SOME CONSEQUENCES OF MARTIN'S AXIOM AND THE NEGATION OF THE CONTINUUM HYPOTHESIS

JUICHI SHINODA*)

§ 0. W. Sierpisnki [3] demonstrated 82 propositions, called $\mathrm{C}_{1}-\mathrm{C}_{82}$, with the aid of the continuum hypothesis. D. A. Martin and R. M. Solovay remarked in [2] that 48 of these propositions followed from Martin's axiom (MA), 23 were refuted by MA $+2^{\mathrm{N}_{0}}>\boldsymbol{K}_{1}$ and three were independent of MA $+2^{\mathbf{N}_{0}}>\boldsymbol{K}_{1}$. But the relation of the remaining eight propositions to MA $+2^{\aleph_{0}}>\boldsymbol{K}_{1}$ has been unsettled.

In this paper, we shall show at least five of them $\left(\mathrm{C}_{8}, \mathrm{C}_{13}, \mathrm{C}_{61}, \mathrm{C}_{62}\right.$ and $\left.\mathrm{C}_{70}\right)$ are also refuted by MA $+2^{\mathrm{N}_{0}}>\mathbf{K}_{1}$.

The following table gives the relation of $\mathrm{C}_{1}-\mathrm{C}_{82}$ to MA $+2^{\mathrm{N}_{0}}>\boldsymbol{S}_{1}$.

| | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | \times | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \times | \bigcirc | $\times *$ | \times |
| 10 | \times | \times | \times | $\times *$ | \bigcirc | \times | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
| 20 | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \times | \times | \times | \times |
| 30 | \bigcirc | \bigcirc | \times | \times | \times | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
| 40 | \bigcirc | $?$ | $?$ | \bigcirc |
| 50 | \times | \times | \triangle | \bigcirc |
| 60 | \bigcirc | $\times *$ | $\times *$ | \bigcirc | \bigcirc | \times | \times | \times | \times | \times |
| 70 | $\times *$ | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \times | \triangle | \times |

By \bigcirc, we denote the propositions following from MA, by \times the propositions refuted by $\mathrm{MA}+2^{\mathrm{K}_{0}}>\boldsymbol{K}_{1}$, by \triangle the propositions independent of MA $+2^{\mathrm{N}_{0}}>\boldsymbol{\aleph}_{1}$ and by ? the propositions whose relation to MA + $2^{\mathrm{N}_{0}}>\boldsymbol{K}_{1}$ we do not know about at present.

Let $\mathscr{P}=\langle P, \leq\rangle$ be a partially ordered set. A subset X of P is said to be dense in \mathscr{P} if, for every $p \in P$, there is $q \in X$ such that $p \leq q$. If \mathscr{F} is a collection of dense subsets of P, a subset G of P is said to be an \mathscr{F}-generic filter on \mathscr{P} if G has the following properties:

[^0](1) if $p, q \in P, p \in G$ and $q \leq p$, then $q \in G$;
(2) if $p, q \in G$, then there is $r \in G$ such that $p \leq r$ and $q \leq r$;
(3) if $X \in \mathscr{F}$, then $X \cap G \neq 0$.

If $p, q \in P$, then p and q are said to be compatible if there is $r \in P$ such that $p \leq r$ and $q \leq r . \mathscr{P}$ is said to have the countable chain condition if every collection of pairwise incompatible elements of P is countable.

Martin's axiom (MA) is the following statement:
If $\mathscr{P}=\langle P, \leq\rangle$ is a partially ordered set having the countable chain condition and \mathscr{F} is a collection of dense open subsets of P of cardinality $<2^{\mathrm{N}_{0}}$, then there exists an \mathscr{F}-generic filter on \mathscr{P}.
§ 1. In this section, we shall show $\mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{61}$ and C_{62} are refuted by $\mathrm{MA}+\neg \mathrm{CH}$. From [2], we quote the following lemma.

Lemma 1. Let A and B be collections of subsets of ω, each of cardinality $<2^{\aleph_{0}}$, such that if $x \in B$ and K is a finite subset of A then $x-\cup K$ is infinite. If we assume MA, then there exists a subset t of ω such that $x \cap t$ is finite if $x \in A$ and infinite if $x \in B$.

Let ${ }^{\omega} \omega$ be the set of all functions from ω into ω, (more generally, x_{y} be the set of all functions from x into y). Following Sierpinski [3], we define a partial ordering $<$ on ${ }^{\omega} \omega$ as follows:

$$
f<g \leftrightarrow(\exists k \in \omega)(\forall n \geq k)[f(n)<g(n)] .
$$

The following lemma is due to K. Kunen [1].
Lemma 2. Let F be a subset of ${ }^{\omega} \omega$ of cardinality $<2{ }^{{ }^{\circ}}$. If we assume MA, then there exists $g \in{ }^{\omega} \omega$ such that if $f \in F$ then $f<g$.

From Lemma 2, we have the following proposition, which is the negation of C_{9}.

Proposition 1 (Assume MA and $2^{\mathbf{N}_{0}}>\boldsymbol{K}_{1}$). Let E be an uncountable subset of \boldsymbol{R}, the set of reals, and $\left\langle f_{n}: n \in \omega\right\rangle$ be a convergent sequence of functions from E to \boldsymbol{R}. Then there exists an uncountable subset N of E such that $\left\langle f_{n}: n \in \omega\right\rangle$ is uniformly convergent on N.

Proof. We may assume E is of cardinality \boldsymbol{K}_{1}. Let f be the limit of $\left\langle f_{n}: n \in \omega\right\rangle$. Then for any $x \in E$ and $m \in \omega$, there is $k \in \omega$ such that if $n \geq k$ then $\left|f_{n}(x)-f(x)\right|<1 / m+1$. Take such $k \in \omega$ and denote it by $\varphi_{x}(m)$. Then we can define \boldsymbol{K}_{1} functions φ_{x} from ω into ω. Using

Lemma 2, we can find $\varphi \in{ }^{\omega} \omega$ such that $\varphi_{x}<\varphi$ for all $x \in E$. For each $x \in E$, let k_{x} denote the least $k \in \omega$ such that $\varphi_{x}(m)<\varphi(m)$ for all $m \geq k$. Since E is uncountable, there is $k \in \omega$ and an uncountable subset N of E such that if $x \in N$ then $k_{x}=k$. Then for any $x \in N$ and $m \geq k$, if $n \geq \varphi(m)$ then $\left|f_{n}(x)-f(x)\right|<1 / m+1$. This means $\left\langle f_{n}: n \in \omega\right\rangle$ converges uniformly to f on N.

Since C_{8} and C_{9} are equivalent, C_{8} is also refuted by $\mathrm{MA}+2^{\mathrm{K}_{0}}>\boldsymbol{K}_{1}$.
Recall that an F_{o}-set is the union of a countable family of closed sets and a G_{δ}-set is the intersection of a countable family of open sets.

Lemma 3. ${ }^{1)}$ Let X be a separable metric space of cardinality $<2^{\text {No }_{0}}$. If we assume MA, then every subset of X is F_{o} and G_{δ} in X.

Proof. Let D be any subset of X and $\left\{B_{i}: i \in \omega\right\}$ be a basis for open sets of X such that all B_{i} are non-empty. For each $x \in X$, let $s_{x}=$ $\left\{i \in \omega: x \in B_{i}\right\}$. If we put $A=\left\{s_{x}: x \in X-D\right\}$ and $B=\left\{s_{y}: y \in D\right\}$, then A and B are of cardinality $2^{\aleph_{0}}$. It is easily checked that if $y \in D$ and x_{1}, $\cdots, x_{n} \in X-D$ then $s_{y}-\left(s_{x_{1}} \cup \cdots \cup s_{x_{m}}\right)$ is infinite. By Lemma 1, we can find a subset t of ω such that $s_{x} \cap t$ is finite if $x \in X-D$ and $s_{y} \cap t$ is infinite if $y \in D$. For each $n \in \omega$, let

$$
K_{n}=\bigcup_{\substack{i>n \\ i \in t}} B_{i}
$$

And let $K=\bigcap_{n \in \omega} K_{n}$. Then K is a $G_{\dot{\delta}}$-set of X. In order to prove that D is a $G_{\dot{i}}$-set of X, it suffices to prove the following (1) and (2):

$$
\begin{equation*}
D \subseteq K \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
(X-D) \cap K=0 \tag{2}
\end{equation*}
$$

Let y be an arbitrary element of D and $n \in \omega$. Since $t \cap s_{y}$ is infinite, there is $i \in t \cap s_{y}$ such that $i>n$. Then $y \in B_{i}$ and $B_{i} \subseteq K_{n}$, so $y \in K_{n}$. Since y and n are arbitrary, we have (1). Let x be any element of $X-D$. Since $t \cap s_{x}$ is finite, there is $n \in \omega$ such that if $i \in t$ and $i>n$ then $i \notin s_{x}$. For such $n \in \omega$, we have $x \notin K_{n}$, and so $x \notin K$. Thus we have (2).

Replacing D with $X-D$, we have that $X-D$ is a G_{i}-set of X. Hence D is an F_{σ}-set of X. Therefore D is F_{σ} and G_{σ} in X.

[^1]The following proposition is the negation of C_{62}.
Proposition 2. (Suppose MA and $2^{\mathfrak{N}_{0}}>\boldsymbol{K}_{1}$). Let E be any uncountable set of reals and f be any function from E into \boldsymbol{R}, the set of reals. Then there exists an uncountable subset N of E such that $f \upharpoonright N$, the restriction of f to N, is continuous on N.

Proof. We may assume E is of cardinality \boldsymbol{K}_{1}. Let F be an arbitrary closed set in \boldsymbol{R}. Then, by Lemma 3, $f^{-1}(F)$, the inverse image of F, is a $G_{\dot{j}}$-set of E. Thus f_{a} is Baire function of class $\leqq 1$. As is well-known, every Baire function of class ≤ 1 whose range is a subset of \boldsymbol{R} is the limit of a sequence of continuous functions. Let $\left\langle f_{n}: n \in \omega\right\rangle$ be a sequence of continuous functions from E to \boldsymbol{R} which converges to f. Then, by Proposition 1, there exists an uncountable subset N of E such that $\left\langle f_{n}: n \in \omega\right\rangle$ converges uniformly to f on N. Since each $f_{n} \upharpoonright N$ is continuous on N, so is $f \upharpoonright N$.

This proposition implies the following proposition, which is the negation of C_{61}.

Proposition 3. (Suppose MA and $2^{\boldsymbol{N}_{0}}>\mathbf{K}_{1}$). There is a subset F of ${ }^{\boldsymbol{R}} \boldsymbol{R}$ of cardinality $2^{\boldsymbol{N o}_{0}}$ such that if $g \in{ }^{\boldsymbol{R}} \boldsymbol{R}$ then for some $f \in F$ the set $\{x \in \boldsymbol{R}: f(x)=g(x)\}$ is uncountable.

Proof. Let F be the set of Baire functions from \boldsymbol{R} into \boldsymbol{R}. Then clearly, F is of cardinality $2^{\boldsymbol{N}_{0}}$. By Proposition 2 , if $g \in{ }^{\boldsymbol{R}} \boldsymbol{R}$, then there exists an uncountable subset N of \boldsymbol{R} such that $g \upharpoonright N$ is continuous on N. The following is a well-known theorem.

Let X be an arbitrary metric space, let Y be a complete separable space and A be a subset of X. Then every Baire function from A to Y can be extended to a Baire function from X into Y.

Since $f \upharpoonright N$ is a Baire function on N, by this theorem, there exists $f \in F$ such that $f \upharpoonright N=g \upharpoonright N$. Thus the set $\{x \in \boldsymbol{R}: f(x)=g(x)\}$ includes N, and is uncountable.
§ 2. Let $[\omega]^{\aleph_{0}}$ denote the set of all infinite subsets of ω. We define a relation \subseteq^{*} on $[\omega]^{\mathrm{N}_{0}}$ as follows:

$$
a \subseteq^{*} b \leftrightarrow a-b \text { is finite, where } a, b \in[\omega]^{N_{0}} .
$$

Intuitively $a \subseteq \complement^{*} b$ iff $a \subseteq b$ almost everywhere.

Lemma. ${ }^{1)}$ Suppose MA. Let Θ be an ordinal such that $\Theta<2^{\aleph_{0}}$, and let $\left\langle a_{\alpha}: \alpha\langle\Theta\rangle\right.$ be a sequence of elements of $[\omega]^{\aleph_{0}}$ such that if $\alpha<\beta<\Theta$ then $a_{\beta} \subseteq \subseteq^{*} a_{\alpha}$. Then there exists $a \in[\omega]^{N_{0}}$ such that if $\alpha<\Theta$ then $a \subseteq * a_{\alpha}$.

Proof. Let $A=\left\{\omega-a_{\alpha}: \alpha<\Theta\right\}$ and $B=\left\{a_{\alpha}: \alpha<\Theta\right\}$. Then clearly, A and B are of cardinality $<2^{\aleph_{0}}$. If $\alpha, \alpha_{1}, \cdots, \alpha_{n}<\theta$, then

$$
a_{\alpha}-\bigcup_{i=1}^{n}\left(\omega-\alpha_{\alpha_{i}}\right)=a_{\alpha} \cap a_{\alpha_{1}} \cap \cdots \cap a_{\alpha_{n}} .
$$

It is easily checked the intersection of finite elements of B is an element of $[\omega]^{K_{0}}$. Thus A and B satisfy the condition of Lemma 1 of $\S 1$. Therefore there is a subset a of ω such that $a-\alpha_{\alpha}$ is finite and $a \cap a_{\alpha}$ is infinite for any $\alpha<\Theta$. For such $a \subseteq \omega$, we have $a \in[\omega]^{N_{0}}$ and $a \subseteq{ }^{*} a_{\alpha}$.

From this lemma, we obtain the following proposition, which is the negation of C_{13}.

Proposition. (Assume MA and $2^{\mathfrak{\aleph}_{0}}>\boldsymbol{K}_{1}$). Let $\left\langle f_{n}: n \in \omega\right\rangle$ be a sequence of functions from \boldsymbol{R} to \boldsymbol{R}. Then there exists a sequence $\left\langle m_{k}: k \in \omega\right\rangle$ of natural numbers such that $m_{0}<m_{1}<\cdots<m_{k}<\cdots$ and the set $\left\{x \in \boldsymbol{R}:\left\langle f_{m_{k}}(x): k \in \omega\right\rangle\right.$ converges to a finite or infinite value $\}$ is uncountable.

Proof. ${ }^{2)}$ For each $a \in[\omega]^{\aleph_{0}}$, let a^{\prime} denote the sequence $\left\langle n_{k}: k \in \omega\right\rangle$ such that $n_{0}<n_{1}<\cdots<n_{k}<\cdots<\cdots$ and $a=\left\{n_{k}: k \in \omega\right\}$. By the limit of the sequence $\left\langle f_{n}(x): n \in a\right\rangle$, we mean the limit of the sequence $\left\langle f_{n_{k}}(x): k \in \omega\right\rangle$ in the usual sense, where $\left\langle n_{k}: k \in \omega\right\rangle=\alpha^{\prime}$. Let E be a subset of \boldsymbol{R} of cardinality $\boldsymbol{\aleph}_{1}$. Order E into a transfinite sequence of type ω_{1} as follows:

$$
x_{0}, x_{1}, \cdots, x_{\alpha}, \cdots \quad\left(\alpha<\omega_{1}\right)
$$

By transfinite induction on α, we define a sequence $\left\langle a_{\alpha}: \alpha<\omega_{1}\right\rangle$ of elements of $[\omega]^{\mathrm{K}_{0}}$ such that $a_{\beta} \subseteq{ }^{*} a_{\alpha}$ if $\alpha<\beta<\omega_{1}$ and the sequences $\left\langle f_{n}\left(x_{\alpha}\right): n \in a_{\alpha}\right\rangle$ with $\alpha \in \omega_{1}$ are convergent. The sequence $\left\langle f_{n}\left(x_{0}\right): n \in \omega\right\rangle$ includes a convergent subsequence $\left\langle f_{n_{k}}\left(x_{0}\right): k \in \omega\right\rangle$, whose limit is finite or infinite. So, we define a_{0} to be $\left\{n_{k}: k \in \omega\right\}$. Assume that a_{β} with $\beta<\alpha$ are defined and $a_{\gamma} \subseteq * a_{\beta}$ if $\beta<\gamma<\alpha$. Then, by the above lemma, we can find $a \in[\omega]^{\aleph_{0}}$ such that $a \subseteq \subseteq^{*} \alpha_{\beta}$ for all $\beta<\alpha$. The sequence $\left\langle f_{i}\left(x_{\alpha}\right)\right.$:

[^2]$i \in a\rangle$ includes a convergent subsequence $\left\langle f_{i_{k}}\left(x_{\alpha}\right): k \in \omega\right\rangle$. So, we define a_{α} to be $\left\{i_{k}: k \in \omega\right\}$.

By the lemma of this section, let b be an element of $[\omega]^{N_{0}}$ such that $b \subseteq * a_{\alpha}$ for all $\alpha<\omega_{1}$. For every $\alpha<\omega_{1}$, since $b \subseteq{ }^{*} a_{\alpha}$, the sequence $\left\langle f_{m}\left(x_{\alpha}\right) ; m \in b\right\rangle$ is convergent. If we put $\left\langle m_{k}: k \in \omega\right\rangle=b^{\prime}$, then the set $\left\{x:\left\langle f_{m_{k}}(x): k \in \omega\right\rangle\right.$ is convergent $\}$ includes E, and is uncountable.
§3. Let E be a subset of \boldsymbol{R} and $a \in \boldsymbol{R}$. By $E(a)$ we denote the set $\{x+a: x \in E\}$.

Without MA, we can prove the following proposition.
Proposition. (Suppose $2^{\boldsymbol{N}_{0}}>\boldsymbol{\aleph}_{1}$). If E is an uncountable subset of \boldsymbol{R} such that its complement is of cardinality $2^{\boldsymbol{N}_{0}}$, then there exists $a \in \boldsymbol{R}$ such that $E(a) \triangle E$, the symmetric difference of $E(a)$ and E, is uncountable.

Proof. Suppose, on the contrary, that for any $a \in R, E(a) \triangle E$ is countable. Let N be a subset E of cardinality \boldsymbol{S}_{1}. Then we show $\bigcap_{x \in N}[\boldsymbol{R}-E(-x)] \neq 0$. If $\bigcap_{x \in N}[\boldsymbol{R}-E(-x)]=0$, then $\boldsymbol{R}=\bigcup_{x \in N} E(-x)$. On the other hand

$$
\bigcup_{x \in N} E(-x)=\bigcup_{x, y \in N}[E(-x) \triangle E(-y)] \cup \bigcap_{x \in N} E(-x)
$$

Therefore,

$$
A \cup \bigcap_{x \in N} E(-x)=\boldsymbol{R}, \quad \text { where } \quad A=\bigcup_{x, y \in N}[E(-x) \triangle E(-y)]
$$

Since A and $\bigcap_{x \in N} E(-x)$ are disjoint, we have $R-\bigcap_{x \in N} E(-x)=A$. Let x be an arbitrary element of N. Then we have $R-E(-x) \subseteq A$. Note that each $E(a) \triangle E(b)$ is countable because $E(a) \triangle E(b)=J(a) \cup K(b)$, where $J=E(b-a) \Delta E, K=E(a-b) \Delta E$. Therefore A is of cardinality $\leq \boldsymbol{K}_{1}$. This contradicts the hypothesis that the complement of E is of cardinality $2^{\mathrm{N}_{0}}$. Thus $\bigcap_{x \in N}[R-E(-x)] \neq 0$.

Let $a \in \bigcap_{x \in N}[\boldsymbol{R}-E(-x)]$, then $N \subseteq \boldsymbol{R}-E(-a)$ because $a \notin E(-x)$ iff $x \notin E(-a)$. Therefore $E(-a) \triangle E$ includes N, and is uncountable.

The following corollary is the negation of C_{70}.
Corollary. (suppose MA and $2^{\mathrm{N}_{0}}>\boldsymbol{K}_{1}$). Let E be a non-measurable set of reals. Then for some $a \in R, E(a) \triangle E$ is uncountable.

Proof. If we assume MA, then every set of reals of cardinalily
$<2^{\mathrm{K}_{0}}$ is of Lebesgue measure $0([2, \S 4])$. Hence, if E is non-measurable, the E and its complement are of cardinality $2^{\mathrm{N}_{0}}$. Thus E satisfies the condition of the proposition.
§4. A set E of reals is said to have the property $(M)^{1)}$ if, for any collection \mathscr{U} of open sets satisfying the condition

$$
\begin{equation*}
(\forall x \in E)(\forall \varepsilon>0)(\exists U \in \mathscr{U})[\delta(U)<\varepsilon \wedge x \in U] \tag{*}
\end{equation*}
$$

where $\delta(U)$ is the diameter of U, there is a sequence $\left\langle U_{n}: n \in \omega\right\rangle$ of elements of \mathscr{U} such that $E \subseteq \bigcup_{n \in \omega} U_{n}$ and $\lim _{n \rightarrow \infty} \delta\left(U_{n}\right)=0$.

As a direct application of MA, we have the following proposition.
Proposition. (Suppose MA). Every set of reals of cardinality $<2^{\mathrm{Ko}_{0}}$. has the property (M).

Proof. Let E be a set of reals of cardinality $<2^{\kappa_{0}}$, and \mathscr{U} be a collection of open sets satisfying the condition (*). For each $n \in \omega$, there is a sequence $\left\langle U_{n m}: m \in \omega\right\rangle$ of elements of \mathscr{U} such that $E \subseteq \cup_{m \in \omega} U_{n m}$ and $\delta\left(U_{n m}\right)<1 / n+1$ for all $m \in \omega$. We define a partially ordered set $\mathscr{P}=$ $\langle P, \leq\rangle$ as follows:

$$
\begin{aligned}
& P=\{p: p \text { is a finite function with } \operatorname{dom}(p) \cup \operatorname{rang}(p) \subseteq \omega\}, \\
& p \leq q \leftrightarrow p \subseteq q .
\end{aligned}
$$

Then clearly, \mathscr{P} satisfies the countable chain condition. For each $x \in E$, if we put $X_{x}=\left\{p \in P: x \in \bigcup_{n \in \operatorname{dom(p)}} U_{n p(n)}\right\}$, then X_{x} is dense in \mathscr{P}. Let $\mathscr{F}=\left\{X_{x}: x \in E\right\}$. Then \mathscr{F} is of cardinality $<2^{\aleph_{0}}$, so there is an \mathscr{F} generic filter G on \mathscr{P}. If we put $f=\bigcup G$, then f is a function with $\operatorname{dom}(f) \subseteq \omega$ and rang $(f) \subseteq \omega$. We define U_{n} as follows:

$$
U_{n}= \begin{cases}U_{n f(n)} & \text { if } n \in \operatorname{dom}(f) \\ U_{n 0} & \text { otherwise }\end{cases}
$$

Then, clearly, $U_{n} \in \mathscr{U}$ and $\lim _{n \rightarrow \infty} \delta\left(U_{n}\right)=0$. Let x be an arbitrary element of E. Since $X_{x} \cap G \neq 0$, there is $p \in G$ such that $x \in \cup_{n \in \operatorname{dom}(p)} U_{n p(n)}$. Since $P \in G$, we have $\bigcup_{n \in \operatorname{dom}(p)} U_{n p(n)} \subseteq \bigcup_{n \in \omega} U_{n}$, so $x \in \bigcup_{n \in \omega} U_{n}$. Therefore E has the property (M).

[^3]§ 5. A set E of reals is said to have the property ($\lambda)^{1)}$ if every countable subset of E is a G_{δ}-set of E.

In this section, we shall show there is a non-measurable set of reals of cardinality $2^{N_{0}}$ with the property (λ).
A set E of reals is said to have the property $\left(S^{*}\right)^{2)}$ if, for every set N of Lebesgue measure $0, E \cap N$ is of cardinality $<2^{N_{0}}$. If a set E is measurable and has positive measure, then E includes a set of measure 0 and cardinality $2^{\mathrm{N}_{0}}$. If we assume MA, then every set of reals of cardinality $<2^{\kappa_{0}}$ is of Lebesgue measure 0 . Therefore every set of reals of cardinality $2^{N_{0}}$ with the property $\left(S^{*}\right)$ is non-measurable. The existence of a non-measurable set of reals of cardinality $2^{n_{0}}$ with the property (λ) follows from the following proposition.

Proposition. (Suppose MA). There is a set E of reals of cardinality $2^{\aleph_{0}}$ with the property $\left(\boldsymbol{S}^{*}\right)$ such that every subset of E of cardinality $<$ $2^{\mathrm{N}_{0}}$ is G_{δ} in E.

Proof. Order the set of all G_{i}-sets of measure 0 into a transfinite :sequence of type $2^{\mathrm{N}_{0}}$ as follows:

$$
N_{0}, N_{1}, \cdots, N_{\xi}, \cdots,\left(\xi<2^{\kappa_{0}}\right) .
$$

By transfinite induction on α, we define a sequence $\left\langle x_{\alpha}: \alpha<2^{\kappa_{0}}\right\rangle$ of reals and a sequence $\left\langle K_{\alpha}: \alpha<2^{\mathrm{K}_{0}}\right\rangle$ of $G_{\dot{\delta}}$-sets of measure 0 . Let $K_{0}=N_{0}$ and x_{0} be an arbitrary element of \boldsymbol{R}. Suppose x_{β} and K_{β} with $\beta<\alpha$ are defined, and let

$$
S_{\alpha}=\bigcup_{\beta<\alpha} K_{\beta} \cup\left\{x_{\beta}: \beta<\alpha\right\} \cup N_{\alpha} .
$$

'Then, by MA, S_{α} is of measure 0 , so $R-S_{\alpha} \neq 0$. Let x_{α} be an arbitrary element of $R-S_{\alpha}$ and K_{α} be the first N_{ξ} such that $S_{\alpha} \cup\left\{x_{\alpha}\right\} \subseteq N_{\xi}$.

Let E be the set $\left\{x_{\alpha}: \alpha<2^{\text {º }_{o}}\right\}$. Then we have
(1) E is of cardinality $2^{\mathrm{N}_{0}}$;
(2) for each $\alpha<2^{\text {º }_{0}}, E \cap N_{\alpha}$ is of cardinality $<2^{\aleph_{0}}$;
(3) $K_{\alpha} \subseteq K_{\beta}$ if $\alpha<\beta<2^{\aleph_{0}}$.

From (1) and (2), E is a set of cardinality $2^{\aleph_{0}}$ with the property (\boldsymbol{S}^{*}).
Let D be an arbitrary subset of E of cardinality $<2^{\mathrm{N}_{0}}$. Since $2^{\mathrm{N}_{0}}$ is a regular cardinal, there is $\alpha<2^{\aleph_{0}}$ such that $D \subseteq\left\{x_{\beta}: \beta \leq \alpha\right\}$. Put

[^4]$X=\left\{x_{\beta}: \beta \leq \alpha\right\}$. Then, by Lemma 3 of $\S 1, D$ is a G_{i}-set in X. Since $X=E \cap K_{\alpha}$ and K_{α} is $G_{\dot{\delta}}$ in R, X is $G_{\dot{\delta}}$ in E. Therefore D is a $G_{\dot{\delta}}$-set in E.

References

[1] K. Kunen, Inaccessibility properties of cardinals, Doctoral Dissertation, Stanford University, 1968.
[2] D. A. Martin and R. M. Solovay, Internal Cohen extensions, Annals of Math. Logic vol. 2 (1970) 143-178.
[3] W. Sierpinski, Hypothèse du contnu, Second Edition (Chelsea, New York, 1956).

Nagoya University

[^0]: Received February 7, 1972. Revised August 24, 1972.

 * The author wishes to express his gratitude to Professors T. Tugué and K. Namba for their valuable suggestions and encouragement.

[^1]: ${ }^{1)}$ This lemma is a slight generalization of that of J. Silver.

[^2]: ${ }^{1)}$ It was pointed out by the referee that this lemma could be proved from Lemma 2 of $\S 1$.
 ${ }^{2)}$ This proof was suggested to the author by Professor Kanji Namba.

[^3]: ${ }^{1)}$ See [3, p. 48]

[^4]: ${ }^{1)}$ See [3, p. 94]
 ${ }^{2)} \mathrm{Cf} .[3, \mathrm{p} .81]$

