric, the space is a direct sum of two non-flat two-dimensional
Riemann spaces and an- ^-dimensional flat space namely the line-element of
our space is given by

where
l Σ gij(x\ X~)dχ{dxj.g j \ Σ &j\

i, .7 = 1,2 i , j = 3, 4

0. Let the line element of a general Riemann space be given by

If we take a rectangular frame in the tangent euclidean space at any point of
the Riemann space, a Riemannian connection is given by

(1) dA = ooiei, d&i

If we denote the outer derivative of ω by dω, we have

' 2 ) d(ΰi = Zoyjωji D.

Taking the outer derivative of both sides, we get

(3) ZωjΠjil^O

where Πij is given by

Received September 18, 1951.

35



36 MINORU KURITA

(4) Uij = dωij — Zωikωkj}.

In general we define a product of two matrices Ω=(ojip) and Π~(πpu) with

Pfaffians or differential forms as coefficients by a matrix

ZΩΠl =

and an outer derivative of Ω by a matrix

dΩ = (dω^).

Then putting

ω = (ωi, . . . ' , ω Λ ), J2 = iωij), IT— (Uij) ,

(2), (4), (3) can be written as

(5) dω = ZωΩl9 H=dΩ-ZΩΩl9

(6) [ω/7] = 0.

If we rotate a rectangular frame, a new frame is given by e, =i>ye/. Our Rie-

mannian connection is for this new frame determined by

where P is the orthogonal matrix (pij) If P is a constant matrix, we have

(7) Ώ = PΩPf.

Next we state lemmas which are used repeatedly in our treatment

LEMMA 1. Let ωa (a = 1,. . . , k) be linearly independent Pfaffians with n

variables x1

9. . . , x\ If there exist Pfaffians ω^ such that

d(ύ<t = C^ftj (O$&29 0)a? = — (ύ$a (.0C9 0 = 1, , . . , k),
Jc

then by suitable choice of variables vι =y(xι, . . . , xn) (*' = 1,. . . , n), Σ ( ω α ) 2

α = l

be written as a quadratic differential form in k variables y1,. . , yk, namely

This is seen in E. Cartan [2] p. 296.

LEMMA 2. If the rotational part Ω = (anj) of our connection (1) is a direct

sum of two matrices, our Riemann space is a direct sum of two Riemann spaces.

In other ivords if ωΛχ = 0 (a = 1, . . . , k λ = k + 1 , . . . , n) then by a suitable

choice of coordinates

df = g9n(x\ . . , xk)dx«dx' + gχΛxk+\ . . . , xn)dxλdxμ.

(a, β = 1, 2, . . . , * A, /i = * + 1 , . . . , n)

Proof. By virtue of ωaχ = 0 and (2) we have
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dω* = Lω?ω$χl -f

dωx — [ωαωαλ] +

Using lemma 1 we get lemma 3.

LEMMΛ 3, //' a Riemann space S is a direct sum of two Riemann spaces

Si and S2, the homogeneous holonomy group g of S is the direct product of the

homogeneous holonomy group gι of Si and g> of S2. Especially if gi a?ιd g2 are

kr and krparametric, then g is kι 4- fa-parametric.

1. Now we consider a Riemann space whose homogeneous holonomy group

g is two-parametric. For such a space we can take rectangular frame at each

point such that Ω = (ωij) is an infinitesimal rotation belonging to our homogeneous

holonomy group g. This is evident by the fundamental theorem of Eβ Cartan

about the holonomy group. As g is two-parametric, we have

(8) Ω = (ωt j) = Ciπi + C2π2 ,

where πι and π2 are Pfaffians whose ratio is not a constant and C\ and Cι are

constant skew symmetric matrices such that

[CiC2] - CιC-2 - CzCi - λiCi + λ*Ci.

Owing to the skewness of Cι and C2 two constants λi and λ2 are zero. In fact

let λί be not zero, then putting Aid + A2C2 = Ci and C2/λi = C2 we have

For an orthogonal matrix P PC\Pf and PCzPf are skew symmetric matrices

and moreover

(9) CPCiP'

If we select P suitably, we have

(10)

where

PCiP' =

•o

~ Oϊ 0

Hence calculating the elements of the first row and the second colomn we get

by (10) cti~Os which contradicts the assumption <*ι=^0. Thus we get Ai = 0,

and similarly λz = 0. So we have

(11)
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Now we state one lemma.

LEMMA 4. Let Cι and C2 be shew symmetric matrices such that [Ci, C2I = 0

and we assume there exists a constant m for which the matrix mC\ 4- C2 & singu-

lar. Then the Riemann space with $ = (ω,y) = Ci7n-f C27Γ2 decomposes into the

direct sum of Riemann spaces,

Proof Put C2 = mCx + C2. For suitably chosen orthogonal matrix P we have

w-. 0 0 /

where A is non-singular. Let the corresponding formula for PCiP' be

• * v
I NJ

namely K and A have the same number of rows and colomns. Then by the

relation iPCiP', PC2P'l = 0 we have ΛL = 0 and MA = 0. As A is non-singular

we get L = 0 and M = 0 . Hence
r = PCiP'7ri + PC2P'7Γ2

K)ιa 0 \

~\ 0 Nπ1-mNπ2)

and by lemma 2 and (7) we get the result.
Now we treat the case when Ci is non-singular. Then for a suitable or-

thogonal matrix P we have

JPCiP' = l * . I, where 0 =

\ ' * *
and moreover all α, >0 . Put

( Ua...Un

Ua... Un

where Uϊfs (i, j = 1, 2,. . ., 1) are square matrices of degree 2. Then by virtue
of iPCiP', PCiPΊ = 0 we have

where double indices do not mean summation.
I u υ\

Putting Un = I I we get

ccju - cciZ = 0, aw - ocμ = 0, afi + caw = 0, otϊΰ + OCJW = 0.

As cci > 0, cti # αry means α:̂  # α:y and then w = ι; = ί(; = 2 = 0, namely Uij = 0. For
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j) we get u-z and to- ~υ. Thus by suitable change of the order

of axes of the frame the rotational part of Riemannian connection (ω/y) decom-

poses into a direct sum of the matrices of the form

Q Dίi . . . Uu

Q

where

TT ί Uii

\ -Vis

hri-f

Vij

Uij

7Γ2

Un... Uu

•(*, y = i , 2 , . . . , / ) .

Now we take πi for am and put

Q

Q . . . UUi

If £7i2, . . . , Uu are all zero matrices, our Riemann space decomposes by virtue

of Ω = Ciπi -f Giπz and lemma 2. Hence if we treat an indecomposable space,

we can assume without loss of generality C/ίa is not zero matrix. We put

- ( - , Iί/12 = ( "" I and take C2I *Su2 + v2 for C2. Then we can assume u -f v = 1.

Now we transform Ci and C2 by an orthogonal matrix

Π Oi

D ~ _

[.-.?..„?. I

* 1

Then PC1P1 = d , and taking PC 2 P' - qCx for C2 where Un =

the reduced formulas

we get

(12) Cl =

0
—

IS
1 0 !

0
- 1

1
0

f 0
0

- 1
0

0
0
0

-— 1

1
0
0

-P

Oi w
l\-z

ρ\ k

oj-/
J

z\

l\
k\

ϊ

Moreover we can assume

(13) det.

because in the alternative case our space decomposes by lemma 4.
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2. Now we investigate the space for which

Ω = CITΓI -f C27Γ2,

where Ci and C2 are given by (12) satisfying the relation (13). We get by (5)

U^dΩ- ίΩΩl = Cidπi + C2<fe - CC1C2J ίπxπ2l,

which by (11) reduces to

(14) Π=Cidm + C2dπ2.

Hence we have by (6)

(15) ίωCi, dπil + [ωC2, dπj = 0.

Here we state one more lemma, which is evident.

LEMMA 5. Let ωi,. . ., ωn be linearly independent Pfaffians and let

and moreover

then we have

1 Γ
~2 aijlωiωj

] + [θ)2&] = 0 ,

o ( f Φ i , 2; y^

'̂ = 3, 4,. . . , ?z)

r l , 2 )

Now by (12) we have

ω C i = ( — ω 2 , ω i ? — ω 4 ωa, -

ω C 2 = ( - p, τ, - ξ9 η, . . . )

where

So by virtue of (15)

(17) CflfeAr J + Ipdπz] = 0 , [0)^1] + C^7r2] = 0

(18) [ω*rfτrj + [fcfet] = <>, Cωarf7ri] + UArJ = 0.

By (16) we can take ωi, ω2? p, r, ω5, ω6? . . . as base. Then by virtue of (17)

and lemma 5 dm and dπ2 can not have terms containing ωs9 cos,. . . , and these

are of the form

(19) ^Cωiω2] + Bίωφl + Cίω<>τ] -f DCpr] .

On the other hand by (18) dm and dπ2 are represented by ωz, ω.\, ξ, 7/ only, and
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so by on, ω.ι, ςf — ς — pon, γ1 — y — pωz Now by (16)

p — ωz 4~ tvωs -f zcύβ - f . . .

r = — ίt>4 4- 2co5 —

α>i = — f' 4-

ω 2 = Ό1 — /oj>δ 4 - # ω β 4 - . . . .

We put these into (19), and equating the coefficients of [α>3ω53,

C^4ω6], ΓfWL [£'ω6], D?W], and IV ω6] to zero we get

(21) Bk-Dz = 0, Bl+Dw=:Q

(22) - Cl+Dw = 0, C& 4- Dz = 0

(23)

(24)

From each row of these we get

(25) B ( l ? + l 2 ) ,

(26) 0 = - Dilz 4- kw), C(k2 4-12) = - D(^2 - fa;)

(27) i5(«;2 4- z2) - - A( fc - Iw), 0 = Adz 4- kw)

(28) 0 - Ailz 4- *w), C(M^ 4 z2) = Λ(^2 - /M;) .

If /?24-/2^0 and w = z = 0, we get by (25) and (26) £ = C = 0, hence by (23)

A - 0. If w2 4- 22 Φ 0 and * = / = 0, we get by (27) (28) and (22) B - C = JD = 0.

If &2 4- i2 # 0 and ιv2 4- z2 * 0, we get

A J3 C ^ ____5_____
ιιF+ i - (kz - Iw) kz-ΐw "~ (^2 4- /2) *

ϊn any way A : JB : C : D is determined when at least one of fe, I, w, z is not zero.

We treat this case in the first. Then (19) is determined except for a multiplier,

and as dm and dπ2 are of this form, we have two cases, namely either dπ2 = 0

or dπι = mdπ2 (flta^O). If έfτr2 = 0, we get by 117) and (18) dm = 0, and our

space is flat and so this case may be omitted. If dπι~mdπ2, we get by (17)

and(18)

(29) ίp 4- mω2, dπ%\ = 0, [ r 4- mω\, dπi~\ = 0

(30) ίξ 4- mω*, dπ2l = 0, [^4- mωz, dπ2l = 0.

Now we have by (16)

p 4 - -Mω2 = m c θ 2 4 - <i>3 4 - t ^ c o 5 4 ^cαe 4 . . .

τ 4 - m ω i = mωi — ^ 4 4 - zωs — ιvω& 4- . . .

which shows that p + mω* and τ + mωi are independent. Hence by (29)

(31) dπ2 = hip 4- mω i, x 4- mω{] = M . . . - [ω3oxί] 4- m[ω3coi.] 4- . . . ) .

Here terms containing ωu on, ω.ι only are written. Putting this and
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ξ -f mω4 = —

into (30) we get from the consideration of the term LωxotfOil the relation

l-m(p-\-m) = 0 . Hence ra= •( -p ± ^~pHΛ)l2, namely m is a constant. So

by (14)

77 = Cidτri -f C2dπ2 = (mCi + C2)c?7r2.

By virtue of [ω77] = 0

(32) ίωimCi + C a), ΛrJ = 0.

By (31) and (32) each element of the matrix ω(mCi-j-Co) must be a linear

combination of p 4- raω2 and r + mωi, hence the rank of the matrix mCi -+• C2 is

two. So by the assumption (13) Ci and C2 are square matrices of degree 2

and our Riemann space is of dimension 2. Next we treat the case k = l-w

= 2 = 0. Then we can assume that in C2 all the elements of the first four rows

except first four colomns are zero, for in the contrary case we can treat as in

the above case already treated, namely the case when one of k, I, w, z is not

zero. Thus our space decomposes into a 4-dimensional space and another space,

and it is sufficient to consider this 4-dimensional part. For this part Ci and C%

have components

cr =
0
-1
0
0

1
0
0
0

0
0
0

—1

0
0
1
0

C(0) _

0
0

- 1
0

0
0
0

— 1

1
0
0

-p

0
1

P
0

Hence

det. I mCT + Cf! = (m(p + m) - I)2.

This is zero for a real number m=(-p± +Sp2+4 )/2. Hence det. I mCi + C21 = 0 .

This contradicts the assumption (13).

Thus we get the result that the Riemann space, for which

Ω = Cm + C2K2,

where Ci and C2 are given by (12) satisfying the relation (13), is two-dimensional.

3. Thus we obtain the result that the Riemann space with two-parametric

homogeneons holonomy group decomposes into a certain number of two-dimen-

sional non-flat Riemann spaces and a euclidean space. By lemma 3 the number

of these two-dimensional spaces is two, and our proof concludes.
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