
ON THE CHARACTERS OF SOLUBLE GROUPS

NOBORU ITO

The theory of representations of finite groups, which was originated by G.

Frobenius, has been developed by L Schur to become popular and studied more

and more profoundly by R. Brauer even in the current stage of modern algebra.

However, it seems that its applications to the structure theory of finite groups

are still far from being satisfactory, partially because these two theories for

structure and for representation are not firmly tied up.

In this paper I want to clarify the relationship of the structure and the

representation theory in the case of soluble groups, though the case may be

rather trivial.

The results are described as follows;

Let p be a fixed prime number and we use in the following modular termi-

nologies for this p. After R. Brauer we say that a class of conjugate elements

in a group is of defect d if the order of the centralizer of the element of the

class is divisible exactly by pd and that a block of characters in a group is of

defect d if the degrees of all the characters of the block is divisible by pa~ι

and at least one of them is not divisible by ρ«-d+\ where pa is the highest

power of p which divides the group order.

In § 1 we shall prove that there exists a block of characters of defect 0 in

a soluble group G, it G has no normal ^-subgroup which is distinct from {e}

and has no group of the first kind as an associated group (as for definitions,

see below). Since the order of the group of the first kind is even, the last

condition is always satisfied by a soluble group of odd order. Further since

a ^-Sylow subgroup of the group of the first kind is irregular in the sense of

P. Hall, the last condition is also always satisfied by a soluble group whose

p-Sylow subgroup is regular. In § 2 we shall treat the case of positive defects

and prove the similar theorems.

I wish to express my hearty thanks to Prof. T. Nakayama for his kind

encouragement throughout this work.

§1.
We refer to an absolutely irreducible ordinary character simply as a char-

acter.
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LEMMA 1. Let N be a normal subgroup of a soluble group G, and let the

order of N be prime to p, where p is a fixed prime number. Let Ku K-,. . . ,Kr

be the classes of conjugate elements of G of defects 0 such that they are con-

tained in N. Then G has at least / characters of defects 0 which are linearly

independent mod. p on K\,K2, . . . ,Kr, where p is one of the prime divisors of

p in the algebraic number field generated by characters of G and its subgroups

over the rational number field.

Proof. Applying the induction argument with respect to the order of G9

we assume that the assertion is true for all groups of smaller orders.

If G=N, then it is well known that the assertion is valid, e.g. as in I.

Schur,J) by a result of R. Brauer and C. Nesbitt.2)

Let us assume G*N and let // be a normal maximal subgroup of G over iV.

Let 5 be the index of H in G. Then s is a prime. If s=p, then Ki (l^i^r)

is divided into the p classes Lij (.7 = 1, . . . ,p) of conjugate elements of H of

defects 0. It follows by the induction hypothesis that H has at least rp char-

acters φ of defects 0 which are linearly independent mod. p on Lll9. . . ,Lrp.

We consider the matrix

. . . ipι{Lrp)

\ψrp{Lu) . . . ψrp{Lrp)j

which is non-singular mod. p. Further we consider the rpxr matrix

fψi(Ln)+ . . . + ψi(Lip) . . . <Pi{Ln)+ . . . + ψι(Lrp)

+ . . . + <frp{LiP) . . . <frp(Ln)+ . . .

which of course has rank r mod. p. Let φ* be a character of G induced by φ.

Then it can be easily seen that φ{Liι)+ . . . + ψ(LiP)~φ*(Ki) for ι = l, . . . ,r.

Rewriting the components of the above matrix, we have the following rpxr

matrix of rank r mod. p.

ψrP*{Ki) ψrp*(Kr))

^ I. Schur, Neυe Begrundung der Theorie der Grυppencharaktere, Sitz. Berlin (1905),

pp. 406-432.
2> R. Brauer and C. Nesbitt, On the modular representations of groups of finite order I,

Univ. Toronto studies Math. Series 4 (1937), pp. 20.
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This shows that among if , * there exist r linearly mod. p independent characters,

say, ψι*9 . . . ,<pr*' If <f* is not irreducible, we can readily see that φ*(Ki) = 0

(mod. p) for ι = l, . . . ,r. Therefore ^j*, . . . ,φr* are all irreducible. Consider-

ing the degrees, we can conclude by a theorem of R. Brauer and C. Nesbitt3)

that ψι*9 . . . 9φr* are all of defects 0. If s*p, then Ki (l^i^r) is divided into

s classes of conjugate elements of H of defects 0 or coincides with one of

them. Let us suppose Kι = Ln + . . . + Lίs,. . ., Kt=Ln+ . . . -f-Z/s, Kt+i = Lt+i,. . .,

Kr-Lr* H has then at least ts-\- (r—t) characters φ of defects 0 which are

linearly independent mod. p on Ln, . . . , Lts, Lt+ι9. . . , Lr by the induction hy-

pothesis. We consider the matrix

. . . ipι(Lr)

which is of degree ts+(r—t) and non-singular mod. p. Let #>* be a character

of G induced by c. Then it can be easily seen that <ρ(Ln)+ . . . +<p(Li$)

=<p*(Ki) for i=l , . . . ,ί and s φ(Li) = φ*{Ki) for f=ί+l , . . . 9r. Rewriting

the components of the matrix, we have a matrix

of type (/5+(r—ί), r) and of rank r mod. p. Therefore r induced characters,

say, ψi*, . . . 9ψr* are linearly independent mod. p on K\9. . . ,-Kr We put

c ί ** = ̂ , * if <£,-* is irreducible and put <fi**= (l/s)ifi* = <fiy if fί* is reducible.

Evidently each r̂,** is of defect 0 by a theorem of R. Brauer and C. Nesbitt.4)

Thus Lemma 1 is completely proved.

Remark The above proof of Lemma 1 holds good, without modification,

under a weaker condition that G/N is soluble.

LEMMA 2. The equation

is satisfied by positive integers 5, t and rational primes p, q, only when

(1) q = 2; ί = l, or

(2) s = l; p = 2, or 4 = 3; 5 = 2; ^>-2? ί = 3.

R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. Math. 42 (1941),

pp. 556-590.

See 3>.
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Proof. Firs t we suppose p>2. T h e n # = 2 and s==2. If t = 0 (mod. 2), then

- 1 = 2 S - 1 =pt=Ξl (mod. 22), which shows a contradiction. Therefore J = l (mod.

2) and 2s=pt+l = {p+l){pt~ι- . . . + 1 ) . Since p and * a r e odd, p*"1- . . . + 1

is odd. This shows that p1'1- . . . + 1 = 1, i.e., * = 1.

Secondly we suppose /> = 2. If 5 = 0 (mod. 2), say s = 2 « , then <7S—1 = (#w — 1)

χ(qu+l)=2t and D 7 * - l , tfM+Γ] = 2. Therefore qu-l = 2 and <? = 3, u = l, 5 = 2.

If 5 = 1 (mod. 2), then qs-l= (q-l)(qs->+ . . . + 1 ) = 2 ' , whence ζp-*+ . . . + 1

= 1, i.e., s = l .

Groups of the first kind

Let £ and <? be a pair of primes in Lemma 2. Let K be a holomorph of

an abelian group of order qs and of type (q, . . . ,<?) by a cyclic group of auto-

morphisms of order pf. Let H=K1x . . . xKp (p-ple product of K) and let each

Ki be isomorphic to K. We fix an isomorphism ci between K and ϋΓ, for each

L We denote generally 0{{a) by #, for an element a of if. Let G be a holo-

morph of H by a cyclic group {Π (ai9 ...,«/>)} of automorphisms of order

p. We define such a G as the group of the first kind.

We describe some properties of the structures of such groups. G is a soluble

group of rank 3. A g-Sylow subgroup SQ is a normal and abelian subgroup of

type (q, . . . ,q). A ^-Sylow subgroup Sp has no J2-proρerty in the sense of P.

Hall, that is, the totality of elements of order p of Sp with e forms no sub-

group. G has no normal ^-subgroup distinct from {e}. G is of order divisible

by 2 by Lemma 2. G has no class of conjugate elements of defect 0. To show

this, it may be sufficient to remark that all the elements *e oί SQ(K) are

conjugate in K with one another. Since the group ring of G is primary decom-

posable for p in the sense of M. Osima,5) we can analyse in detail the modular

properties of characters of G for p. E.g. G has no block of defect 0 and only

one block of defect 1.

Example. Let G be a group of the first kind. Then the w-ple product Gn

of G gives us an example such that Gn has no normal ^-subgroup distinct from

{e), but the defects of blocks of Gn are not smaller than n+

Let a group H be homomorphic to some subgroup of a group G. We call

H an associated group of G.

THEOREM 1. A soluble group G with no normal p-subgroup *e{e) has a

character of defect 0 if G has no group of the first kind as an associated group.

^ M. Osima, On primary decomposable group rings, Proc. Phys.-Math. Soc. Japan 24

(1942), pp. 1-9.



ON THE CHARACTERS OF SOLUBLE GROUPS 35

In other words, in such a group {e} is a defect group.

Proof. Let g=pag*9 (p9 g') = l9 be the order of G. If g' = l, the theorem is
evident. So we assume the theorem rs valid for groups with smaller value of g'.

Let N be the largest normal subgroup of G with order prime to p. We may

assume that G has a ^-Sylow complement Hp of G and N=Hp. In fact, if iV

*HP then N SP*G. Therefore N Sp has a character of defect 0 by the induc-

tion hypothesis, if N Sp has no normal ^-subgroup *?{e}. Let us now suppose

that N Sp has a normal jf>-subgroup ^{e}. Then the centralizer 3(N) of N in

G is of order divisible by p, as is readily seen. Let Ni be the largest normal

subgroup of G which is contained in 3(N) and of order prime to p. Obviously

iV/ϋiV. Let P Ni be a normal subgroup of G which is contained in 3(N) and

is also minimal over Nz. Since Pϋ3(A0 and iV,ϋiV, we have P ΛΓ

J = PxΛΓ

J.

Therefore P is a normals-subgroup 5?{e} of G. This is a contradiction. There-

fore N Sp has actually a character of defect 0. Then, as is readily seen, G has

at least one character of defect 0 by Lemma 1, because there exists in G at

least one class of conjugate elements of defect 0 which is contained in JV.β) So

we consider the case where N—Hp. Then the group ring of G is primary

decomposable in the sense of M. Osima. We remark that in such a group the

existence of the class of conjugate elements of defect 0 is equivalent to that of

the character of defect 0, by a theorem of M. Osima.7)

Now suppose that the theorem is not valid for G; G has no character of

defect 0. Then G has no class of conjugate elements of defect 0 from the

above remark. Under these circumstances we can assume that Hp is the join

of some minimal normal subgroups of G; Hp is completely reducible. In fact,

let Mi be any minimal normal subgroup of G. Then obviously Mi is contained

in Hp and G/Mi has no class of conjugate elements of defect 0. On the other

hand, G/Mi has a character of defect 0 by the induction hypothesis, if G/Mι

has no normal p-subgroup ^{e}. Then GjMi has a normal ^-subgroup ^{e}.

Therefore let PiMi/Mi be a minimal normal ^-subgroup ^{e} of G/Mi. Since

obviously HplMι PιMilMi = HplMιXPιM}IMι, PMi/Mi is contained in the cen-

tre of G/Mj. Therefore Pi is of order p and we can put Pi = {Aj}, Af-e. More-

over it is easily seen that 3piAi(Ai)=Pi, therefore G = Mi3(Az) and M^S(Δι)

= g as in P. Hall.S) Now we suppose that there exist r independent minimal

6) R. Brauer, On the arithmetic in a group ring, Proc. Nat. Acad. Sci. U.S.A. (1944), pp.

109-114.

') See 5).
8> P. Hall, A note on soluble groups, Jour. London Math. Soc, 3 (1928), pp. 98-105.
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normal subgroups Ml9 Λf2, . . . , Mr of G and that G/Mi9 G/M , . . . , G/Mr have

respectively minimal normal ^-subgroups PjMj/Mi, P«M*IM<>9 . . . , PrMr/Mr,

where P, = {Aj}, P2 = {i42},. . . ,Pr={^r} and Λ,^=A2

/)= . . . = Ar^ = e, such that

G = MM . . . Mr-S^A* . . . Λr) and M,M2 . . . M^3(A,Ao . . . Ar)=e. If

ΛfjΛfo . . . Mr*Hp9 then Ŝ  MjM* . . . Λfr%G and obviously Sp MMi . . . Mr has

no class of conjugate elements of defect 0. On the other hand, Sp MiM* . . .

Mr has a character of defect 0 by the induction hypothesis, if Sp MιM2 . . . Mr

has no normal ^-subgroup *{e}. So Sp MiM*. . . Mr has a normal ^-subgroup

*ε{e} which is obviously contained in 3(AiA2 . . . Ar). Since any conjugate

subgroup of 3(AjA2. . . Ar) can be obtained by transforming with some element

of AfjJWs Mr, 3(AιA2. . . Ar) contains at least one normal subgroup *{e}

of G. Therefore let Mr+i be any minimal normal subgroup of G which is con-

tained in 3(AIA<L . . . Ar). Then it is obvious that Mi9 M«,. . . ,Mr and Mr+i

are all independent one another. Moreover it is easily seen, as is shown above,

that G/Mr+i has a minimal normal ^-subgroup Pr+iMr+i/Mr+i of order p, and

we may put P r + , = {Ar+J}, A£+1 = e. Since obviously P,P2 . . . Pr MιM2 . . . Mr

Γ\Pr+rMr+i = e, we have P,P2 . . . P r ΛfiAf2. . . Λfr Pr+jΛfr+i = PjP2. . .Pr MM<

. . . ikfrxPr+iMr+i. Therefore A\A» . . . Ar^i has (MiM2 . . . Mr+i : e)-distinct con-

jugate elements. From this we can readily see that G = MιM2 . . . Mr+i 8(AiA2

. . . Ar+i) and MiMs . . . Afr+j^3(AiA2 . . . Ar+i)=e. Thus the induction argu-

ment gives us that Hp is the join of some minimal normal subgroups of G, i.e.

Hp is completely reducible. In particular, Hp is abelian.

Next we can assume that Hp=Sq where Sq is the g-Sylow subgroup of G

and of type (q9 q, . . . 9q). In fact, suppose that Hp*Sa. Then G/SQ has no

class of conjugate elements of defect 0 as in the case of G. On the other

hand, G/SQ has a character of defect 0 by the induction hypothesis, if G/Sq

has no normal />-subgroup *?{e). So G/SQ has a normal ^-subgroup ^{e}.

Therefore let PSg/SQ be the largest normal ^-subgroup of G/S(]. Then G/PSq

has no normal ^-subgroup *t{e). Therefore G[PSQ has a character of defect 0

by the induction hypothesis and again has a class of conjugate elements K of

defect 0. We can readily see that K contains an element A of G which is p-

and (/-regular and we may assume that Sp(3(A))^P. On the other hand, PSt/

has no normal ^-subgroup ^{e}. Therefore PSq has a character of defect 0

by the induction hypothesis and again has a class L of conjugate elements of

defect 0. Let B be an element of L and consider AB. Since the order of A is

prime to that of B9 3(AB) is contained in 3(A) and 3(B). Then it is easily

seen that AB is an element of defect 0. This proves a contradiction. So we

consider the case where Hρ — Sq i.e. Hp is a vector space over the prime field
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GF[q~] of characteristic q.

Moreover we can assume that Sq is a minimal normal subgroup of G. To

show this we regard Sβ= V as a representation space of Sp over GF^q'}. Then

it is obvious that V is completely reducible since p^q. Thererfore let V=Vι

4-F2-f . . . +Vr be a decomposition of V into its irreducible subspaces Vi9

V2, . . . ,Vr: Adapting to this decomposition we designate

ι\, \ . . . '
A = J . I and x=Xi + x2 + . . . +xr, where A is an element of Sp

\ 'Άrl
and x is a vector of V. Now suppose that r > l . Consider Sp Vi and denote by

Pi the kernel, i.e. the totality of elements of Sp represented by Ei, where Ei

is the unit matrix. Then {Sp/Pi) Vi has no normal p-subgroup *{e}. There-

fore (Sp/Pi)*Vi has a character of defect 0 by the induction hypothesis and

again has a class of conjugate elements of defect 0. Therefore let Xi be a

vector of F, such that AiXi-Xi implies Ai-Eu And put χ--=Xι+X2+ . . . +Xr

Then Ax-x implies AiXi-xi for every i = l, 2,. . . ,r, whence Ai-Ei for every

ί = l , 2, . . . ,r. Therefore A = £ and x is an element of defect 0 which is a

contradiction. Thus V—Vi, i.e. Ŝ  is a minimal normal subgroup of G.

The centre Ci(Sp) of Sp is cyclic. In fact, if d(Sp) is not cyclip, then

there exists an element C4e of Ci{Sp) aud an element ζ)^£ of Sα such that

CQ=QC by a theorem of W. Burnside-H. Zassenhaus.91 Since {ζ^; P^Sp} = S<j

by the minimality of Sq, CQ=QC implies that C is contained in the centre of

G which is a contradiction. Thus Cι(Sp) is cyclic. (Or, since Vis faithful for

Sp, this assertion is a special case of a theorem of Y. Akizuki-K. Shoda.I0))

Sp is not abelian. In fact, if Sp is abelian, then Sp = Ci(Sp) is cyclic. And

it can be readily seen that any element of Sp with order p is contained in the

centre of G by supposition, which is a contradiction. Thus Sp is not abelian.

Next we show that V=SG is reducible for a suitable maximal subgroup M

of Sp. We designate the representation of Sp by V with A for the clarity of

description. To do this, let GF[_qf~] be the minimal splitting field of A and

extend V to VUFIOJ]. Then A is decomposable, by a theorem of I. Schur,π) into

its irreducible parts: A = m"ΣAκ, where A/s are all algebraically conjugate to
K

each other with respect to GF[jqβ. Let pe be the degree of Aκ. Then e>0.
9) H. Zassenhaus, ϋber endliche Fastkorper, Hbg. Abb. 11 (1935), pp. 187-220.

1 0 ) K. Shoda, ϋber direkt zerlegbare Gruppen, Jour. Fac. Sci., Tokyo 2 (1930).
1JJ I. Schur, Arithmetische Untersuchungen ίiber endliche Gruppen lineare Substitutionen,

Sitz. Berlin (1906), pp. 164-184.



38 NOBORU ITO

For; e=0 implies that Sp is abelian and this is not the case. Therefore every

Λκ is reducible for a suitable maximal subgroup Mκ of Sp by a lemma of R.

Brauer12): AK(MK) =^]Aκχ. Now since Aκ's are all algebraically conjugate to

each other, we may assume that Mκ's are all equal to each other: MK = M.
p

Furthermore Aκ(M)=^Aκλ and Aκχ and Acλ' are algebraically conjugate
λ r !

 P
one another if Λ = Λ'. Then A = ^ ( w Σ A κ λ ) , where m*ΣAκ\ is realizable

λ lλ l K K

in GF[_q~] by a theorem of I. Schur.J3) Thus A is reducible for M. Since the

degree of Aκχ is />e-7, we have that F(M) = Vj+V2+ . . . + F > And it can be

easily seen that if X is any element of Sp which is not contained in M, then V2

= IV, . . . 9Vp= V$_l9 Vi = V̂ ,Λ'. Moreover it can also be easily seen that V is con-

sidered as a representation space of Sp induced by a representation space Vj

of M by a theorem of G. Frobenius.M)

Last, we designate the representation of M by Vτ with 2?. Since the re-

presentation A of Sp is the induced representation of the representation B of

M and F 2= FΛ . . . , V,= VjβJ, F J = F / ? we can describe:

()
/ B(Y*) \

A{Y)=\ - for any element Y of M, and
\ \E

where E is the unit matrix of the same degree as B. And we designate a

vector x of V in the form:

adapted to this realization. Then it is obvious that A(Y)(x)

Now consider B Vj. Then we see that

B Vi has no normal ^-subgroup *{e}. Therefore B Vi has a character of

defect 0 by the induction hypothesis and again has a class of conjugate elements

of defect 0. Therefore let Xi be an element of V/ of defect 0. Next consider

the group of B-automorphisms of Vi and denote it by C. Then C is the cen-

tralizer of B in the general linear homogeneous group of the same dimension

12> R. Brauer, On Artin's L-series with general group characters, Ann. Math. 48 (1947),

pp. 502-514.
J*> See »).
14) G. Frobenius, Uber Relationen zwischen den Charakteren einer Gruppen und denen

ihrer Untergruppen, Sitz. Berlin (1898), pp. 501-515.
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with that of Vi over GF\_q~], And since VΊ is irreducible for B9 the ring of B-
endomorphisms of Vj is a field GF[_qs2 with a suitable s>0. Then, since C is
the multiplicative group of GF[qs2, C is cyclic and of order g s -l . And we
may designate: C-{Z), ZQS'1 = e. Since C^Ci(B) and the group generated by
B and C is clearly irreducible, it can be readily seen that C is faithful for any
vector y*0 of Vi9 i.e. yz"=y implies # = 0 (mod. qs-l). Clearly xv

z is of defect
0 with xι. Now suppose that there is no element of B which translates ΛΓ, to
x/\ Then it can be easily seen that

( Xιz\

I is of defect 0 in G. This is a contradiction. Therefore λV ~xf

Xι I

for some element Y of B. Then Y and Z are of the same order. Moreover,

applying the induction hypothesis, we have Y-Z> i.e. C = Cj(S). On the otner

hand, we consider a vector x of V with the form:

/ X' \
A;=I I, where ΛΓ2 is a vector of VΊ with a positive defect. Let W^E be

\ ΛΓ, /

a matrix of A which fixes x. Then it can be easily seen that W is of the

form:

I, and the totality of matrices of such a form forms a

E>

normal subgroup of M. Therefore A contains a matrix D of the form:

D = I I, where d is a generating element of Ci(Z?). Next

\ El

consider C,(B).V,. And let Vl= V>

J,*+F,2*+ . - . Λ-Viu' be a decomposition of

Vj into its C/(B)-irreducible 'subspaces. Vu* is an s-dimensional subspace of

Vj. We designate a vector >Ί of VΊ in the form:

j , adapted to this decomposition. Then the totality of vectors of

yiuf

the form:

1 forms a C,{B)-subspace F,*= F,,* of F,. Then it can be readily
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seen that F*=Fi*+V2*+ . . . +VP* is allowable

Έ
E

- and also by A(X).

c J (

f l

/ E
And it can again be readily seen that the group generated by I

A(X) and F* is of the first kind. This is a contradiction. Thus" Theorem 1 is

finally proved.

Example. Put G = {(12), (13), (14), (56), {57), (58), (9, 10), (9, 11), (9, 12),

(159) (2, 6, 10) (3, 7, 11) (4, 8, 12)}. Then it is verified by a comparatively

simple calculation that G has a character of defect 0. But {(123), (124), (567),

(568), (9, 10, 11), (9, 10, 12), (159) (2, 6, 10) (3, 7, 11) (4, 8, 12)} is a group of the

first kind. This shows us that the condition in Theorem 1 is not necessary.

Furthermore it is easily seen that {(12)(34), (13)(24), (56)(78), (57)(68), (9, 10)

(11, 12), (9, 11) (10, 12)} is the largest normal subgroup of G with order prime

to 3 and there is no class of conjugate elements of defect 0 in this group.

This shows us that the converse of Lemma 1 is not true in general.

Example. Let K be a holomorph of quaternion group by a group of auto-

morphisms of the order p = 3.

Put H=K1xKoXKτ where each Ki is isomorphic with K. Let ψi be a fixed

isomorphism from K to Ki and we denote ψi(a) by ai for each element a of

K and for each L

Let G be a holomorph of H by{ Π (aia2az)}. It is clear that G has a factor
a*e&K

group aud no subgroup isomorphic to a group of the first kind.

Remark. Let G be a group such that G has no normal ^-subgroup distinct

from {e} and has a class of conjugate elements of defect 0. G has not always

a block of defect 0.

§2.

Let />2 be a prime. Let G be a /-group of exponent / and of class 2, whose

centre is of order /. Then it can be easily shown that G can be constructed

in the following manner. We designate by L a non-abelian /-group of order P

and of exponent /. Consider Lx . . . xL (m-ple product of L) and identify

centres of all the component groups of this direct product We denote the last

group by Lx . . . xL (m-ple product of L). Then G is isomorphic to Lx . . .

xL for some m. Now let G be a 2-group of exponent 22 and of class 2, whose
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centre is of order 2. We designate by Q and D respectively quaternion and

dihedral groups of order 2\ In the same way as for the case />2, we can readi-

ly show that G is isomorphic to Qx . . . x D for some m. Since it can be

easily seen that QxQ^DxD, we may say exactly that G is isomorphic to either

Qx . . . xQ or Qx . . . xQxD.

Now we count the number of elements of order 22 in Qx . . . xQ and Q• *
x . . . xQxD r e s p e c t i v e l y . T h i s n u m b e r , a s i s e a s i l y s e e n , e q u a l s , i n Qx . . .

xQ, to

i\ Σ 3r (™))=2m(2m-{-l)m)
Vr=J lααod. 2) \T I )

and in Qx . . . xQxD, to

2(L a Λm~rλ)+,Ξ0 a . / C ; 1 ) } = 2 L a /(?) ) = 2 m ( 2 m + ( -i)m)

Next let G have an automorphism of prime order p for which all the ele-

ments of C>AG) are fixed and G/Ci(G) is irreducible, where Cj(G) is the centre

of G and we regard G/Cι(G) as a vector space over the prime field of-charac-

teristic / or 2 respectively. Then it is clear that the exponent of 2 with respect

to p equals to 2m:

Therefore m cannot be even for the case Qx . . . xQ and odd for the case

Qx . . . xQxD, as is readily seen. Moreover m cannot be 3, since there is

clearly no prime for which 2 belongs to exponent β. Similarly we must exclude

the case where / = 2 r - l , when m=L

In other cases, on the contrary, we can show that there exist actually such

automorphisms. First we remark that G is homogeneous in the following sense:

Let R and S be subgroups of G which are both isomorphic to either L or Q

respectively. Then there exists an automorphism of G by which R is trans-

lated to S. Secondly we count the number of subgroups of G which are iso-

morphic to either L or Q respectively. As it is easily seen, this number equals,

in Lx . . . xL, to

( ) ( / 2 ) P - l

and, in Qx . . . xQ, to

2m (2W+1) 22 { r ^ o J ^ „/(' r )} = 2 ^ : 5 ^ + 1 ) .
6 4 3

and, in Qx . . . xQxD, to
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6-4 3

On the other hand, the group of automorphisms of L which fix all the elements

of the centre of L is of order divisible by /-f 1, as it is easily seen. It is well

known that the same holds good for Q. Moreover there exists always a prime

p for which / belongs to exponent 2m and the same holds good for 2 since w=^3

by a lemma of C. Chevalley and G. Azumaya.J5) Therefore G has an auto-

morphism of order p which fixes all the elements of the centre of G. Thus

we have

LEMMA 3. Let G be a group in question. Then G has an automorphism

of prime order for which all the elements of Cj{G) are fixed and G/Ci(G) is

irreducible.

Remark. It is easily seen that G has Γ-m characters of degree 1 and /—I

faithful characters of degree lm. The same holds good for 2.

Groups of the second kind. Groups of this kind is divided into two sub-

families.

(1) Let p be a prime and let q be a prime for which p belongs to ex-

ponent /. Let Q be an abelian group of order qf and of type (q, . . . , q). Then

Q has an automorphism π of order p. Let H be a holomorph of Q by {π}.

Since clearly H is Frobeniusean type, it can be easily seen that H has a faithful

irreducible representation of degree p which is realizable in GF[j>f]. Let P be

an abelian group of the least order pe {e-ύpf) and of type (p, . . . ,p) which

has an automorphisms group isomorphic to H. Let G be the holomorph of P

by H. The totality of such G's forms the one subfamily of groups of the

second kind.

(2) Let Q be a groups of order q2m+i in Lemma 3. Then Q has an auto-

morphism π of order p for which q belongs to exponent 2m by Lemma 3. Let

H be a holomorph of Q by {π}. Since the centre of Q is of order q, H has a

faithful ^-modular irreducible representation, by a theorem of T. Nakayama,I6)

which is of degree qm and is realizable in GF\jp2m2 or GF\J>2 according as q>2

I5> G. Azumaya, Elementary proof of a theorem in number theory, Z-S-S-D. 1187 (1944),

pp. 189-196 (in Japanese).

C. Chevalley, Sur la theΌrie du corps de classes dans les corps finis et les corps locaux,

Jour. Coll. Sci., Tokyo 2 (1933), pp. 365-476.
161 T. Nakayama, Finite groups with faithful irreducible and directly indecomposable

modular representations, Proc. Acad. Japan 23 (1947), pp. 22-25.
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or <7 = 2, as it is easily seen. More finely all the irreducible representations of

H are ^-modular irreducible by a theorem of M. Osima,lT^ as is also easily seen.

Let P be an abelian group of the least order p and of type (p, . . . ,p) which

has a group of automorphisms isomorphic to H. Let G be a holomorph of P

by H. The totality cf such G's forms the other subfamily of groups of the

second kind.

We describe some properties of a group G belonging to the family of the

second kind. G has no normai j>-Sylow subgroup. But 8(F)=P. Therefore G

has only one block i.e. 1-block by a Lemma of R. Brauer.is) G is not ̂ -normal

in the sense of O. Grύn.19) In fact, if G is ^-normal then we see readily that

Sp is abelian. This is absurd.

Example. Let G be a group of the second kind. Let Gn be the w-pie direct

product of G. Let Pn be the largest normal j^-subgroup of G. Then G has only

one block i.e. 1-block, but Sp : Pn=Pn>

THEOREM 2. Let P be the largest normal p-subgroup of a soluble group G

and distinct from a p-Sylow subgroup Sp of G. Then the centralizer 3(P) of P

in G is not a p subgroup, if G has no group of the second kind as an associated

group.

Proof. We apply the induction argument over the order of G and assume

that the assertion is valid for all groups of smaller orders.

Let H be a normal maximal subgroup of G over P. Then the largest

normal ^-subgroup of H is again P. If P is not a p-Sylow subgroup of H9 then

the centralizer of P in H is not a ^-subgroup by the induction hypothesis, and,

of course, 3(P) is not a >subgroup. So we may assume that there is no such

a normal maximal subgroup of G over P. Therefore we can readily see that

the factor commutator group of G is a ί-group and Sp/P is a cyclic group of

order p.

Next we may assume that there is one and only one normal maximal

subgroup H^P Sq of G over P, where Sq is a tf-Sylow subgroup of G and q*p.

Suppose G^Sp Sq. If Sp is not normal in SP S(J for some prime divisor q of the

order of G, then the centralizer of P in Sp*Sq is not a jf?-subgroup by the induc-

tion hypothesis, and, of course, 3(P) is not a p-subgroup. If Sp is normal m

Sp-S0 for every prime q, then Sp is normal in G9 which is a contradiction.

See 5>.

R. Brauer, On a conjecture by Nakayama, Trans. R. S. of Canada (1947).

H. Zassenhaus, Lehrbuch der Gruppentheorie I, (1937).
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Therefore G = Sp Sq and H=P SQ is the normal maximal subgroup of G contain-

ing P.

P may be assumed to be a minimal normal subgroup of G. In fact, let Pi

be a minimal normal subgroup of G which is contained in the centre of P.

And let A be an element of Sp which is not contained in P. Consider the

group K=Pι {A) Sa, joining Pi and {A}*SQί for clearly we may assume that

A is contained in the normalizer of SQ in G. First we suppose K=G. If Ap*e,

then Ap is clearly contained in the centre of G. Since G/{AP) has no normal

ĵ -Sylow subgroup as in G, 3(P/{AP}) is not a ^-subgroup by the induciton

hypothesis. Let B be an element *?e of 3(P/{AP}) of order prime to p. Then

B contains an element B of G of order prime to p, such that [P, B~\^{AP).

Since {^} is contained in the centre of G, we have [P, JB^] = [;P, BJ^^e.

Since [P, £]E{A^}, we have [P, £ ] = *?. Thus £ is contained in %{P) and

therefore 3(P) is not a ^-subgroup. If Ap=e, then P=Pz and P is a minimal

normal subgroup of G. Secondly we suppose K*G. Put Kf\ P=P2. Since clearly

K has no normal ^-Sylow subgroup as in G, the centralizer 3κ{P«) of P2 in K

is not a ^-subgroup by the induction hypothesis. Put Q=SQ(3κ(P2)) Then it

can be easily shown that Q is the largest normal (̂ -subgroup of K. First we

suppose Q = SΨ Since clearly GjPi has no normal ^-Sylow subgroup as in G,

S(P/Pi) is not a ^subgroup of G/Pι by the induction hypothesis. Let B^e be

an element of S{P/Pi) of order prime to >̂. Then B clearly contains an ele-

ment B of G of order prime to ./>, such that [P, B ] E P J . Since PjϋP 2 and

P,.{B} = P2x{B}9 it can be easily shown [P, 5^] = [P, J3]*p = e. Since [P, J5]

ϋPz, we have [P, £ ] = e. Thus £ is contained in 3(P) and therefore 3(P) is not

a ^-subgroup. Secondly we suppose Q^Sη. Consider K/Q. If K/Q has no normal

p-Sylow subgroup, it can be easily shown as above that K/Q has a normal q-

subgroup # M , which is not the case by the maximality of Q. Therefore K/Q

has the normal^-Sylow subgroup. Then Pi {A} Q is normal in K and therefore

P>{A} Q*ΪG is normal in G. Since the index of P {A} Q in G is prime to j£>,

this is a contradiction. Thus we can assume that P is a minimal normal sub-

group of G.

Let Q'P/P be a normal <7-subgroup of G/P and be distinct from a #-Sylow

subgroup. If Q Sp has no normal p-Sylow subgroup, then the centralizer of P

in Q Sp is not a ^-subgroup by the induction hypothesis, and, of course, 3(P)

is not a ^-subgroup. Now we suppose that Q Sp has the normal p-Sylow sub-

group. Then the index of 3(Q P/P) in G/P is prime top. Therefore ${Q P/P)

coincides with G/P, i.e. Q P/P is contained in the centre of G/P. Therefore

we have [G, £]EP. In particular [S9, ©]ΞP. Since clearly [S?, ζQESy, we
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have [βq, Q~]~e, i.e. Q is contained in the centre of Sq. Since we may take the

last but one term of the upper central series of SQ as such a Q, Sq may be

assumed to be at mosΐ class 2. Therefore if q>2 the totality of elements of

orders at most q of Sq forms a characteristic subgroup Ώi(Sq) of Sα, which is

verified by a comparatively simple direct calculation or by a theorem in the

theory of regular £>-groups of P. Hall.

Now it does not happen the case that Sq is cyclic and not of order q. In

fact, let Sη = {A} be of order qn where n^2. And let AP be transformed into

AXP by an element BP of order p of G/P. Then AqP is transformed into AQXP.

Since {AQ}P/P is contained in the centre of G/P, we have qx = q (mod. qn)9

whence #==/ (mod. qn~*) and therefore Λ^ΞΞI (mod. qn). On the other hand, AP

is transformed into AχpP by BPP=P, so we have xp^l (mod. qn). Then we

have #Ξ=1 (mod. qn)* This is a contradiction.

We suppose that the assertion is not true for G. Then we have %(P)=P«

And we regard P as a vector space over the prime field GF[J>2 of characteristic

p. Then S(P)=P shows that G/P has a faithful representation U in GF[i>],

where P is the representation module. Since the order of G/P is divisible by p9

we stand on the modular case. Since P is minimal, the representation U is irre-

ducible in GF[_p~\. Thus U is an irreducible, faithful representation of G/P in

GF[pl. Now it can be easily shown that the join of minimal normal subgroups of

G/P is Ωi{Cι(SfI))P/P. First we suppose S ^ i ^ C t S * ) ) . Then £,(Cj(Sβ))P/P

is contained in the centre of G/P, and therefore is of order q by a theorem

of T. Nakayama,20) Thus, in such a case, Ci(Sfl) is cyclic. In particular,

if Sq is abelian, then Sq is cyclic which is not the case. Therefore Sq is not

abelian. If q>2 and Sq^Ω^Sq), Ωi(Sq) is contained in the centre of So as above,

and therefore is of order q. Thus Sq is cyclic by a well known theroem, which

is not the case. Therefore if q>2 we have Sq-Ωi(Sq). And since clearly

Sq P/P has no normal proper subgroup of G/P distinct from Cι(SQ) P/P9 G

is a group of the second kind by Lemma 3. This is a contradiction. If

α = 2, we put Cι{S2)~{A}. Suppose A-^e. Since the commutator subgroup

of So is of order 2 as it can be readily shown, we have either {Ω2{S2)}^S>

where Ω«(S>>) is the totality of elements of order at most 4 of S2 or that

S2P/P is the join of proper normal subgroups of G/P. The latter case

clearly does not occur. Then {J22(S:)} is contained in the centre of S2 and

therefore is a cyclic group of order 4. Then S is cyclic by a well knwon

theorem, which is not the casβc Therefore A2-e. Then as in the case q>29

Lemma 3 can be applied and we see that G is a group of the second kind.

2°) See 1Γ .̂
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This is a contradiction. Secondly we suppose SQ=Ωi(Ci(Sq)). Then clearly

Sq is abelian and is of type (q9. . . ,q). If Sq P/P is not a minimal normal

subgroup of G/P, we can readily see that SqP/P is the join of smaller

normal subgroups of G/P. It is absurd. Therefore SqP/P is minimal. Then

G is a group of the second kind. This is a contradiction. Thus Theorem 2 is

completely proved.

LEMMA 4. Let P be the largest normal ^-subgroup, whose order is pd, of a

soluble group G. Let PN/P be a normal subgroup, whose order is prime to p,

of G/P. Let Ku . . . ,Kr be the classes of conjugate elements of G of defect d

which are contained in /Wand S(P). Then G has at least r characters of defect

d which are linearly independent mod. p on Kl9 . . . , Kr, where p is one of the

prime ideal divisors of p in the algebraic number field generated by characters

of G and its subgroups over the rational number field.

Proof The case P=e is proved by Lemma 1, and the case P=Sp is

known.21) Suppose P*SP. Then PN*G. Let H be* a normal maximal subgroup

of G over PN. As for the remainder, we have a proof by the same way as in

Lemma 1, applying a theorem of R. Brauer22) in place of the applied theorem

of R. Brauer and C. Nesbitt.

THEOREM 3. Let P be the largest normal p subgroup of order pa of a solu-

ble group G, Then G has at least one character of defect d with P as its

defect group, if G has no group of the first and the second hinds as asscciated

groups.

Proof. By a theorem of R. Brauer and C. Nesbitt23) the assertion is trivial

for the case P=SP. Omitting this case, we suppose P^Sp. Applying the in-

duction argument over the order of G, we assume that the assertion is valid for

all groups of smaller orders.

Let N/P be the largest normal subgroup of G/P with order prime to p.

We can assume that G/P has a >Sylow complement Hp{G/P), and N/P

-Hp(G/P), in the same way as in the proof of Theorem 1. In fact, if N/P

*HP(G/P), then NSP*G. Therefore NSP has a character of defect d by the

induction hypothesis, if NSp has P as its largest normal ^-subgroup. Now

suppose that the largest normal ^-subgroup of NSp contains properly P. Then

the centralizer of N/P in G/P is of order divisible by p, as it can be readily

2 I> S e e s>.
22> S e e •).
2*> S e e '*>.
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seen. Let NJP be the largest normal subgroup of G/P with order prime to p

which is contained in 3(N/P). Obviously Ni/P^N/P. Let PjiV,/P be a normal

subgroup of G/P which is contained in $(N/P) and is minimal over Nil P.

Since P1/P^3(N/P) and NJP^N/P, P.N./P^PJPxNJP. Then P> is a normal

^-subgroup of G containing P properly. This is a contradiction. Therefore

NSp actually has a character of defect d with P as its defect groups. Then

G has at least one character of defect d with P as its defect group by Lemma

4, because there is in NSp, and therefore in G, at least one class of conjugate

elements of defect d which is contained in NDΆ(P) by a theorem of R.

Brauer.24) So we consider the case where Hp{G/P)=N/P.

Since 3 ( P ) is not a ^-subgroup by Theorem 2, we may denote ${P)-L P%

where L^{e) is of order prime to p. Clearly 3(P) is normal in G. On

the other hand, L P is normal in G, since G/P is primary decomposable.

Therefore 3 ( P ) Γ[L-P=L*P** = LxP** is normal in G, whence L is normal

in G. Thus L is a normal subgroup ^{e} of G whose order is prime to p.

It is obvious that L is the largest of normal subgroups of G whose orders are

prime to p.

We can assume that G has a ^-Sylow complement Hp arid L~HP. In fact,

suppose L^Hp and consider G/L. If SpL/L is normal in G/Z,, the index of SPL

in G is prime to p. Obviously P is the largest normal /^-subgroup in SpL, too,

as in G. Therefore SpL has a character of defect d with P as its defect group

by the induction hypothesis. Then we have shown in a previous paper25- that

G also has a character of defect d with P as its defect group in such a case.

Therefore we may suppose that SPL/L is not normal in G/L. Let PiL/L be

the largest normal ^-subgroup of G/L. Obviously PiBP. By the induction

hypothesis G/L has a character which has P\L!L as its defect group. Therefore

G/L has a ^-regular element x^L which is contained in S(PiL/L) by a theorem

of R. Brauer."Γ>ΐ Let x be an element of x. Then |>, PjLJiiZ,. Therefore [>,

Pj]EL whence [#, P ] ^ Z . Since obviously [>, P ] i P , we have finally [>, P ]

= e, i.e. x is contained in 3 ( P ) . Then ίc-L, which is a contradiction. Therefore

it can be assumed to be Hp=L. In particular G = 3(P)Sp.

Last we consider G/P. Since G/P has no normal ^subgroup =¥{<?}, by the

maximality of P, G/P has a character j£ of defect 0 by Theorem 1. Applying

24> See 6>.
25) N. Itό, Some studies on group characters, Nagoya Math. J. 2 (1951), pp. 17-28.
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a theorem of R. Brauer,27) we can readily see that % is a character of G of
defect d with P as its defect group. Thus Theorem 3 has been completely
proved.

Mathematical Institute,
Nagoya University

See 6 ).




