J. Osterburg Nagoya Math. J. Vol. 49 (1973), 9-19

# AZUMAYA'S CANONICAL MODULE AND COMPLETIONS OF ALGEBRAS

# JAMES OSTERBURG

# Introduction

We are concerned with an algebra S over a commutative ring. Precisely S is a non-commutative ring with identity which is also a finitely generated unital R module such that r(xy) = (rx)y = x(ry) for r in R and  $x, y \in S$ . In section one, we assume A is a commutative, Artinian ring. Following Goro Azumaya (see (1, p. 273)), we define the canonical module F of A to be the injective hull of A modulo the Jacobson radical of A i.e. F = I(A/J(A)). Let S be an algebra over A, we call a bi-S module Q, a canonical S module if Q is isomorphic as a bi-S module to  $Hom_A(S,F)$ . Azumaya has shown that the canonical bi-S module is uniquely determined, up to isomorphism, by the ring S and is independent of choice of the base ring. In Prop. 1.2 we show that Q as a left S module is the S hull of S modulo J(S). i.e. Q = I(S/J(S)). Moreover the left S endomorphism ring of Q is S. (See Prop. 1.3.)

In section 2 we consider an algebra S over a commutative ring R (without chain conditions). For any maximal ideal  $\mathfrak{p}$  of R let  $J(\mathfrak{p})$  be the two sided ideal of S such that  $\mathfrak{p}S \subset J(\mathfrak{p})$  and  $J(\mathfrak{p})/\mathfrak{p}S$  is the Jacobson radical of  $S/\mathfrak{p}S$ . Then  $\bigcap_{\mathfrak{p} \max \ln R} J(\mathfrak{p}) = J(S)$ , the Jacobson radical of S.

In section 3 we assume R is a commutative, Noetherian ring and S is an R algebra. Let  $\mathfrak{p}$  be a maximal ideal of R, then Prop. 3.2 states the left S hull of  $S/J(\mathfrak{p}), I_{\mathfrak{p}}$ , is  $\operatorname{Hom}_{R}(S, I(R/\mathfrak{p}))$ .

If we assume R is semilocal, then we show in Prop. 3.4 that I(S/J(S)) is countable generated.

In section 4, Prop. 4.1 we show that the left S endomorphism ring of  $I_{\nu}$  is the completion of S with respect to the  $\nu$ S-adic topology. Also  $I_{\nu}$  is injective over its endomorphism ring, see Prop. 4.3. If R is semilocal, then the left S endomorphism ring of I(S/J(S)) is the completion

Received January 26, 1972.

of S with respect to the J(S) adic topology. Furthermore, I(S/J(S)) is injective over its endomorphism ring, see Propositions 4.2 and 4.4.

In section 5, we set  $E = \bigoplus_{\substack{\mathfrak{p} \max \text{ in } R}} I_{\mathfrak{p}}$ . We show that the left S endomorphism ring of E is inv.  $\lim S/\mathfrak{U}$  where  $\mathfrak{U}$  is a left ideal of S such that  $S/\mathfrak{U}$  is Artinian, see Prop. 5.3. In Prop. 5.5 we show the bicommutator of E is the completion of S with respect to the finite topology.

I want to thank my advisor Goro Azumaya for all of his help and encouragement.

# §1. The Canonical Module in the Artinian Case

We assume A is a commutative, Artinian ring and S an algebra over A. The Jacobson radical of S (respectively A) is J(S) (respectively J(A).)

DEFINITION 1.1. The A canonical module is the A injective hull of A/J(A). Denote the canonical module by F.

**PROPOSITION 1.1.** The A canonical module F is a finitely generated A module. The ring map  $A \to \operatorname{End}_A(F)$ , which sends  $a \in A$  to  $(x \to ax)$ ,  $x \in F$  is an isomorphism.

Proof. See Azumaya (1, Prop. 10, p. 273)

If S is an algebra over A, then S is left and right Artinian.

DEFINITION 1.2. A bi-S module Q is called a canonical S-module if Q is isomorphic as a bi-S module to  $\text{Hom}_A(S, F)$ .

Remark 1.1. We regard  $\operatorname{Hom}_A(S, F)$  as a bi-S module by defining  $(sf) = (t \to f(ts)), (fs) = (t \to f(st))$  for  $f \in \operatorname{Hom}_A(S, F), s, t \in S$ .

So with each base ring of S, there is a canonical S module. Azumaya has shown that the canonical two sided S module is uniquely determined, up to isomorphism, by the ring S and is independent of the choice of the base ring (see 1, Thm. 21, p. 276).

**PROPOSITION 1.2.** If Q is the canonical two sided S module, then Q as a left S module (respectively as a right S module) is the left (respectively the right) injective hull of S/J(S) regarding S/J(S) as a left S module (respectively as a right S module). Thus the left (or right) S hull of S/J is a bi-S module.

10

Proof. For any base ring A of S, as a two sided S module,  $Q \simeq \operatorname{Hom}_A(S,F)$ . Now by (3, Prop. 6.1a, p. 30)  $\operatorname{Hom}_A(S,F)$  is left and right S injective. It is well known that an injective S module is the hull of its socle. It is also clear that  $r_Q(J) = \{q \in Q | Jq = 0\}$  is the socle of Q. Now  $r_Q(J) = \operatorname{Hom}_A(S/J,F)$  by (1, Lemma 3, p. 275). We decompose  $S/J = \overline{S} = \overline{Se}_1 + \cdots + \overline{Se}_n$ , where the  $\overline{Se}_i$ 's are simple subrings and  $\overline{e}_i$ 's are orthogonal idempotents. Then  $r_Q(J) = \bigoplus_{i=1}^n \operatorname{Hom}_A(\overline{Se}_i,F) = \bigoplus_{i=1}^n \overline{e}_i \overline{S} = S/J$  by (1, Lemma 2, p. 274). Thus the socle of Q as a left (or right S) module is S/J.

PROPOSITION 1.3. Let S be an algebra over a commutative, Artinian ring, then the left S injective hull of S/J, I, is finitely generated and contains a copy of every simple S-module. Moreover, the map S to  $\operatorname{End}_{S} I$  which sends s to  $(x \to xs), x \in I, s \in S$  is an isomorphism of rings. We can replace left by right in the above.

*Proof.* As a bi-S module, I is of QF type (1, Thm. 19, p. 275). Since S is left and right Artinian, we have established (iii) of Theorem 6 (1, p. 259), which is equivalent to (i) of Theorem 6 (1, p. 259). But (i) Theorem 6 is our result.

#### §2. The Jacobson Radical of an Algebra

We assume R is an arbitrary commutative ring and S an R algebra.

PROPOSITION 2.1. Let M be a non-zero simple left S module. Then there exists a unique maximal ideal  $\mathfrak{p}$  of R such that  $\mathfrak{p}M = 0$ . Thus if  $\mathfrak{P}$  is a left maximal ideal of S there exists a unique maximal ideal  $\mathfrak{p}$  of R such that  $\mathfrak{p}S \subset \mathfrak{P}$ . Moreover,  $\mathfrak{p} = \{r \in R | r \cdot \mathbf{1}_S \subset \mathfrak{P}\}$ , if  $R \subset$  center of S, then  $\mathfrak{p} = R \cap \mathfrak{P}$ .

Proof. Follows easily from Azumaya (2, Theorem 5, p. 123).

PROPOSITION 2.2. For any algebra S over R, let  $J(\mathfrak{p})$  be, for each maximal ideal  $\mathfrak{p}$  of R, the two sided ideal of S such that  $\mathfrak{p}S \subset J(\mathfrak{p})$  and  $J(\mathfrak{p})/\mathfrak{p}S$  is the Jacobson radical of the residue class algebra  $S/\mathfrak{p}S$ . Then the radical J of S is the intersection of all the  $J(\mathfrak{p})$ 's i.e.  $J(S) = \bigcap_{\mathfrak{p} \text{ maximal in } R} J(\mathfrak{p})$ . So  $J(R) \cdot S \subset J(S)$ . Moreover, if  $\mathfrak{p} \neq \mathfrak{q}$  are maximal ideals of R, then  $J(\mathfrak{p}) + J(\mathfrak{q}) = S = \mathfrak{p}S + \mathfrak{q}S$ .

*Proof.* The first statement is the corollary of Lemma 2 (2, p. 125). If  $\mathfrak{p} \neq \mathfrak{q}$ , then  $S = R \cdot S = (\mathfrak{p} + \mathfrak{q})S \subset \mathfrak{p}S + \mathfrak{q}S \subset J(\mathfrak{p}) + J(\mathfrak{q}) \subset S$ . So  $S = \mathfrak{p}S + \mathfrak{q}S = J(\mathfrak{p}) + J(\mathfrak{q})$ .

§3. From now on we assume R is a commutative, Noetherian ring and S is an R algebra. Thus S is left and right Noetherian. Let p be a maximal ideal of R.

Remark 3.1. Let S, R and  $\mathfrak{p}$  be as above and  $i \ge 1$ , then  $R/\mathfrak{p}^i$  is a local, Artinian ring,  $S/\mathfrak{p}^i S$  is an algebra over  $R/\mathfrak{p}^i$  and the radical of  $S/\mathfrak{p}^i S$  is  $J(\mathfrak{p})/\mathfrak{p}^i S$ .

**Proof.** Now  $S/\mathfrak{p}S$  is finite dimensional over  $R/\mathfrak{p}$ , so  $S/\mathfrak{p}S$  is Artinian. Thus the Jacobson radical is nilpotent i.e. for some k > 0,  $J(\mathfrak{p})^k \subset \mathfrak{p}S$ . So  $J(\mathfrak{p})^{ik} \subset \mathfrak{p}^i S$ , but  $S/J(\mathfrak{p})$  is semisimple and so has no non-zero nilpotent ideals. Thus  $J(\mathfrak{p})/\mathfrak{p}^i S$  is the Jacobson radical of  $S/\mathfrak{p}^i S$ .

**PROPOSITION 3.1.** Let  $\mathfrak{p}$  be a prime ideal of a commutative, Noetherian ring R, call the injective hull of  $R/\mathfrak{p}$ , I, and let  $A_i = \{x \in I | \mathfrak{p}^i x = 0\}$ , then  $A_i$  is a submodule of  $I, A_i \subset A_{i+1}$  and  $I = \bigcup_i A_i$ . Moreover, if  $\mathfrak{p}$  is a maximal ideal, then each  $A_i$  is finitely generated R-module, thus I is a countable generated R-module.

*Proof.* See Matlis (4, Theorem 3.4, p. 520) and (4, Theorem 3.11, p. 525).

PROPOSITION 3.2. Let  $\mathfrak{p}$  be a maximal ideal of a commutative, Noetherian ring and S an algebra over R. Then the left S injective hull of  $S/J(\mathfrak{p})$ , which we call  $I_{\mathfrak{p}}$ , is  $\operatorname{Hom}_{R}(S, I(R/\mathfrak{p}))$ . Thus  $I_{\mathfrak{p}}$  becomes in the natural way a bi-S module. Moreover,  $\operatorname{Hom}_{R}(S, I(R/\mathfrak{p}))$  is the union of the canonical  $S/\mathfrak{p}^{i}S$  modules i.e.  $I_{\mathfrak{p}} = \bigcup_{i} \operatorname{Hom}_{R}(S, A_{i})$ . We can replace left by right in the above.

*Proof.* Since S is a finitely generated R module  $\operatorname{Hom}_{R}(S, I(R/\mathfrak{p})) = \bigcup_{i} \operatorname{Hom}_{R}(S, A_{i})$ . Now for each i > 0,  $\operatorname{Hom}_{R}(S, A_{i}) = \operatorname{Hom}_{R/\mathfrak{p}^{i}}(S/\mathfrak{p}^{i}S, A_{i})$ , let  $\overline{S} = S/\mathfrak{p}^{i}S$  and  $\overline{R} = R/\mathfrak{p}^{i}$  we observe  $\overline{R}$  is commutative, Artinian and  $\overline{S}$  is an algebra over  $\overline{R}$ . By (1, Thm. 17, p. 272)  $A_{i}$  is the  $\overline{R}$  injective hull of  $R/\mathfrak{p}$ . Thus for each i > 0,  $\operatorname{Hom}_{R}(S, A_{i}) = \operatorname{Hom}_{\overline{R}}(\overline{S}, I_{\overline{R}}(R/\mathfrak{p})) = Q_{i}$  which is the canonical  $\overline{S}$  module. We know by Proposition 1.2 and Remark 3.1, that as a left  $\overline{S}$  module  $Q_{i}$  is the injective hull of  $S/J(\mathfrak{p})$ .

12

Also  $Q_i \subseteq Q_{i+1}$ , for  $A \subset A_{i+1}$ , thus  $S/J(\mathfrak{p})$  is a large S submodule of  $\bigcup_i Q_i$ = Hom<sub>R</sub>  $(S, I(R(\mathfrak{p})))$ . But Hom  $(S, I(R/\mathfrak{p}))$  is injective by (3, Prop. 6.1a, p. 30.). Thus Hom<sub>R</sub>  $(S, I(R/\mathfrak{p}))$  is the left S injective hull of  $S/J(\mathfrak{p})$ . For B a subset of S, let  $r(B) = \{y \in I_{\mathfrak{p}} | By = 0\}$  and  $l(B) = \{y \in I_{\mathfrak{p}} | yB = 0\}$ .

PROPOSITION 3.3. The notation as in Prop. 3.2, then  $I_{\mathfrak{p}} = \bigcup_{i} r(\mathfrak{p}^{i}S) = \bigcup_{i} r(J(\mathfrak{p})^{i}) = \bigcup_{i} l(\mathfrak{p}^{i}S) = \bigcup_{i} l(J(\mathfrak{p})^{i}).$ 

*Proof.* Let i > 0 and regard  $Q_i$  as an S-module, then the S hull of  $Q_i$  is  $I_{\mathfrak{p}}$ . Now  $r(\mathfrak{p}^i S) = Q_i$  as an  $S/\mathfrak{p}^i S$  module (see 1, Cor. Thm. 17, p. 273). So  $I_{\mathfrak{p}} = \bigcup_i r(\mathfrak{p}^i S) = \bigcup_i l(\mathfrak{p}^i S)$ . Also  $S/\mathfrak{p}S$  is Artinian, so for some  $k, J(\mathfrak{p})^k \subset \mathfrak{p}S$ . Thus  $I_{\mathfrak{p}} = \bigcup_i r(J(\mathfrak{p})^i) = \bigcup_i l(J(\mathfrak{p})^i)$ .

We call R semilocal, if R is commutative Noetherian ring with only a finite number of maximal ideals,  $\mathfrak{p}_1, \dots, \mathfrak{p}_t$ .

**PROPOSITION 3.4.** Let R be a semilocal ring and S an R-algebra. Then the left S injective hull of S/J(S) is  $\operatorname{Hom}_{\mathbb{R}}(S, I(\mathbb{R}/J(\mathbb{R})))$ . Thus I(S/J(S)) becomes a bi-S module in the natural way. We can replace left by right in the above.

*Proof.* By Prop. 2.2 and the Chinese Remainder Theorem,  $S/J(S) = S/J(\mathfrak{p}_1) \oplus \cdots \oplus S/J(\mathfrak{p}_t)$ , so  $I_S(S/J(S)) = I_S(S/J(\mathfrak{p}_1)) \oplus \cdots \oplus I_S(S/J(\mathfrak{p}_t)) =$ Hom<sub>R</sub>  $(S, I(R/\mathfrak{p}_1)) \oplus \cdots \oplus$  Hom<sub>R</sub>  $(S, I(R/\mathfrak{p}_t)) =$  Hom<sub>R</sub> (S, I(R/J(R)).

Let  $\mathfrak{P}$  be a left maximal ideal of S, we know there exists a unique maximal ideal  $\mathfrak{p}$  of R such that  $\mathfrak{p}S \subset \mathfrak{P}$ . Moreover, if R is contained in the center of S, then  $\mathfrak{p} = R \cap \mathfrak{P}$ .

PROPOSITION 3.5. Let  $\mathfrak{P}$  be a left maximal ideal of an algebra S over a commutative noetherian ring R. Call the left S injective hull of  $S/\mathfrak{P}, I$ . Let  $r(\mathfrak{p}^i S)$  be  $\{x \in I | (\mathfrak{p}^i S)x = 0\}$ . Then  $I = \bigcup r(\mathfrak{p}^i s) = \bigcup r(J(\mathfrak{p})^i)$ .

*Proof.* Since  $S/\mathfrak{P}$  is a simple left S module, it is a simple left  $S/J(\mathfrak{p})$  module. Also  $S/J(\mathfrak{p})$  is completely reducible, so  $S/\mathfrak{P}$  is isomorphic to a direct summand of  $S/J(\mathfrak{p})$ . Thus I is a direct summand of  $I_{\mathfrak{p}} = \bigcup r(\mathfrak{p}^i S)$ . So  $I = \bigcup r_I(\mathfrak{p}^i S)$ .

**PROPOSITION 3.6.** Let  $R, \mathfrak{p}, S$  and  $\mathfrak{P}$  be as above. Then the left S injective hull of  $S/\mathfrak{P}$  and  $S/J(\mathfrak{p})$  are countable generated.

#### JAMES OSTERBURG

Proof. Propositions 3.3, 3.5 and 1.3.

**PROPOSITION 3.7.** If R is a semilocal ring, then the left (or right) S injective hull of S/J(S) is countable generated.

Proof. Propositions 3.6 and 3.4.

§4. We fix a maximal ideal  $\mathfrak{p}$  of a commutative, Noetherian ring *R*. Let *S* be an *R*-algebra with the " $\mathfrak{p}S$ -adic" topology. We define the completion of *S* with respect to the  $\mathfrak{p}S$ -adic topology to be inv.  $\lim S/\mathfrak{p}^i S$ , denoted by  $\hat{S}_{\mathfrak{p}}$ . Now  $I_{\mathfrak{p}}$  is a right  $\hat{S}_{\mathfrak{p}}$  module. For let  $\hat{s} = (s_i + \mathfrak{p}^i S) \in \hat{S}_{\mathfrak{p}}$ and  $x \in I_{\mathfrak{p}}$ . Then for k > 0,  $x(\mathfrak{p}^k S) = 0$ , (by Prop. 3.3) define  $x\hat{s} = xs_k$ . If  $x(\mathfrak{p}^j S) = 0$ , assume j < k, then  $s_k - s_j \in \mathfrak{p}^j S$  so  $x(s_k - s_j) = 0$  or  $xs_k = xs_j$ . Since  $I_{\mathfrak{p}}$  is a bi *S*-module (Prop. 3.2),  $I_{\mathfrak{p}}$  becomes a bi- $S - \hat{S}_{\mathfrak{p}}$  module.

We also consider S with the  $J(\mathfrak{p})$ -adic topology. We call inv.  $\lim S/J(\mathfrak{p})^i$ , the completion of S with respect to the  $J(\mathfrak{p})$ -adic topology, denoted by  $\hat{S}_{J(\mathfrak{p})}$ . As above,  $I_{\mathfrak{p}}$  becomes a bi- $S - \hat{S}_{J(\mathfrak{p})}$  module. Since  $\mathfrak{p}S \subset J(\mathfrak{p})$  and  $J(\mathfrak{p})^k \subset \mathfrak{p}S$ , then  $\hat{S}_{\mathfrak{p}} = \hat{S}_{J(\mathfrak{p})}$ .

**PROPOSITION 4.1.** The S endomorphism ring of  $I_{\nu}$  (as either a left or right S module) is the completion of S with respect to the  $\wp$ S-adic or  $J(\wp)$ -adic topologies i.e. End<sub>S</sub>  $I_{\nu} = \hat{S}_{\nu}$ .

*Proof.* Since  $(\bigcap_{i} \mathfrak{p}^{i}S) \cdot I_{\mathfrak{p}} = 0, I_{\mathfrak{p}}$  is a left  $S/\bigcap_{i} \mathfrak{p}^{i}S$  module. In other words, we may assume S is Hausdorff in the  $\mathfrak{p}S$ -adic topology. Now  $I_{\mathfrak{p}} = \bigcup_{i} r(\mathfrak{p}^{i}S)$ . So for  $f \in \operatorname{End}_{S}(I_{\mathfrak{p}}) f|_{r(\mathfrak{p}^{i})S} \in \operatorname{End}_{S/\mathfrak{p}^{i}S}(r(\mathfrak{p}^{i}S))$ , where  $f|_{r(\mathfrak{p}^{i}S)}$  means f restricted to  $r(\mathfrak{p}^{i}S)$ . It follows that  $\operatorname{End}_{S} I_{\mathfrak{p}} = \operatorname{inv.} \lim \operatorname{End}_{S/\mathfrak{p}^{i}S}(r(\mathfrak{p}^{i}S))$ . We now find for each i > 0,  $\operatorname{End}_{S/\mathfrak{p}^{i}S}(r(\mathfrak{p}^{i}S))$ .

In the proof of Prop. 3.3, we showed  $r(\mathfrak{p}^i S)$  as a left  $S/\mathfrak{p}^i S$  module is the  $S/\mathfrak{p}^i S$  hull of  $S/J(\mathfrak{p})$ . Using Prop. 1.3, we conclude  $\operatorname{End}_{S/\mathfrak{p}^i S}(r(\mathfrak{p}^i S))$  $= S/\mathfrak{p}^i S$ , the isomorphism given by right multiplication. Since the following diagram commutes

$$\operatorname{End}_{S} (r(\mathfrak{p}^{i}S)) \longleftarrow \operatorname{End}_{S} (r(\mathfrak{p}^{i+k}S))$$

$$\stackrel{\wr}{\underset{S/\mathfrak{p}^{i}S}{\longleftarrow}} S/\mathfrak{p}^{i+k}S$$

we conclude that  $\operatorname{End}_{S}(I_{\mathfrak{p}}) = \operatorname{inv.} \lim \operatorname{End}_{S/\mathfrak{p}^{i}S}(r(\mathfrak{p}^{i}S)) = \operatorname{inv.} \lim S/\mathfrak{p}^{i}S.$ 

By a semilocal ring R, we mean a commutative, Noetherian ring with only a finite number of maximal ideals,  $p_1, \dots, p_t$ .

14

**PROPOSITION 4.2.** Let R be a semilocal ring and S an algebra over R. Then the endomorphism ring of the injective hull of S/J(S), I(S/J(S)), is the completion of S with respect to the J(S)-adic topology.

*Proof.* We have seen (Prop. 3.4)  $I(S/J(S)) = \bigoplus_{i=1}^{t} I(S/J(\mathfrak{p}^{i}))$ . Let  $\mathfrak{p} \neq \mathfrak{q}$  be maximal ideals of R, we show for  $f \in \operatorname{Hom}_{S}(I_{\mathfrak{p}}, I_{\mathfrak{q}})$ , then f = 0. Let  $x \in I_{\mathfrak{p}}$ , then  $(\mathfrak{p}^{k}S)x = 0$  and  $(\mathfrak{q}^{i}S)f(x) = 0$  for k, l > 0, by Prop. 3.3. Since  $\mathfrak{p}^{k} + \mathfrak{q}^{l} = R$ , there exists  $a \in \mathfrak{p}^{k}$ ,  $b \in \mathfrak{q}^{l}$  such that a + b = 1. So f(x) = f(ax + bx) = f(ax) + bf(x) = 0. Thus  $f \equiv 0$ . We conclude  $\operatorname{End}_{S}(I(S/J(S))) = \bigoplus_{i=1}^{t} \operatorname{End}_{S}(I_{\mathfrak{p}_{i}}) = \bigoplus_{i=1}^{t} \operatorname{inv.} \lim S/\mathfrak{p}_{i}^{j}S = S \bigotimes_{R} \left(\bigoplus_{i=1}^{t} \operatorname{inv.} \lim R/\mathfrak{p}_{i}^{j}\right) = S \bigotimes_{R} \operatorname{inv.} \lim R/\mathfrak{p}_{i}^{j}$ .

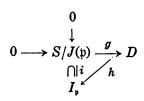
Now  $S/J(R) \cdot S$  is an algebra over the commutative, Artinian ring R/J(R). So S/J(R)S is Artinian, thus its Jacobson radical is nilpotent of index k, so  $J(S)^k \subset J(R)S$ . Also  $J(R)S \subset J(S)$ , thus inv.  $\lim S/J(R)^k S =$  inv.  $\lim S/J(S)^k$ .

Returning to a commutative, Noetherian ring R,  $\mathfrak{p}$  a maximal ideal of R and S an R algebra, we call the left S endomorphism ring of  $I_{\mathfrak{p}}$ ,  $H_{\mathfrak{p}}$ . We have seen (Prop. 4.1) that  $H_{\mathfrak{p}}$  is  $\hat{S}$ , the completion of S with respect to the  $J(\mathfrak{p})$ -adic topology. Let  $\widehat{J(\mathfrak{p})} = \operatorname{inv.} \lim J(\mathfrak{p})/J(\mathfrak{p})^i$ , then  $\hat{S}_{\mathfrak{p}}/\widehat{J(\mathfrak{p})}$  is  $S/J(\mathfrak{p})$  as left S modules.

PROPOSITION 4.3. The notation as above, then  $I_{\mathfrak{p}}$  is an injective  $H_{\mathfrak{p}}$ module. In fact,  $I_{\mathfrak{p}}$  is the  $H_{\mathfrak{p}}$  injective hull of  $\hat{S}_{\mathfrak{p}}/\hat{J}(\hat{\mathfrak{p}})$ . Moreover,  $\hat{A}_{k} = \{x \in I_{\mathfrak{p}} | x \hat{J}(\hat{\mathfrak{p}})^{k} = 0\}$  and  $A_{k} = \{x \in I_{\mathfrak{p}} | x J(\mathfrak{p})^{k} = 0\}$  are equal for all k > 0.

**Proof.** Denote the right  $\hat{S}$  module  $\hat{S}/\hat{J(\mathfrak{p})}$  by C. Let D be the right  $\hat{S}$  hull of C. We show C is an essential S submodule of D. Now  $\hat{S}$  is a left and right Noetherian ring, since it is an algebra over inv.  $\lim R/\mathfrak{p}^i$ . So  $D = \bigcup_i D_i$ , where  $D_i = \{x \in D \mid x \widehat{J(\mathfrak{p})}^i = 0\}$ . Let  $0 \neq d \in D$  so  $d \in \hat{A}_k$  for some k. Also there exists  $\hat{s} = (s_i + J(\mathfrak{p})^i) \in \hat{S}_{\mathfrak{p}}$  such that  $0 \neq d\hat{s} \in C$ ; hence  $0 \neq ds_k \in C$ . So C is an essential right S module of D. Also by Prop. 3.2,  $I_{\mathfrak{p}}$  is a right S injective module.

Thus we can find a right S map h such that hg = i, where  $g = (S/J(\mathfrak{p}) \simeq \hat{S}/\hat{J(\mathfrak{p})} \subseteq D)$  and i are viewed as right S maps.



Now h is one to one for  $S/J(\mathfrak{p})$  is an essential right S module. Since  $I_{\mathfrak{p}}$  is a right  $\hat{S}$  module and D is an injective  $\hat{S}_{\mathfrak{p}}$  module, D is a direct summand of  $I_{\mathfrak{p}}$ . However, *i* is essential, so  $D = I_{\mathfrak{p}}$ . The equality of  $\hat{A}_k$  and  $A_k$  follows from  $\widehat{J(\mathfrak{p})} = J(\mathfrak{p})\hat{S}$ .

§5. As usual we assume R is commutative Noetherian and S is an R-algebra. The direct sum (as left S modules) of the  $I_{\mathfrak{p}}$ 's,  $\mathfrak{p}$  ranging over all maximal ideals of R, we call the canonical cogenerator, E. i.e.  $E = \bigoplus I_{\mathfrak{p}}$ . Now E is the left S hull of F, where F is the direct sum of the  $S/J(\mathfrak{p})$ 's. Moreover, since S is a finitely generated R-module,  $E = \operatorname{Hom}_{R}\left(S, \bigoplus_{\mathfrak{p} \max in R} I_{R}(R/\mathfrak{p})\right)$ . Thus E becomes in the natural way a bi-S module and the right S hull of F. Because E contains a copy of each simple left (right) S module, E is left (right) S cogenerator; hence, E is faithful as a left (right) S module.

We denote by **P** the totality of all products of powers of maximal ideal of R. If  $\mathfrak{p}_1^{t_1}\cdots\mathfrak{p}_m^{t_n}\in \mathbf{P}$ , then  $\mathfrak{p}_1^{t_1}\cap\cdots\cap\mathfrak{p}_m^{t_n}=\mathfrak{p}_1^{t_1}\cdots\mathfrak{p}_n^{t_n}$ .

For B a subset of S, we call  $r(B) = \{x \in E \mid Bx = 0\}$  and  $l(B) = \{x \in E \mid xB = 0\}$ .

Proposition 5.1.  $E = \bigcup_{w \in P} r(wS) = \bigcup_{w \in P} l(ws)$ 

*Proof.* Let  $x \in E$ , then  $x = x_1 + \cdots + x_n, x_i \in I_{\mathfrak{p}_i}$ ;  $i = 1, \dots, n$ . By Proposition 3.3,  $(\mathfrak{p}_1^{k_1}S)x_1 = 0$ ;  $\cdots$ ;  $(\mathfrak{p}_n^{k_n}S)x_n = 0$ . So  $\mathfrak{p}_1^{k_1}\cdots\mathfrak{p}_n^{k_n} = w \in \mathbf{P}$  and (wS)x = 0.

The *n*-adic topology of S has as a basis of neighborhoods of zero ideals of the form  $wS, w \in P$ . We partially order P by inclusion. In fact, P is a direct set. We call  $S^* = inv. \lim_{w \in P} S/wS$ , the completion of S with respect to the *n*-adic topology. Furthermore, E is a bi- $S - S^*$  module. Let  $s^* = (s_w + wS) \in S^*, s_w \in S, w \in P$  and  $x \in E$ , then 0 = x(vS) for  $v \in P$ , define  $xs^* = xs_v$ . If x(wS) = 0 for  $w \in P$ , then x((vw)S) = 0. Thus  $s_v - s_{vw} \in vS$  and  $s_w - s_{vw} \in wS$ , so  $xs_v = xs_{vw} = xs_w$ . We conclude the multiplication is well defined.

For any  $B \subset S$ , let  $l_F(B) = \{x \in F | Bx = 0\}$  and  $l_E(B) = \{x \in E | Bx = 0\}$ ,  $l_F(B) \subset l_E(B)$ . For a fixed  $w \in \mathbf{P}$ , let  $\overline{S} = S/wS$  and  $\overline{R} = R/w$ ,  $\overline{S}$  is an algebra over the commutative, Artinian ring  $\overline{R}$ . Thus  $\overline{S}$  is both left and right Artinian.

**PROPOSITION 5.2.** The notation as above. If  $Q = r_E(wS)$ , then Q is the canonical bi- $\overline{S}$  module.

Proof. Since E is the left S hull of  $F, r_E(wS)$  is the left  $\overline{S}$  hull of  $r_F(wS)$ . (See 1, Thm. 17, p. 272). Now let  $w = \mathfrak{p}_1^{k_1} \cdots \mathfrak{p}_t^{k_t}, \mathfrak{p}_1, \cdots, \mathfrak{p}_t$  maximal ideals of R. We show  $r_F(wS) = S/J(\mathfrak{p}_1) \oplus \cdots \oplus S/J(\mathfrak{p}_t)$ . Since  $\mathfrak{p}_1S \subset J(\mathfrak{p}_1), \cdots, \mathfrak{p}_tS \subset J(\mathfrak{p}_t)$ , we have  $r_F(wS) \supseteq S/J(\mathfrak{p}_1) \oplus \cdots \oplus S/J(\mathfrak{p}_t)$ . Let  $x \in r_F(wS)$ , so  $x = \overline{x}_1 + \cdots + \overline{x}_n$ ,  $0 \neq \overline{x}_i = x_i + J(\mathfrak{q}_i)$ , for  $x_i \in S$  and  $\mathfrak{q}_i$  a maximal ideal of R for  $i = 1, \cdots, n$ . Now (wS)x = 0 implies  $(wS)x_1 \subset J(\mathfrak{q}_1), \cdots, (wS)x_n \subset J(\mathfrak{q}_n)$ . If  $\mathfrak{q}_1 \neq \mathfrak{p}_1, \cdots, \mathfrak{p}_t$ , then  $\mathfrak{q}_1 + w = R$ . Thus  $x_1 \in x_1(\mathfrak{q}_1 + w)S \subset x_1(\mathfrak{q}_1S) + x_1(wS) \subset J(\mathfrak{q}_1)$  or  $\overline{x}_1 = 0$ . However, we assumed  $\overline{x}_1 \neq 0$ , thus  $\mathfrak{p}_1 = \mathfrak{q}_1$  (after renumbering) continuing we see  $\mathfrak{q}_i = \mathfrak{p}_i$  (after renumbering) and  $t \geq n$ . Thus  $r_F(wS) = S/J(\mathfrak{p}_1) \oplus \cdots \oplus S/J(\mathfrak{p}_t)$  so  $r_E(wS) = I_{\overline{S}}(r_F(wS)) = I_{\overline{S}}(S/J(\mathfrak{p}_1) \oplus \cdots \oplus S/J(\mathfrak{p}_t)) = I_{\overline{S}}(\overline{S}/J(\overline{S})) = \operatorname{Hom}_{\overline{R}}(\overline{S}, I_{\overline{R}}(\overline{R}/J(\overline{R})))$  by Prop. 1.2. Thus  $r_E(wS)$  as a bi- $\overline{S}$  module is the canonical  $\overline{S}$  module.

**PROPOSITION 5.3.** The endomorphism ring of E is the completion of S with respect to the n-adic topology.

**Proof.** Since  $E = \bigcup_{w \in P} r(wS)$  (Prop. 6.1)  $\operatorname{End}_S E = \operatorname{inv.} \lim_{w \in P} \operatorname{End}_{S/wS} (r_E(wS))$ . By Propositions 5.2, 1.2 and 1.3  $S/wS = \operatorname{End}(r_E(wS))$  by  $(a + wS) \to (x \to xs), a \in S, x \in r(wS)$ . If  $wS \subset vS$ , then the following diagram commutes



So  $\operatorname{End}_{S}(E) = \operatorname{inv.}_{w \in P} S/wS.$ 

The question arises: is E injective over its endomorphism ring? F. L. Sandomierski has shown that as long as E has an infinite number of direct summands, then E is not injective over its endomorphism ring. (See Sandomierski) (5, Thm. 1, p. 244).

Let U be the collection  $\{U\}$  of left ideals of S such that S/U is left

#### JAMES OSTERBURG

Artinian. We order U by inclusion; since the intersection of two ideals of U is in U, U is directed. We call the inv.  $\lim_{v \in U} S/U$  the completion of S with respect to U topology. Now S/U has a composition series  $S/U = M_0 \supset M_1 \supset \cdots \supset M_n = 0$  for  $U \in U$ .

By Prop. 2.2 there exists a unique maximal  $p_i$  of R such that  $p_iM_i \subset M_{i+1}$  for  $i = 0, \dots, n-1$ . Now  $p_{n-1} \cdots p_0(S/U) = 0$  i.e. if  $w = p_{n-1} \cdots p_0$ , then  $wS \subset U$  and  $w \in P$ . Furthermore, by the Jordan-Hölder Theorem w is unique. Thus we show for each  $U \in U$  there exists a  $w \in P$  such that  $wS \subset U$  i.e.  $\{wS | w \in P\}$  is cofinal in U.

**PROPOSITION 5.4.** The endomorphism ring of E (as a left S module) is the completion of S with respect to the U topology.

*Proof.* We have seen  $\{wS | w \in P\}$  is cofinal in U. Thus  $\operatorname{End}_{S} E = \operatorname{inv.}_{w \in P} S/wS = \operatorname{inv.}_{U \in U} S/U$ .

The finite topology on S has basic neighborhoods of zero of the form  $U_{x_1...x_n}(0) = \{s \in S \mid sx_1 = \cdots = sx_n = 0\}$  for  $x_1, \cdots, x_n \in E$ . Since E is faithful the finite topology is Hausdorff. Moreover, by an argument similar to the proof of Prop. 5.4 for each  $U_{x_1...x_n}(0), x_1, \cdots, x_n \in E$  there exists a  $w \in \mathbf{P}$  such that  $wS \subset U_{x_1...x_n}(0)$ . Thus the finite topology is coarser than the *n*-adic topology and the *n*-adic topology is Hausdorff.

By the bicommutator of E (Bic (E)) we mean the set of all endomorphisms of E as an Abelian group which commutes with every element of  $H(= \operatorname{End}_{S} E)$ .

**PROPOSITION 5.5.** The bicommutator of E is the completion of S with respect to the finite topology.

Proof. Let  $x_1, \dots, x_n \in E$  and  $U = U_{x_1 \dots x_n}(0)$ , we have a  $w \in P$  such that  $wS \subseteq U$ . So S/U can be regarded as a module over an artinian ring S/wS. We define a product on  $S/U \times (x_1H + \dots + x_nH) \to E$ , by  $(s + U, \sum^n x_i h_i) \to \sum_{i=1}^n sx_i h_i \in E$ . It is easy to see that S/U and  $x_1H + \dots + x_nH$  form an orthogonal pair with respect to E. See (1, p. 254). Now E is a quasi-Frobenius bi-S - H module because E is left S injective and contains a copy of every simple left S module (See (1, Thm. 4, p. 257)). Furthermore S/U has a composition series as a left S/wS module; hence, S/U has a composition series as a left S module for  $wS \subseteq U$ . Thus by (1, Prop. 2, p. 254)  $x_1H + \dots + x_nH$  has a composition series

as a right H module and  $S/U = \text{Hom}_{S}(x_{1}H + \cdots + x_{n}H, E)$  by  $(s + U) \rightarrow (\sum x_{i}h_{i} \rightarrow \sum sx_{i}h_{i}))$ . If  $x_{1}H_{1} + \cdots + x_{n}H \subseteq y_{1}H + \cdots + y_{t}H, x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{t} \in E$ , then  $U_{x_{1}\cdots x_{n}}(0) \supseteq U_{y_{1}\cdots y_{t}}(0)$ . The following diagram commutes

$$S/U_{y_1\dots y_t}(0) \xrightarrow{S/U_{x_1\dots x_n}(0)} \\ \downarrow \\ \operatorname{Hom}_h(y_1H + \dots + y_tH, E) \longrightarrow \operatorname{Hom}_H(x_1H + \dots + x_nH, E)$$

Thus

inv. 
$$\lim S/U_{y_1\dots y_n}(0) =$$
inv.  $\lim \operatorname{Hom}_H(y_1H + \dots + y_tH, E)$   
=  $\operatorname{Hom}_H(\operatorname{dir} \lim y_1H + \dots + y_nH, E)$   
=  $\operatorname{Hom}_H(E, E)$ .

**PROPOSITION 5.6.** If R is a commutative, Noetherian ring, then the completion of R with respect to the n-adic topology equals the completion of R with respect to the finite topology.

#### BIBLIOGRAPHY

- 1) Azumaya, Goro, "A Duality Theory for Injective Modules (Theory for Quasi Frobenius Modules)", American J. of Math. 81 (1959), pp. 249-278.
- Azumaya, Goro, "On Maximally Central Algebras", Nagoya Math. J., 2 (1951), pp. 119-150.
- 3) Cartan, H. and S. Eilenberg, *Homological Algebra*, Princeton, N. J.: Princeton University Press, 1956.
- Matlis, Eben, "Injective Modules over Noetherian Rings", Pacific J. of Math., 8 (1958), pp. 511-528.
- 5) Sandomierski, F. L., "Some Examples of Right Self Injective Rings which are not left Self Injective", P.A.M.S., 26 (1970), pp. 244-245.

University of Cincinnati Taft Fellow and Indiana University