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SOME EXAMPLES OF ONE DIMENSIONAL

GORENSTEIN DOMAINS

KEIICHI WATANABE

Introduction.
In this paper, I will prove the following theorems;

THEOREM 1. For given integers n and m such that m ^ 2n, there
exist 1-dimensional local domains which are complete intersections and
have embedding dimension n + 1 and multiplicity m.

THEOREM 2. For given integers n and m such that 4 <^ n <^ m — 1,
there exist 1-dimensional local domains which are Gorenstein with
multiplicity m and embedding dimension n and which are not complete
intersections.

To give these examples I heavily use the theory of the value-semi-
groups of 1-dimensional local domains by Kunz and Herzog ([1], [3]).

§ 1. Review of the theory of value-semigroups of 1-dimensional local
domains ([1], [3]).

In the following, a 'semigroup' always means an additive subsemi-
group of N, the additive semigroup of non-negative integers.

(1) A 'numerical semigroup' is a semigroup H which satisfies two
conditions

1. OeH
2. There exists an integer c such that any integer n ^ c is in H.
(2) The conductor of a numerical semigroup H, denoted by c(H),

is the smallest integer c such that all integers n satisfying n ^ c belong
to H.

(3) We denote by (nl9 ,nk} the semigroup generated by nx, ,
nk <w15 , nk> = {£]*=1 a^ | at e N}.
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(4) We say that {n19 ,nk} is the minimal generator system of a

semigroup H if H = (nλ, ,ftfc> and any proper subset of {nί9 •••,%}

does not generate H. If we suppose that nx < n2 < < nk, this is

equivalent to say that nt $ <nx, , ̂ _j> for 2 ^ i <̂  ά.

When we write H = <n1? ,nΛ>, we agree that {n1? ,wfc} is the

minimal generator system. Minimal generator system of an arbitrary

subsemigroup of N uniquely exists.

(5) A numerical semigroup H is symmetric if for any integer n,

neH&c-l -n^H(c = c(H)).

(6) K[H] = K[Th ft e if ] c KIT] (K is a field and T is an indeter-

minant). K[H]loe the localization of K[H] 'at the origin'. If if is a

numerical semigroup, the integral closure of K[H] in the quotient field

of K[H] is K[T].

If if = <X, , nky, then K[H] = K[Tn\ , Tw*].

(7) We say that a numerical semigroup H is a complete intersec-

tion if the ring K[H] is a complete intersection. When H = ζn19 -,%*>,

and if we consider the homomorphism ΦH: K[Xλ, ,Xk] -* KLff],

ΦH(Xi) = Γπ% ί ί is a complete intersection if and only if Ker ($#) is

generated by ft — 1 elements.

(8) The multiplicity of ϋf, denoted by m(H) is the least positive

integer in H. If H = (nx, , nfc> with nλ <n2 < < nfc, then

(9) The embedding dimension of if, denoted by emb (H), is the

number of the minimal generators of H. If H = <(n1? , nfc), then

emb(fϊ) = fc (recall that {n1? ,nk} is the minimal generator system).

(10) Let H = <%!, , ̂ fc> and fe e H. lί h has different expressions

as linear combinations of n/s, then we say that ft is a relation of iϊ.

For example, if H = <3,4, 5>, 8 = 2-4 = 3 + 5 and 9 = 3-3 = 4 + 5 are

relations of if.

(11) For a relation ft in if = (n19 ,nΛ>, we associate to ft a

vector vΛ e Zfe in the following way. If ft = J]f=1 a^ = J]?=1 6 ^ , then

vh = (ax — 61? a2 — &2, , ak — δfc). In the example in (10), v8 = (— 1,2,

— 1), and v9 = (3, — 1, — 1). Of course vh is not determined uniquely

by vh. But as it is not important in our following arguments, we

agree to fix one such vh.

(12) For H = ζnl9 ,nΛ>, we define;
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M(H) = min hk_γ

.,•••, hk_λ are relations in H and

i!> > vhk^ are linearly

independent in Zk.

For example, if H = <3,4, 5>, M(fl) = 8 + 9 - 1 7 .

Let 72 be an analytically irreducible 1-dimensional Noetherian local

domain. Then the integral closure V of R in the quotient field of R is

a discrete valuation ring. We assume that R and V has the same

residue class field. (Which is true if R = X[ff]loc.) If we denote by v

the valuation attached to V, then ίf^ = v(R) is a numerical semigroup

and we have the following propositions.

PROPOSITION 1. (1) Multiplicity of R = m(HR).

(2) Embedding dimension of K[H]1O0 = emb(iϊ),

(3) i? is Gorenstein if and only if HR is symmetric.

(4) If HR is a complete intersection, then R is a complete inter-

section.

(40 If R = K[H]l00, then the converse of (4) holds.

PROPOSITION 2. ([1], Satz 5.10) If H = (n^ - •,%>, then we have

that M(H) — X]ί=i^ί + 1 ^ e(ίθ, ^<ί the equality holds if and only if

H is a complete intersection.

§2. Examples of 1-dimensional local domains which are complete inter-

sections and have given embedding dimension and multiplicity.

LEMMA 1. Let H1 = (nx, ,nky, a and b be positive integers such

that;

(i) a e H1 and a Φ nt (i = 1, , k).

(ii) a and b are relatively prime.

Then, if we put H = (a, bnίy , bnky (which we will denote by H =

<α, bHλy), we have

(1) H is a complete intersection if and only if ί^ is a complete

intersection.

(2) H is symmetric if and only if H1 is symmetric.

Proof. We consider the canonical homomorphisms Φ^. K[Yί9 , Yk]

-> K[HJ and Φ:K[Y19 , Yk,X] -> K[H] defined by Φ^Y,) = Tn\Φ(X) -

Ta, Φ(Yτ) = Tbni (i = 1,2, - -., fc). We put Ker (Φx) = A2 and A = (A1? X
b

— YfYf2- Yf) where ex, , eΛ are defined by α = 2]*-i e ^ i ( w e fiχ o n e
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such expression). We claim Ker (Φ) = A. Ker (Φ) z> A is obvious. Con-

versely, if f(X, Y19 , Yfc) e Ker (Φ), we can find /0( Y), , / ^ ( Y ) e

., YJ such that / = f0 + Xfx + . . + Xb-ιfb^ (mod A). Hence

As Φ(X*) = Taί and (α, 6) = 1, it follows from Φ(/) = 0,

that Φ(Λ) = 0, i.e. /< e Ker (Φx) = Ax (i = 1, . . . , b - 1).

Now, we have K[H] = K[HJ[Z]/(flr), where g(X, Y) = Xb - Γf - Y?.

Thus we have; i£LH] is a complete intersection (resp. Gorenstein)

^ KIHJIX] is a complete intersection (resp. Gorenstein) & KIHJ is a

complete intersection (resp. Gorenstein). By Proposition 1 we are done.

By Lemma 1, we have semigroups which are complete intersections

and have arbitrarily high embedding dimensions. When embedding

dimension is <̂  3, the converse holds.

PROPOSITION 3. If H is a semigroup which is a complete intersec-

tion and if emb(H) = 3, then H = (a, bHxy where Hι is a semigroup of

emb(H^) = 2 {which is necessarily a complete intersection) and a and b

are integers satisfying the conditions of Lemma 1.

(This proposition is proved by Herzog [2]. But as his proof is con-

siderably long, I give a shorter proof.)

To prove the proposition, we need a lemma.

LEMMA 2. Let H = (nιy - ,nky be a semigroup which is a complete

intersection, ΦH: K[X19 ',Xk] —> K[H] be the canonical homomorphism

and (/i, ,/*_i) the generators of Ker(ΦH). If we denote by Jp the

ideal generated by p variables Xiι9 , Xip, then there exists at most

p — 1 //s which belong to Jp.

COROLLARY. For every variable Xά (1 <; j <̂  fc), one of the //s in-

eludes a monomial of the type X).

Proof of Lemma 2. We consider the ideal A = (Jp,fu ,/fc_i). If

fif - ,fp e JP (for simplicity, we renumber //s), then A = (Jp,fp+1, ,Λ_i)

and A is generated by fc — 1 elements and feί(A) must be <. k — 1. But

on the other hand, dim (K[HJ) = 1 and ΦH(Jp) Φ 0. So, we must have

ht(A) = &. Contradiction!

The corollary is a special case of the lemma when p = ft — 1.

Proo/ o/ Proposition 3. Let H = (nίf n2, n3}, ΦH:

Ker (ΦH) = (/i,/2). By the definition of Φ#, each /< is of the form
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(monomial)-(monomial). Then, by the corollary of Lemma 2, after

renumbering Xt'a and //s, we may assume, fx = X% — Xf, f2 = Z? —

ZfX/. As (/i,/2) is a prime ideal of height 2, /x and f2 must be irre-

ducible and we have (m,ri) = 1, n %2 = m-n3, bnx = en2 + /n 3 . We put

iϊj = <m,w>, nx = α, n2 = dm, n3 = dn. Then α& = d{em + fri). From

(nun2,n3) = 1, we have (α,d) = 1 and & = db'. We claim that cί = b and

α = 6m + / n . Let us assume d Φ δ, bf Φ 1. If α e ^ , take an integer

s such that sa e Hx and s is not a multiple of b'. Then, writing sa =

e'm + f'n, g = X{d — XfZ3

// e Ker (Φ^). But it is easy to assure that

ff$(fi,fz)- T h i s contradicts the fact that (f19f2) == Ker(Φ^). If aeH19

a = e'm + f'n, then Z? - Xζ'Xf e Ker (Φ^). From Ker (ΦH) = (/^Λ), we

get d = b.

Remark 1. Proposition 3 is not true if emb(H) ^ 4. For example,

If we put if = <14,21,15,20>, H is a complete intersection with c(H) =

68, Ker (ΦH) - (X? - Z^? χγχ2 __ χ2χi9 x* _ χ») and clearly i ϊ can not be

written in the form H = <α, &flΊ>.

Remark 2. By Proposition 3, we can determine the types of ίΓs

which are complete intersections and emb(H) <; 3. For example, if

emb(H) = 3 and m(H) — 5 and if H is a complete intersection, (this is

equivalent to say that H is symmetric, in this case) then H = <5,2p,

V ^ 3, (p, 5) = 1.

LEMMA 3. Lβί a be an odd integer. Then the semigroup H =

<2n, 2n + α, 2n + 2α, , 2n + 2%? , 2W + 2w~1α> is d complete intersection

for n >̂ 1.

Proof. Easy by induction and applying Lemma 1.

THEOREM 1. Lei m and n be given positive integers such that

m >̂ 2n. Then there exists a 1-dimensional local domain R which is a

complete intersection with embedding dimension n + 1 and multiplicity m.

Proof. We find a semigroup H which is a complete intersection and

m(H) = nz, emb(H) = n + 1.

(i) If m is odd, we put m = 2n + a. Then, by Lemma 3, Hλ =

(2n~\ 2n~ι + α, , 2n-1 + 2n"2α/> is a complete intersection and meH,.

If we take an integer &, such that (&,m) = 1 and 2n~1b ̂  m, then ί ί =

<ra, &£?!> is the desired semigroup.
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(ii) If m is even, using induction on n, we may assume that there

exists a semigroup Hx which is a complete intersection and m(i2Ί) = ra/2,

emb(H^) — n. Then, if we take an odd integer a e Hι such that a > m

and a is not a generator of H19H = <α, 2flΓ

1> is the desired semigroup

by Lemma 1.

Remark. If (R,M) is a regular local ring and if (#1, ,αn) is a

regular sequence of R contained in M2, then the multiplicity of

R/(x19 - - -,xn) is at least 2n. So the condition m ^ 2n is necessary.

§ 3 . Examples of 1-dimensional Gorenstein local domains which are not

complete intersections.

LEMMA 4. Let m and n be positive integers such that m — 1 ^ n

>̂ 4. // there exist integers a,b,e such that

( i ) a, b >̂ 0 and β > 0,

(ii) if b > 0, ίfoew β is β'tfβn,

(iii) ea + (e/2)b + 2 = m (if e is odd, then b = 0),

(iv) n = a + b + 1.

Tfeew ίfcβre exists a symmetric semigroup H with m(H) — m and emb(H)

= n and H is not a complete intersection. Actually,

H = <m, m + 1, , m + a, 2m — b, 2m — & + 1, , 2m — 1> .

Proof. We have c(iϊ) = e(m + α) + 2. It is easy to see that H is

symmetric. To prove that H is not a complete intersection, we restrict

ourselves to the case a > 0. (The case a = 0 can be proved similarly.

But as the case a = 0 is not used later, we omit the proof.) We give

two different proofs, the first one using Proposition 2 and the second

one using Lemma 2,

First proof. We compute M(H). In the notation of § 1, (12), we

have;

h1 = 2m + 2 = m + (m + 2) = 2(m + 1)

h2 = 2m + 3 = m + (m + 3) = (m + 1) + (m + 2)

Λα_! = 2m + α = m + (m + α) = im + 1) + (m + a — 1)

fcα = 3 r a - & + l r = m + (2m - & + 1) = (m + 1) + (2m - 6)

feα+1 = 3m - b + 2 = m + (2m - b + 2) = (m + 1) + (2m - b + 1)
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haJ,h.x = 3m = (m + 1) + (2m - 1)

Λα+δ = c(H) + m -b = (e/2 + l)(2m - 6) .

M(ίf) - 2]?-i nt + 1 - c(fl) = m& + ra(α - 2) = (n - 3)m > 0. By Prop-

osition 2, H is not a complete intersection.

Second proof. We consider the canonical homomorphism ΦH:

X19.. 9 Xa, Z β + 1 , , Xa+b] -> OT], defined by fl^Z,) - T™+*(0 ^ i ^ α),

ΦjsiXj) = τ2m~a-b-1+J(a + 1 ^ j ^ a + b). We assume that Ker(Φ^) is

generated by α + 5 elements and lead to a contradiction. By the defini-

tion of ΦH, it is clear that f, = Z 0 ^ 2 - ZJ, f2 = ^"0^3 - -XΆ* * * »Λ-i =

X()Xa — X\Xa-\yfa = -^0^α + 2 — ^"l ̂ α + U ' * 'ίfa + b-l =z X\Xa + b — X% ^ r e (X + &

— 1 members of minimal generators of Ker (ΦH). As Ker (ΦH) is generated

by /1, 'jfa+b-i a n ( i o n e more polynomial g, and as g can include at

most 2 monomials of the form X\, we have α + b + 1 ^ 4. It remains

to show that a + b + 1 = 4 does not occur. If α = 1, & = 2, then /x =

X0X3 — XλX2 and f2 = XXXZ — X\. So it is impossible to find f3 satisfying

the condition of the corollary of Lemma 2. If a = 2, b = 1, then /x =

X0X2 - X\ and f2 = Z ^ - XJ. But in this case, /i,/ 2 e (Zo, Zx) and this

contradicts Lemma 2 (p = 2). If α = 3, b = 0, /x = Z 0 Z 2 - ZJ and f2 =

Z 0 Z 3 — ZXZ 2 and it is impossible to find / 3 satisfying the condition of

the corollary of Lemma 2. This concludes the proof of Lemma 4.

LEMMA 5. // m — 1 *> n ;> m/2, £feere e^isί α, 6 α^d e satisfying

the conditions of Lemma 4. Furthermore, we can take a > 0.

Proof. Put e = 2, & = 2w — m,α = m — w — 1 if w^fcm — 1. When

n = m — 1, we put e = l, δ = 0, α = w — l = m — 2.

LEMMA 6. // m ;> 5, ίfeere eicisis α symmetric semigroup H, which

is not a complete intersection and with m(H) = m, embiH) = 4.

Proof. Case I m = 1 (mod 4). Writing m = 4m7 + 1, we put

H = <m, m + 1, m + 2, m\m + 2) + 1> .

Then H is symmetric with;

c(H) = 2m7m , ilf(Jϊ) = h, + h2 + h3 ,

where

fei = 2m + 2 = 2(m + 1) = m + (m + 2)
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h2 = (ra'(m + 2) + 1) + m = m'(m + 2) + (m + 1)

Λ3 = c(JΪ) + m = (2m/ + l)m = {m\m + 2) + 1) + m;(m + 2) .

M(H) - m - (m + 1) - (m + 2) - (m'(ra + 2) + 1) + 1 - c(H) = m > 0,

ϋf is not a complete intersection.

Case II m = 2 (mod 4). In the Lemma 4, put α = 1, & = 2, e =

(m - 2)/2.

Case HI m = 3 (mod 4). We put

i ϊ = <m, m + 1,2m + 3, 2m + 4> .

Then i ϊ is symmetric with;

m(m + 1)

where

^ = 3m + 3 = 3(m + 1) = m + (2m + 3)

h2 = 3m + 4 = (m + 1) + (2m + 3) = m + (2m + 4)

h3 = c(H) + m = (2m + 3) + m ~ 8 (2m + 4) = m + 8 m .

ikf(iϊ) - m - (m + 1) - (2m + 3) - (2m + 4) + 1 - c(H) = m > 0. Hence

H is not a complete intersection.

Case IV m = 0 (mod 4). We put

( m 2 ) ( W + 1 ) + 2 ) .

Then H is symmetric with;

c(H) = mim - 3) , M(H) = h, + h2 + h3 ,

where

h1 = m + n3 = (m + 1) m ~ 2

Li

h2 = m + n4 = 2(m + 1) + ^3

m = m(m — 2) = n3 + ^4 .

m — (m + 1) — n3 — n4 + 1 — c(ίf) = m > 0. Hence i ϊ is not a

complete intersection.
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THEOREM 2. For given positive integers m and n, such that m —

1 >̂ n ^ 4, there exists 1-dimensional local domain R which is Gorenstein

with emb(R) = n, m(R) — m and which is not a complete intersection.

Proof. It suffices to find a symmetric semigroup H with emb(H)

= n and m(H) = m and which is not a complete intersection.

( i ) It is done for n = 4 by Lemma 6.

(ii) If n J> m/2, this is true by Lemma 5.

(iii) If m/2 ^ n ;> 4, let i ^ = <rc, n + 1, , 2n - 2>. By Lemma

4, ί?! is symmetric with c(H^) = 2n and emb(H^ = n — 1 which is not

a complete intersection and meH1. If we choose an integer b so that

(b,m) = 1 and 6w > m, then i ί = <(m, bHx)> is the desired example by

Lemma 1.

Remark. The condition m — l^n^>4is necessary. If n ^ m, we

can choose xeR such that m = m(R) = length (R/xR). But as length

(R/xR) ^ emb(R) — n> the only possibility is the case when m =

length (R/xR) = emb(R). But in this case the principal ideal xi? can not

be irreducible and i? is not Gorenstein.

If n = 3, then it is known by Serre that if i? is Gorenstein, then

R is a complete intersection.
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