J. R. ChoikeNagoya Math. J.Vol. 49 (1973), 77-89

# ON THE DISTRIBUTION OF VALUES OF FUNCTIONS IN THE UNIT DISK

### JAMES R. CHOIKE\*

#### 1. Introduction.

Let f(z) be a function analytic and bounded, |f(z)| < 1, in |z| < 1. Then, by Fatou's theorem the radial limit  $f^*(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta})$  exists almost everywhere on |z| = 1. Seidel [8, p. 208] and Calderón, González-Domínguez, and Zygmund [1] (see also [9, pp. 281–282]) proved the following: if  $f^*(e^{i\theta})$  is of modulus 1 almost everywhere on an arc  $a < \theta < b$  of |z| = 1, then either f(z) is analytically continuable across this arc or the values  $f^*(e^{i\theta})$ ,  $a < \theta < b$ , cover the circumference |w| = 1 infinitely many times. In this paper we shall be primarily concerned with the behavior of  $f^*(e^{i\theta})$  on each side of a singular point  $P = e^{i\theta_0}$ ,  $a < \theta_0 < b$ , for f(z).

## 2. One-side Limits.

We shall say that f(z) has a right-sided (left-sided) limit at  $e^{i\theta_0}$  if there is a positive number  $\delta$  such that  $f^*(e^{i\theta})$  exists and is continuous for all  $\theta$ ,  $\theta_0 - \delta \le \theta \le \theta_0$  ( $\theta_0 \le \theta \le \theta_0 + \delta$ ). We, now, state the first result of this paper which extends the theorem of Seidel and Calderón, González-Domínguez, and Zygmund.

THEOREM 1. Let f(z) be analytic and bounded, |f(z)| < 1, in |z| < 1. If  $f^*(e^{i\theta})$  is of modulus 1 almost everywhere on an arc  $a < \theta < b$  of |z| = 1 and if  $P = e^{i\theta_0}$ ,  $a < \theta_0 < b$ , is a singular point for f(z), then either

- i) the values of  $f^*(e^{i\theta})$ ,  $a < \theta < \theta_0$ , cover |w| = 1 infinitely many times and f(z) has a left-sided limit at  $e^{i\theta_0}$  of modulus 1, or
  - ii) the values of  $f^*(e^{i\theta})$ ,  $\theta_0 < \theta < b$ , cover |w| = 1 infinitely many times

Received April 10, 1972.

<sup>\*</sup> This research was supported in part by a grant from the Oklahoma State University College of Arts and Sciences Office of Research and Graduate Studies.

and f(z) has a right-sided limit at  $e^{i\theta_0}$  of modulus 1, or

iii) the values of  $f^*(e^{i\theta})$  for both arcs  $a < \theta < \theta_0$  and  $\theta_0 < \theta < b$ , respectively, cover |w| = 1 infinitely many times.

*Proof.* Without loss of generality, we may assume  $a = 2\pi - \gamma$ ,  $b = \gamma$ ,  $\theta_0 = 0$  where  $0 < \gamma < \pi$ .

Suppose  $f^*(e^{i\theta})$  assumes  $\alpha$ ,  $|\alpha|=1$ , only finitely many times on the arc  $2\pi-\gamma<\theta<2\pi$ . Then, we may also assume, without loss of generality, that  $f^*(e^{i\theta})$  omits  $\alpha$  on the arc  $2\pi-\gamma<\theta<2\pi$ .

Let  $\zeta = L(w)$  be a bilinear transformation mapping  $|w| \leq 1$  onto  $\operatorname{Re}(\zeta) \geq 0$  such that  $L(\alpha) = \infty$ . The function L(f(z)) is analytic in |z| < 1. The harmonic function  $\operatorname{Re}(L(f(z)))$  is positive in |z| < 1 with boundary values 0 almost everywhere on the arc  $2\pi - \gamma < \theta < 2\pi$ . Thus,

$$L(f(z)) = rac{1}{2\pi} \int_0^{2\pi} rac{e^{it} + z}{e^{it} - z} d\mu(t) \, + \, i \, {
m Im} \, (L(f(0)))$$

where  $\mu(t)$  is a bounded non-decreasing function  $[0, 2\pi]$  [9, p. 152]. Let

$$egin{aligned} u(r, heta) &= ext{Re} \left( L(f(z)) 
ight) \ &= rac{1}{2\pi} \int_0^{2\pi} rac{1-r^2}{1+r^2-2r\cos{( heta-t)}} d\mu(t) \end{aligned}$$

and

$$\begin{split} v(r,\theta) &= \text{Im} \; (L(f(z))) \\ &= \frac{1}{\pi} \int_0^{2\pi} \frac{r \sin (\theta - t)}{1 + r^2 - 2r \cos (\theta - t)} d\mu(t) + \text{Im} \; (L(f(0))) \; . \end{split}$$

We wish, now, to examine the function  $\mu(\theta)$ . Since  $\mu(\theta)$  is non-decreasing on  $[0,2\pi]$ , its derivative  $\mu'(\theta)$  exists almost everywhere on  $[0,2\pi]$ . The harmonic function  $u(r,\theta)$  tends radially to  $\mu'(\theta)$  at every point of differentiability of  $\mu(\theta)$ . Since  $u(r,\theta)$  has boundary values 0 almost everywhere for  $2\pi - \gamma < \theta < 2\pi$ ,  $\mu'(\theta) = 0$  almost everywhere on  $2\pi - \gamma < \theta < 2\pi$ .

Suppose  $\mu(\theta)$  is not absolutely continuous on  $2\pi - \gamma < \theta < 2\pi$ . Notice that  $\mu(\theta)$  is of bounded variation on  $[0, 2\pi]$ . Then one of the following is true: i)  $\mu(\theta)$  is continuous and not identically constant on  $(2\pi - \gamma, 2\pi)$ , ii) there exists  $\theta^*$ ,  $2\pi - \gamma < \theta^* < 2\pi$ , such that  $\mu(\theta)$  is discontinuous at  $\theta^*$ . If i) is the case, then from a theorem in Saks [7, p. 128] it follows that there exists  $\theta_1$ ,  $2\pi - \gamma < \theta_1 < 2\pi$ , such that  $\mu'(\theta)$  exists and is infinite

at  $\theta = \theta_1$ . Thus,  $\lim_{r \to 1} u(r, \theta_1) = \mu'(\theta_1) = +\infty$ . This implies that  $f^*(e^{i\theta_1}) = \alpha$ , which is a contradiction. If ii) is the case, then by a lemma of Lohwater [4, p. 244]  $\lim_{r \to 1} u(r, \theta^*) = +\infty$ . Again, we have a contradiction, namely,  $f^*(e^{i\theta^*}) = \alpha$ . Thus, it follows that  $\mu(\theta)$  is absolutely continuous on  $2\pi - \gamma < \theta < 2\pi$ .

Since  $\mu'(\theta) = 0$  almost everywhere on  $2\pi - \gamma < \theta < 2\pi$ ,  $\mu(\theta)$  is constant on  $2\pi - \gamma < \theta < 2\pi$ . Therefore, L(f(z)) is analytic at each point  $e^{i\theta}$ ,  $2\pi - \gamma < \theta < 2\pi$ , and, in particular, we have

$$L(f(e^{i heta})) = rac{1}{2\pi} \int_0^{2\pi- au} rac{e^{it} + e^{i heta}}{e^{it} - e^{i heta}} d\mu(t) + i \operatorname{Im}\left(L(f(0))
ight)$$

on  $2\pi - \gamma < \theta < 2\pi$ . Hence, f(z) is analytic at each point  $e^{i\theta}$ ,  $2\pi - \gamma < \theta < 2\pi$ , and  $|f(e^{i\theta})| = 1$  at each  $e^{i\theta}$ ,  $2\pi - \gamma < \theta < 2\pi$ .

Let  $\varepsilon$  be a sufficiently small positive number. Since

$$\begin{split} v(1,\theta) &= \mathrm{Im} \, (L(f(0))) \, + \, \frac{1}{2\pi} \int_0^{2\pi-\gamma} \frac{\sin \, (\theta - t)}{1 - \cos \, (\theta - t)} d\mu(t) \\ &= \mathrm{Im} \, (L(f(0))) \, + \, \frac{1}{2\pi} \int_0^{2\pi-\gamma} \cot \, \frac{1}{2} (\theta - t) d\mu(t) \\ &> \mathrm{Im} \, (L(f(0))) \, + \, \frac{1}{2\pi} \int_0^{2\pi-\gamma} \cot \, \frac{1}{2} (\theta + \varepsilon - t) d\mu(t) \\ &= v(1,\theta + \varepsilon) \; , \end{split}$$

it follows that as  $\theta$  approaches  $2\pi$  through increasing values in  $(2\pi - \gamma, 2\pi)$ ,  $f(e^{i\theta})$  moves along |w| = 1 in a counterclockwise direction. Since  $f(e^{i\theta})$  omits  $\alpha$ ,  $|\alpha| = 1$ , on  $(2\pi - \gamma, 2\pi)$ ,  $f(e^{i\theta})$  cannot wind indefinitely around |w| = 1 as  $\theta$  approaches  $2\pi$ ,  $2\pi - \gamma < \theta < 2\pi$ . Hence, f(z) has a right-sided limit  $w_1$  of modulus 1 at  $\theta_0 = 0$ .

Suppose, next, that there exists a complex value  $\beta$ ,  $|\beta|=1$ , such that  $f^*(e^{i\theta})$  assumes  $\beta$  only finitely many times on the arc  $0<\theta<\gamma$ . Then, by the above argument, it follows that f(z) has a left-sided limit  $w_2$  of modulus 1 at  $\theta_0=0$ . By a well-known theorem of Lindelöf,  $w_1=w_2$  [2, p. 43]. Another well-known theorem of Lindelöf [6, p. 75], then, implies that the cluster set of f(z) at P=1 is  $C(f,1)=\{w_1\}$ . But, since P=1 is a singular point for f(z), a theorem of Seidel [2, p. 95] states  $C(f,1)=\{|w|\leq 1\}$ . We have a contradiction. Thus, f(z) cannot have right-sided and left-sided limit at P=1 simultaneously. This completes our proof.

A natural question which theorem 1 raises is this question: can functions f(z) analytic and bounded, |f(z)| < 1, in |z| < 1 be found which exhibit each type of behavior as described in theorem 1? With regard to this question, we shall show by means of Blaschke products that theorem 1 is sharp in this sense. In fact, we shall give a necessary and sufficient condition for a Blaschke product to have a right-sided limit at  $e^{i\theta_0}$ .

## 3. Blaschke Products.

Let  $\{a_k\}$  be a sequence of points in |z| < 1 such that

$$\sum_{k=1}^{\infty} (1-|a_k|) < +\infty$$
.

Then, the infinite product

$$B(z) = \prod_{k=1}^{\infty} \frac{|a_k|}{a_k} \frac{a_k - z}{1 - \overline{a}_k z}$$

is a bounded, non-constant, holomorphic function in |z| < 1. The function B(z) is called a Blaschke product with zeros  $\{a_k\}$ . By Fatou's theorem the radial limit  $B^*(e^{i\theta})$  exists almost everywhere on |z| = 1. It is also known that the modulus of  $B^*(e^{i\theta})$  is 1 almost everywhere on |z| = 1. The following result of Frostman [3] (see also [2, p. 33–35]) gives a necessary and sufficient condition for  $B^*(e^{i\theta_0})$  to be of modulus 1.

THEOREM A. Let B(z) be a Blaschke product with zeros  $\{a_k\}$ . Then, a necessary and sufficient condition that B(z) and all its partial products have radial limit of modulus 1 at  $e^{i\theta_0}$  is the convergence of

$$\sum_{k=1}^{\infty} \frac{1-|a_k|}{|e^{i\theta_0}-a_k|}.$$

*Remark.* Geometrically, Frostman's condition implies that at most a finite number of zeros  $\{a_k\}$  of B(z) lie in any Stolz angle at  $e^{i\theta_0}$ .

For further properties of Blaschke products we refer the reader to [2, p. 28-38] or [9, p. 271-285].

THEOREM 2. Let B(z) be a Blaschke product with zeros  $\{a_k\}$  which have  $e^{i\theta_0}$  as a limit point and which lie in a Stolz angle at  $e^{i\theta_0}$ . Then, for each  $\delta$ ,  $0 < \delta < \pi/2$ , the values of  $B^*(e^{i\theta})$  for the arcs  $\theta_0 - \delta < \theta < \theta_0$  and  $\theta_0 < \theta < \theta_0 + \delta$ , respectively, cover |w| = 1 infinitely many times.

*Proof.* Suppose B(z) had either a right-sided or a left-sided limit at  $e^{i\theta_0}$ . This limit would, of course, be of modulus 1. Then, by a theorem of Lindelöf, B(z) would have angular limit at  $e^{i\theta_0}$  of modulus 1. But, this cannot happen, since the sequence  $\{a_k\}$ , by assumption, lies in a Stolz angle at  $e^{i\theta_0}$ . Thus, theorem 2 follows from theorem 1.

We, now, state the main result of this section.

THEOREM 3. Let B(z) be a Blaschke product with zeros  $\{a_k\}$ . Then, B(z) and all its partial products have a right-sided limit of modulus 1 at  $e^{i\theta_0}$  if and only if

$$\sum\limits_{k=1}^{\infty}rac{1-|a_k|}{|e^{i heta_0}-a_k|}<+\infty$$
 ,

and there exist positive numbers  $\delta$  and  $\varepsilon$ ,  $\varepsilon < 1$ , such that there are no zeros  $\{a_k\}$  in the region

$$\Delta = \{z \mid 1 - \varepsilon < |z| < 1, \, \theta_0 - \delta < \arg(z) < \theta_0\}.$$

*Proof.* Utilizing the proper rotation of |z| < 1, we may assume that  $\theta_0 = 0$ . Suppose the zeros  $\{a_k\}$  of B(z) satisfy:

(1) 
$$\sum_{k=1}^{\infty} \frac{1-|a_k|}{|1-a_k|} < +\infty ,$$

and there exist positive numbers  $\delta$  and  $\varepsilon$ ,  $\varepsilon < 1$ , such that

(2) 
$$\{a_1, a_2, a_3, \dots\} \cap \{z | 1 - \varepsilon < |z| < 1, -\delta < \arg(z) < 0\} = \emptyset$$
.

Choose  $\delta$  so that  $0 < \delta < \pi/2$ . Let  $\{a_{m_j}\}$  be the set of zeros  $\{a_k\}$  of B(z) lying in  $\{z \mid |z| < 1, \ 0 \le \arg{(z)} \le \pi/2\}$ . Let  $\{a_{n_j}\}$  be the remaining set of zeros  $\{a_k\}$  of B(z). From theorem A, (1) and (2), it follows that the radial limit  $B^*(e^{i\theta})$  exists and is of modulus 1 for all  $\theta$ ,  $-\delta/2 \le \theta \le 0$ . In order to prove that conditions (1) and (2) are sufficient for B(z) to have a right-sided limit at z=1 it suffices to show that  $\arg{(B^*(e^{i\theta}))}$  is continuous for  $\theta$ ,  $-\delta/2 \le \theta \le 0$ . To do this we shall prove that for k sufficiently large

$$\left| rg \left( rac{|a_k|}{a_k} rac{a_k - re^{i heta}}{1 - ar{a}_k re^{i heta}} 
ight) 
ight|$$

is dominated by positive numbers  $M_k$  whose sum forms a convergent series. By virtue of this, we assume that  $\{a_{m_i}\}$  and  $\{a_{n_i}\}$  are both sub-

sequences of  $\{a_k\}$ .

It is clear that

$$egin{aligned} \left| rg \left( rac{|a_k|}{a_k} rac{a_k - re^{i heta}}{1 - ar{a}_k re^{i heta}} 
ight) 
ight| &= \left| rg \left( rac{ar{a}_k (a_k - re^{i heta})}{1 - ar{a}_k re^{i heta}} 
ight) 
ight| \ &= \left| rg \left( 1 - rac{1 - |a_k|^2}{1 - ar{a}_k re^{i heta}} 
ight) 
ight| \ &= \left| rc \sin rac{(1 - |a_k|^2)r(eta_k \cos heta - lpha_k \sin heta)}{|ar{a}_k| |a_k - re^{i heta}| |1 - ar{a}_k re^{i heta}|} 
ight| \ &= rc \sin rac{(1 - |a_k|^2)r|eta_k \cos heta - lpha_k \sin heta|}{|ar{a}_k| |a_k - re^{i heta}| |1 - ar{a}_k re^{i heta}|} \end{aligned}$$

where  $a_k = \alpha_k + i\beta_k$ . Since arc  $\sin x \le \pi x/2$  for  $0 \le x \le 1$ , it suffices to show that, for k sufficiently large, the argument of the arc  $\sin$  is dominated by positive numbers whose sum is a convergent series.

We, first, consider the zeros  $\{a_{n_i}\}$ . Let

$$d_1=\inf\left|rac{1}{\overline{a}_{n_s}}-re^{i heta}
ight|$$
 ,  $j=1,2,3,\cdots$  ,  $1-rac{arepsilon}{2}< r<1$  ,  $rac{-\delta}{2}\leq heta\leq 0$  ,

and

$$d_{\scriptscriptstyle 2} = \inf |a_{n_j} - re^{i heta}| \;, \quad j = 1, 2, 3, \, \cdots \;, \quad 1 - rac{arepsilon}{2} < r < 1 \;, \quad -rac{\delta}{2} \le heta \le 0 \;.$$

By (2), we have  $d_1 > 0$  and  $d_2 > 0$ . Let  $d = \min(d_1, d_2)$ . If  $k = n_j$ , then, from the way in which d was chosen,

$$rac{(1-|a_k|^2)r\,|eta_k\cos heta-lpha_k\sin heta|}{|ar{a}_k|\,|a_k-re^{i heta}|\,|1-ar{a}_kre^{i heta}|} \leq rac{4(1-|a_k|)}{|ar{a}_k|^2\,|a_k-re^{i heta}|\,\Big|rac{1}{ar{a}_k}-re^{i heta}\Big|} \ \leq rac{4}{|ar{a}_k|^2\,d^2}(1-|a_k|)$$

for  $1 - \varepsilon/2 < r < 1$  and  $-\delta/2 \le \theta \le 0$ .

Next, we consider the zeros  $\{a_{m_j}\}$ . Let  $L_1$  and  $L_2$  be chords of |z| < 1 drawn from z = 1 inclined from the radius to z = 1 by an angle of  $\delta/2$  and  $\delta/4$ , respectively. Let  $\varDelta_1$  be the triangle with sides  $L_1$  and the radii to the endpoints of the chord  $L_1$ . Let  $\varDelta_2$  be the triangle formed in the same way as  $\varDelta_1$ , but, instead of  $L_1$ , we use the chord  $L_2$ . For  $\theta$ ,  $-\delta/2 < \theta < 0$ , let  $\varDelta_2(\theta)$  be the triangle obtained by rotating  $\varDelta_2$ 

through an angle of  $\theta$  about its vertex z=0 (see figure 1). Let  $L_2(\theta)$  be the side of  $\Delta_2(\theta)$  which is a chord of |z|<1. From the construction, it is clear that



Fig. 1

$$(\,3\,) \qquad \qquad L_{\scriptscriptstyle 2}( heta)\,\cap\, L_{\scriptscriptstyle 1} = \phi \quad {
m for} \quad -rac{\delta}{2} < heta < 0 \;.$$

By (1) and the remark following theorem A, there exists a positive integer J such that  $a_{m_j}$  lies outside  $\Delta_1$  for j>J. Let s(a,b) denote line segment joining the complex numbers a and b. Then, we denote by  $\phi_j(\theta)$  the angle formed at  $e^{i\theta}$  by  $s(0,e^{i\theta})$  and  $s(a_{m_j},e^{i\theta})$ ,  $-\delta/2 \leq \theta \leq 0$ . We lengthen the segment  $s(a_{m_j},e^{i\theta})$  so that it is a chord  $L'_j(\theta)$  of |z|<1 (see figure 2). Then,

$$(4) L'_{j}(\theta) \cap L_{1} \neq \emptyset$$

for j < J and  $-\delta/2 \le \theta < 0$ . Thus, from (3) and (4) we have that the arc of |z| = 1 cut off by  $L_2(\theta)$  is greater than the arc of |z| = 1 cut off by  $L'_j(\theta)$  for j > J and  $-\delta/2 \le \theta < 0$ . Thus,

$$\pi-2\phi_{\it j}( heta)<\pi-rac{\delta}{2}$$



Fig. 2

for j>J and  $-\delta/2\leq \theta<0$ . Also, since  $a_{m_j}$  lies outside  $\varDelta_1$  for j>J,  $\phi_j(0)>\delta/2>\delta/4$  for j>J. Thus,  $\phi_j(\theta)>\delta/4$  for j>J and  $-\delta/2\leq \theta\leq 0$ . This implies

$$egin{aligned} |a_{m_j}-re^{i heta}| &\geq |a_{m_j}-e^{i heta}|\sin\phi_j( heta) \ &\geq |a_{m_j}-e^{i heta}|\sinrac{\delta}{4} \end{aligned}$$

for j>J and  $-\delta/2\leq\theta\leq0$ . But, for all j and  $-\delta/2\leq!\theta\leq0$ ,  $-\sin\theta!\leq|a_{m_j}-e^{i\theta}|$ . Thus,

$$\begin{split} \frac{-\sin\theta}{|a_{m_j} - re^{i\theta}|} &\leq \frac{-\sin\theta}{|a_{m_j} - e^{i\theta}|} \frac{1}{\sin\left(\delta/4\right)} \\ &\leq \frac{1}{\sin\left(\delta/4\right)} \end{split}$$

for j > J and  $-\delta/2 \le \theta \le 0$ . Also,

$$\operatorname{Im}(a_{m_j}) = \beta_{m_j} \le |a_{m_j} - re^{i\theta}|$$

for all j and  $-\delta/2 \le \theta \le 0$ . Therefore,

$$\frac{\beta_{m_j} - \sin \theta}{|a_{m_j} - re^{i\theta}|} \le 1 + \frac{1}{\sin (\delta/4)} = C < +\infty$$

for j > J and  $-\delta/2 \le \theta \le 0$ .

Let  $\gamma_j$  be the angle between  $s(a_{m_j},1)$  and s(0,1). Recalling that  $a_{m_j}$  lies outside  $\Delta_1$  for j>J, we have  $\pi/2>\gamma_j>\delta/2$  for j>J and  $-\delta/2\leq\theta\leq0$ . Hence,

$$egin{aligned} \left| rac{1}{\overline{a}_{m_j}} - re^{i heta} 
ight| &\geq \operatorname{Im}\left(rac{1}{\overline{a}_{m_j}}
ight) \ &\geq \operatorname{Im}\left(a_{m_j}
ight) \ &= |1 - a_{m_j}| \sin\gamma_j \ &\geq |1 - a_{m_j}| \sinrac{\delta}{2} \end{aligned}$$

for j > J and  $-\delta/2 \le \theta \le 0$ . Thus,

(6) 
$$\frac{1}{|1/\bar{a}_{m_i} - re^{i\theta}|} \le \frac{1}{|1 - a_{m_i}|\sin(\delta/2)}$$

for j > J and  $-\delta/2 \le \theta \le 0$ .

Using the estimates (5) and (6), we have, for j > J,  $-\delta/2 \le \theta \le 0$ , and 0 < r < 1,

$$\begin{split} \frac{(1-|a_{m_j}|^2)r\,|\beta_{m_j}\cos\theta-\alpha_{m_j}\sin\theta|}{|\bar{a}_{m_j}|^2\,|a_{m_j}-re^{i\theta}|} &\leq \frac{2(1-|a_{m_j}|)(\beta_{m_j}-\sin\theta)}{|\bar{a}_{m_j}|^2\,|a_{m_j}-re^{i\theta}|\,|1/\bar{a}_{m_j}-re^{i\theta}|} \\ &\leq \frac{2C}{|a_{m_j}|^2\sin\left(\delta/2\right)}\frac{1-|a_{m_j}|}{|1-a_{m_j}|}\,. \end{split}$$

Thus, for a positive integer K chosen sufficiently large, we have

$$\left| rg \left( rac{|a_k|}{a_k} rac{a_k - re^{i heta}}{1 - \overline{a}_k re^{i heta}} 
ight) 
ight| = egin{cases} C_1(1 - |a_k|) = M_k \;, & ext{if } k = n_j \;, \ C_2rac{1 - |a_k|}{|1 - a_k|} = M_k \;, & ext{if } k = m_j \;, \end{cases}$$

for k > K and  $1 - \varepsilon/2 < r < 1$ ,  $-\delta/2 \le \theta \le 0$ , where  $C_1$  and  $C_2$  are constants. Note that

$$\sum\limits_{k=K}^{\infty} M_k \leq C_1 \sum\limits_{k=1}^{\infty} (1-|a_k|) + C_2 \sum\limits_{k=1}^{\infty} \frac{1-|a_k|}{|1-a_k|} < +\infty$$
 .

Note, also, that for any integer K', K' > K,

$$\begin{split} \sum_{k=1}^{\infty} \left| \arg \left( \frac{|a_k|}{a_k} \frac{a_k - re^{i\theta}}{1 - \overline{a}_k r^{i\theta}} \right) \right| &\leq \sum_{k=1}^{K'} \left| \arg \left( \frac{|a_k|}{a_k} \frac{a_k - re^{i\theta}}{1 - \overline{a}_k re^{i\theta}} \right) \right| + \sum_{k=K'+1}^{\infty} M_k \\ &\leq \sum_{k=1}^{K} \left| \arg \left( \frac{|a_k|}{a_k} \frac{a_k - re^{i\theta}}{1 - \overline{a}_k re^{i\theta}} \right) \right| + \sum_{k=K+1}^{\infty} M_k \end{split}$$

for  $1 - \varepsilon/2 < r < 1$  and  $-\delta/2 \le \theta \le 0$ .

Choose an arbitrary, but fixed, point  $re^{i\theta}$ ,  $1 - \varepsilon/2 < r < 1$  and  $-\delta/2 \le \theta \le 0$ . Let  $\varepsilon_0$  be an arbitrary positive number. We can choose an integer K' > K sufficiently large that

$$\left| rg B(re^{i heta}) - rg \prod\limits_{k=1}^{K'} rac{|a_k|}{a_k} rac{a_k - re^{i heta}}{1 - \overline{a}_k re^{i heta}} 
ight| < rac{arepsilon_0}{2}$$

and

$$\sum\limits_{k=K'+1}^{\infty} {M}_k < rac{arepsilon_0}{2}$$
 .

Then,

$$\begin{split} \left| \arg B(re^{i\theta}) - \sum\limits_{k=1}^{\infty} \arg \left( \frac{|a_k|}{a_k} \frac{a_k - re^{i\theta}}{1 - \overline{a}_k re^{i\theta}} \right) \right| \\ & \leq \left| \arg B(re^{i\theta}) - \sum\limits_{k=1}^{K'} \arg \left( \frac{|a_k|}{a_k} \frac{a_k - re^{i\theta}}{1 - \overline{a}_k re^{i\theta}} \right) \right| + \sum\limits_{k=K'+1}^{\infty} M_k \\ & \leq \left| \arg B(re^{i\theta}) - \arg \prod_{k=1}^{K'} \frac{|a_k|}{a_k} \frac{a_k - re^{i\theta}}{1 - \overline{a}_k re^{i\theta}} \right| + \sum_{k=K'+1}^{\infty} M_k < \varepsilon_0 \end{split}$$

for  $1 - \varepsilon/2 < r < 1$  and  $-\delta/2 \le \theta \le 0$ . Since  $\varepsilon_0$  is arbitrary, we have

$$rg B(re^{i heta}) = \sum\limits_{k=1}^{\infty} rg \left( rac{|a_k|}{a_k} rac{a_k - re^{i heta}}{1 - ar{a}_k re^{i heta}} 
ight)$$

for  $1 - \varepsilon/2 < r < 1$  and  $-\delta/2 \le \theta \le 0$ . Also, this series converges uniformly, with  $\theta$  fixed, in the region  $1 - \varepsilon/2 < r < 1$  and  $-\delta/2 \le \theta \le 0$ , and the uniform convergence implies

$$egin{arg} \mathbf{B}^*(e^{i heta}) &= \lim_{r o 1} \sum_{k=1}^\infty \mathrm{arg} \left( rac{|a_k|}{a_k} rac{a_k - re^{i heta}}{1 - ar{a}_k re^{i heta}} 
ight) \ &= \sum_{k=1}^\infty \mathrm{arg} \left( rac{|a_k|}{a_k} rac{a_k - e^{i heta}}{1 - ar{a}_k e^{i heta}} 
ight) \end{array}$$

for  $-\delta/2 \le \theta \le 0$ . Finally, we remark that

$$\left| \operatorname{arg} \left( \frac{|a_k|}{a_k} \frac{a_k - e^{i\theta}}{1 - \overline{a}_k e^{i\theta}} \right) \right| \leq M_k$$

for k > K and  $-\delta/2 \le \theta \le 0$ . This implies that the series

$$\sum_{k=1}^{\infty} rg \left( \frac{|a_k|}{a_k} \frac{a_k - e^{i\theta}}{1 - \overline{a}_k e^{i\theta}} \right)$$

converges uniformly to  $\arg B^*(e^{i\theta})$  for  $-\delta/2 \le \theta \le 0$ . Thus,  $\arg B^*(e^{i\theta})$  is continuous for  $-\delta/2 \le \theta \le 0$ . This completes the proof of theorem 3 in one direction.

It is clear that the same conclusion holds for all partial products of B(z).

Conversely, let us assume that B(z) has right-sided limit of modulus 1 at  $e^{i\theta_0}$ . Then, by a theorem of Lindelöf, B(z) has angular limit of modulus 1 at  $e^{i\theta_0}$ , and, hence, radial limit of modulus 1 at  $e^{i\theta_0}$ . Thus, by theorem A, the zeros  $\{a_k\}$  of B(z) satisfy the condition

$$\sum_{k=1}^{\infty} \frac{1-|a_k|}{|e^{i\theta_0}-a_k|} < +\infty.$$

Since B(z) has right-sided limit of modulus 1 at  $e^{i\theta_0}$ , there exists  $\delta>0$  such that  $B^*(e^{i\theta})$  exists and is continuous for all  $\theta$ ,  $\theta_0-\delta\leq\theta\leq\theta_0$ . Let  $R=\{z||z|<1,\ \theta_0-\delta<\arg(z)<\theta_0\}$ . Now, in the sector R, we have that B(z) is analytic and bounded. Moreover, B(z) has radial limit of modulus 1 at  $e^{i\theta_0}$  and right-sided limit of modulus 1 at  $e^{i\theta_0}$ . Thus, by another theorem of Lindelöf, B(z) converges to a value of modulus 1 as z tends to  $e^{i\theta_0}$ ,  $z\in R$ . It follows that R contains at most a finite number of zeros of B(z). Thus, there exists  $\varepsilon$ ,  $0<\varepsilon<1$ , such that there are no zeros  $\{a_k\}$  in the region

$$\Delta = \{z \mid 1 - \varepsilon < |z| < 1, \, \theta_0 - \delta < \arg(z) < \theta_0\}.$$

This completes the proof of theorem 3.

A direct consequence of theorem 3 is the following theorem.

THEOREM 4. A necessary and sufficient condition for a Blaschke product B(z) with zeros  $\{a_k\}$  to have a right-sided limit of modulus 1 at  $e^{i\theta_0}$  but not a left-sided limit at  $e^{i\theta_0}$  is that the zeros  $\{a_k\}$  satisfy the following properties:

- i)  $e^{i\theta_0}$  is a limit point of  $\{a_k\}$ ,
- ii)  $\sum_{k=1}^{\infty} \frac{1-|a_k|}{|e^{i\theta_0}-a_k|} < +\infty$ , and
- iii) there exist positive numbers  $\delta$  and  $\varepsilon$ ,  $\varepsilon < 1$ , such that there are no zeros  $\{a_k\}$  in the region

$$\Delta = \{z \mid 1 - \varepsilon < |z| < 1, \, \theta_0 - \delta < \arg(z) < \theta_0\}.$$

*Proof.* Theorem 1 and theorem 3 imply that properties i), ii), and

iii) are sufficient for B(z) to have right-sided limit at  $e^{i\theta_0}$  but not left-sided limit at  $e^{i\theta_0}$ . This follows easily once we notice that property i) implies that  $e^{i\theta_0}$  is a singular point for B(z) and properties ii) and iii) imply that B(z) has right-sided limit at  $e^{i\theta_0}$ . The Blaschke product B(z) cannot have left-sided limit at  $e^{i\theta_0}$ , otherwise we contradict theorem 1.

To prove that properties i), ii), and iii) are necessary, let us suppose that B(z) has right-sided limit of modulus 1 at  $e^{i\theta_0}$ , but not left-sided limit at  $e^{i\theta_0}$ . Thus, by theorem 3, we have that

$$\sum_{k=1}^{\infty} rac{1-|a_k|}{|e^{i heta_0}-a_k|} < +\infty$$

and that there exist positive numbers  $\delta$  and  $\varepsilon$ ,  $\varepsilon < 1$ , such that there are no zeros  $\{a_k\}$  in the region

$$\Delta = \{z \mid 1 - \varepsilon < |z| < 1, \, \theta_0 - \delta < \arg(z) < \theta_0\}.$$

Since B(z) does not have left-sided limit at  $e^{i\theta_0}$ ,  $P=e^{i\theta_0}$  is a singular point for B(z). Suppose  $e^{i\theta_0}$  is not a limit point of the zeros  $\{a_k\}$ . Then, there exists a positive number p such that there are no zeros  $\{a_k\}$  in  $\Delta'=\{z||z|<1,\,|z-e^{i\theta_0}|< p\}$ . Thus, by theorem A,  $B^*(e^{i\theta})$  exists and is of modulus 1 for each  $e^{i\theta}$  on the boundary of  $\Delta'$ . But, by a theorem of Lohwater [5, p. 153], since  $P=e^{i\theta_0}$  is a singular point for B(z), there exists a point  $e^{i\theta^*}$  on the boundary of  $\Delta'$  such that  $B^*(e^{i\theta^*})=0$ . This is a contradiction. Therefore,  $e^{i\theta_0}$  is a limit point of  $\{a_k\}$ . This completes the proof of theorem 4.

*Remark.* We point out that theorem 3 and theorem 4 can be modified in the obvious way to give necessary and sufficient conditions for B(z) to have left-sided limit of modulus 1 at  $e^{i\theta_0}$ .

Acknowledgment. The author is grateful to Professor W. Seidel for several valuable conversations concerning theorem 3.

#### REFERENCES

- [1] A. P. Calderón, A. González-Domínguez, and A. Zygmund, Nota sobre los valores limites de funciones analiticas, Revista de la Unión Matemática Argentina, 14 (1949), pp. 16-19.
- [2] E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge University Press, New York, 1966.
- [3] O. Frostman, Sur les produits de Blaschke, Kungl. Fysiogr. Sällsk. i Lund Förh., Bd. 12, Nr. 15 (1942), pp. 169-182.

- [4] A. J. Lohwater, The boundary values of a class of meromorphic functions, Duke Math. J. 19 (1952), pp. 243-252.
- [5] A. J. Lohwater, On the Schwarz reflection principle, Mich. Math. J. 2 (1953-54), pp. 151-156.
- [6] R. Nevanlinna, Analytic Functions, Springer-Verlag, New York, 1970.
- [7] S. Saks, Theory of the Integral, 2nd Ed., Dover Publications, Inc., New York, 1964.
- [8] W. Seidel, On the distribution of values of bounded analytic functions, Trans. Amer. Math. Soc. **36** (1934), pp. 201-226.
- [9] A. Zygmund, Trigonometric Series, Vol. 1, 2nd Ed., Cambridge University Press, New York, 1959.

Oklahoma State University