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1. Recently the writer has obtained some results concerning meromorphic

or algebroidal functions with the set of essential singularities of capacity zero,])

with an aid of a theorem of Evans.2) In the present paper, suggested from

recent interesting papers of Sario3) and Pfluger,4) the writer will extend his results

to single-valued analytic functions defined on open abstract Riemann surfaces

with null boundary in the sense of Nevanlinna,5) using a lemma instead of Evans'

theorem.

2. Let F be an arbitrary open Riemann surface of finite or infinite genus

and {Fn} (n^O, I, . . .) be a sequence of compact domains of F which satisfies

the following conditions:

1) Fo is simply connected,

ii) the boundary Γn of Fn consists of a finite number of simple closed ana-

lytic curves,

iii) F^nC.Fn+1 (w=0, 1, . . .) where Fn denotes the closure of Fn,

iv) every component of the open set F~Fn consists of a finite number of

non-compact domains,

v) J
n-0
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Then the sequence {Fn} is said to be an exhaustion of F.

Consider the open set Fn-Fn-i which consists of a finite number of con-

nected components and the harmonic measure

(1) ωn=ω(p, Γn, Fn-Fn-i) (» = 1, 2, . . .)

of Fn-Fn-\ with boundary values 1 on Γn and 0 on Γw_i. We denote by dn

the total variation of the conjugate harmonic function ωn along Γn '

(2) f dώn^dn,

where the sense of Γn is positive with respect to Fn-Fn-i.

We define the modulus μn of Fw-F«..i by the quantity6)

(3) μn = 2π/dn.

Select suitably an additive constant of ωn for each connected component of

Fn—Fn-u then the function

(4) Znf

where

(5)
V = J

maps the open set Fn~Fn-\ with a finite number of suitable slits onto a slit-

rectangle Kn*rn~ι<Xn<rn, 0<yn<2π in a one-one conformal manner.7) Accord-

ingly, the function z = x+iy defined by zn for each Fn—Fn-\ (Λ = 1, 2, . . .) maps

the subsurface F—FQ with a finite or enumerable number of suitable slits onto
00 00

a union of slit-rectangles: K= \JKn, lying in the domain 0<x<R= l i m r Λ = Σ ^ v ,
n=l n-*« v = l

0<y<2π, in a one-one conformal manner. For convenience, we shall call the

figure K a graph of F—Fo by the exhaustion {Fn}. Similarly we can also define

the graph of Fn — F0.

We first prove the following

LEMMA. Let {Fn} be an exhaustion of a Riemann surface F with null boundary

and &v (Ϊ» = 1, 2, . . .) be an arbitrary sequence of positive numbers. Then there

exists a subsequence {F«v} (z>=0, 1, . . .) which is an exhaustion such that

βn^^k* (ί> = l , 2, . . . ) ,

where Fno = Fo and μ«v denotes the modulus of the open set F W v — F ^ . , .

6> For the definition of modulus, cf. Sario: Ice. cit. [3] Pfluger: loc. cit.
7> Cf. Sario: loc. cit. [1], p. 11.
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Proof* It is obvious that

F0 for

Consider two harmonic measures

(6) ω'j^ωfaΓn.Fn-Fj) and ωiO) = ω(f, Γ'n, F Λ - F 0 ) .

Then, by the maximum principle, we have

(7) ωfiPXω^ip).

Since F has a null boundary, ω™ (w = l, 2, . . .) converges to a constant zero

on F. Consequently, for fixed j, ωJ/}-*0 a s n~>^. Denote by ω^#) the conju-

gate harmonic function of ωj/* and put

(8) f dSj/W

Then, it is easily seen that the modulus μ(j)~2π/d(j) of the open set Fn~Fj

tends to infinity as w-»oo. Accordingly, for any positive number k, we can find

a number n such that μ{j]^h. Repeating the same argument, our assertion is

proved.

As an application of the graph of Fn-F0 by an exhaustion {Fn}9 we can state

THEOREM 1. Let μ% and μn be the moduli of Fn-~Fo and Fn~~Fn-ι respectively.

Then, there exists

(9) /J*

Proof. Consider w = ω^-f iω%](cf. (6)) as a function of z = x+iy in the graph

of Fn-Fo. Then, it is clear that

Schwarz's inequality gives

whence, by integration

Therefore

rnώ2π/d^ = μ*.

Combining Lemma with Sario's theorem which is easily deduced from (9)

by Nevanlinna's theorem, we can complete Sario's result in the following
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THEOREM 2. In order that an open Riemann surface F has a null boundary

it is necessary and sufficient that there exists an exhaustion {Fn} such that

jy]μn=oo where μn denotes the modulus of the open set F« —Frt-i.8)

3. Let F be an open Riemann surface with null boundary. Then, by Theorem
GO

2, we can select an exhaustion {Fn} of F such that Σ^«=°°> βn denoting the
n = l

modulus of Fn—Fn-i* Suppose that w-f{p) is non-constant, single-valued and

meromorphic on the surface F. Then, the space formed by the elements q=Zp,

f(P)l, where p varies on F, defines a conformalίy equivalent covering surface Φ

of the w-plane. Clearly the mapping p*—>q9 where q-\_p9 /(£)], is topological

and conformal.

We first give a proof for Yujobδ's theorem which is an extension of a theorem

of Tsuji.9)

THEOREM 3 (Yύjδbδ). The covering surface Φ has Gross9 property.m

Proof. Let qo-lpo, f(po)l be an arbitrary point on Φ with projection

Wo=f(Po). Consider the star-region H formed by the segments from q0 to singu-

lar points (algebraic branch-points or accessible boundary points of Φ) along all

rays: 3.vg(w~wo)=<p (0^<p<2π) on Φ. We shall show that the linear measure

of the set E of arguments ψ of singular rays (by which we understand rays

meeting singular points in finite distances) is equal to zero. Denote by H9 the

part of H above a circular disc \w—w*\ <ρ and by Δ? the image of H? by the

mapping p*-*q. Then Δ? is a simply connected domain on the surface F. We

select as Fo the image of a small circular disc with centre q0.

Now, we shall use the graph K, lying in the half-strip: 0<#<co, 0<y<2π,

of the subsurface F—Fo by the exhaustion {Fn} with Σ#n=°° . In the graph

K we consider the image Δ? of JP-Fo by the function z(p) =x{p)+iy{p), defined

in 2, and the composed function w~w{z)~-f(p(z)) defined on Δ?. Let Gλ be the

image of the intersection Θλ of the niveau curve C\: x(p)=λ (0<Λ<oo)n) and

8) Sario stated only the sufficient condition. Cf. loc. cit [3] R. Nevanlinna : loc. cit
Moreover, Sario remarked that a graph K of finite length can be constructed by a
suitable choice of an exhaustion of F, in the case when F is simply connected and of
parabolic type. Cf. loc. cit. [2].

v Z. Yύjόbό reported this result at the annual meeting of the Math. Soc. of Japan in
1948. However, his proof has been published nowhere. M. Tsuji: On the behaviour of
a meromorphic function in the neighbourhood of a closed set of capacity zero, Proc.
Imp. Acad. 18 (1942), pp. 213-219.

10) W. Gross : Uber die Singularitaten analytischer Funktionen, Monatshefte fur Math, und
Phys. 29 (1918), pp. 1-47,

n> Evidently the niveau curve CΛ coincides with l"n when λ = rn (w=0, ] , . . . ) .
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JP by the function z(p)=x(p) + iy(p). We denote by θ(λ) the total length of

<9λ and L(λ) that of the image of ®λ by w = w{z). Then we can apply the

method in proving a well-known theorem of Gross. It is clear that

= L \w\z)\dy.

By Schwarz's inequality

where

Hence

Since

whence follows HmZ,(Λ)=0. Accordingly we easily see that our assertion

is true.

Remark'. It is well-known that Iversen's property is a direct result from

Gross5 property. Thus Theorem 3 includes a theorem due to Stoϊlow.12) Next

consider a connected piece Φp of Φ above any circular disc (c) : \w~wo\ <p. De-

note by n(w) the number of sheets above w inside (c) and put N~ sup n(w),
tee(o)

(0<iV^σo). Then, the set E of points ^ such that n(w)<N9 w^{c) is of ca-

pacity zero,j3) Consequently, the spherical area of Φ is infinite, provided that Φ

has an infinite number of sheets. It is also known that a Riemann surface on

which no Green's function exists coincides with a Riemann surface with null

bounbary.34)

J2^ S. Stoϊlow: Sur les singularitέs des fonctions anaJytiques mulίiformes dont la surface
de Riemann a sa frontiere de mesure harmonique null, Mathematica, 19 (1943), pp.
126-138.

13> Y. Nagai: On the behaviour of the boundary of Riemann surfaces, II, Proc. Jap. Acad.
26 (1950), pp. 10-16; M. Tsuji: Some metrical theorems on Fuchsian groups, Kόdai
Math. Sem. Rep. Nos. 4-5 (1950), pp. 89-93; A. Mori: On Riemann surfaces, on which
no bounded harmonic function exists, which will appear in Journ. Math. Soc. Japan.

14> K. I. Virtanen: Uber die Existent von beschrankten harmonisςhen Funktionen auf
offenen Riemannschen Flachen, Ann. Acad. Sci. Fenn. A. I. 75 (1950), 8 pp.
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If we use the Lemma instead of Evans' theorem, in the same way in prov-

ing Theorem S, and appίy Ahίfors' theory of covering surfaces/5' the arguments

in a previous paper of the writer (loc. cit. [1]) will give the following theorems.

THEOREM 4. φ is regularly exhaustible in the sense of Ahlfors.1^

THEOREM 5. Denote by J λ the compact domain of F bounded by the niυeau

curve: x(p) =λ (0<λ<co) and by φλ the image of d\ on Φ by the mapping p<^>q.

Let Dί9 D2, . . . , Dm (m^2) be m closed disjoint circular discs on the Riemann

w-sphere. We define the defect d(Dj), the ramification index ΰ(Dj) and a quanti-

ty ξ by

where n(λ, Dj) denotes the number of sheets of all islands above Dj, nM, Dj)

the number of orders of the branch-points of the islands above Dj, S{λ) the aver-

age number of sheets of Φ\ with respect to the w-sphere, p(Jλ) the Euler charac-

teristic of Δx and p+= max (0, p)m Then, there exists

THEOREM 6. Suppose that the covering surface Φ has an accessible boundary

point Ω with projection wQ. Denote -by Φ? the ^-neighbourhood of Ω which is a

covering surface of the circular disc (c) : | w-w0 J <p. We suppose further that

Φ? is simply connected. Then Φ? covers every point infinitely often inside (c)

with one possible exception.^

To prove Theorem 6, it is necessary to notice that Φ? has an infinite number

of sheets. Denote by n(w) the number of sheets of above w inside {c) and put

sup n(w)=N. Then we have necessarily N=oo. It is known that the set E of

points w such that n(w)<N, w^(c) is of capacity ?ero (cf. Remark). Accord-

ingly, we can draw a circle c, : \w-Wo \ =βi (0<pj<p) such that CιΓ[E=0 and

Φ? has no algebraic branch-point above the circle cIβ Suppose that N<oo, contra-

ry to the assertion, and consider att loop-cuts of φ? above cu Then there would

exist at least one loop-cut by which ΦP is decomposed into two multiply con-

15) L. Ahlfors: Zur Theorie der Uberlagerungsflachen, Acta Math. 65 (1935), pp. 157-194.
16> Cf. Noshiro: loc. cit. [1], p. 307. A. Mori kindly remarked that in the case when Φ

has a finite number of sheets, the assertion is directly proved by the fact that a bounded

closed set of capacity zero is of linear measure zero.
17> Cf. Noshiro: loc. cit [1], p. 310%

18> Compare with Noshiro: loc. cit. [1], Theorem 3, p. 315 and Theorem 4, p. 327.
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nected pieces. This contradicts to the assumption that Φ? is simply connected.

Now, we shall use Pfluger's theorm19): Suppose that there is a quasi-con-

formal mapping between two open Riemann surfaces F and F'. Then F' has

a null boundary if and only if F has a null boundary.

As an immediate consequence, we obtain

THEOREM 7. Theorem 3, 4, 5, 6 remain true in the case when ιv=f(p) is a

quasi-analytic function on an open Riemann surface F with null boundary.

4. Finally we shall give a remark and propose a problem. Let F be an

open abstract Riemann surface. Suppose that there exists a function u(p) har-

monic at every point on F except a single point pQ such that

(1)' u= log 111 -fa harmonic function

in a neighbourhood of po, t being a local parameter at pθ9 and

(2)' u(p) tends to + <», as p converges to the ideal boundary Γ of F,

Then it is easily concluded that F has a null boundary. To prove this, denote

F λ the compact domain bounded by the niveau curve Cχ: u(p) =Λ ( - oo <;,.< -f co).

Then, the harmonic measure ω\(p)~ω(p, Cλ, Fχ-Fλ0), (-oo<;0<Λ<-fco)3 will

be written in the form:

Therefore, keeping λo fixed and letting λ tend to -f-α>, we see that ωλ(£)-*0

on F~ΐ\0.

Problem. Is the converse true ? More precisely : Does there exist a function

which is harmonic at every point on F except a single point p0 and satisfies

(1)' and (2)' when F is an open Riemann surface with null boundary? (An ex-

tension of Evans' theorem).
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