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Introduction

We are concerned with an algebra S over a commutative ring. Pre-
cisely S is a non-commutative ring with identity which is also a finitely
generated unital R module such that τ(xy) = (rx)y — x(ry) for r in β
and x,yeS. In section one, we assume A is a commutative, Artinian
ring. Following Goro Azumaya (see (1, p. 273)), we define the canonical
module F of A to be the injective hull of A modulo the Jacobson radical
of A i.e. F = /(A//(A)). Let S be an algebra over A, we call a bi-S
module Q, a canonical S module if Q is isomorphic as a bi-S module to
Hom4 (S,F). Azumaya has shown that the canonical bi-S module is uni-
quely determined, up to isomorphism, by the ring S and is independent
of choice of the base ring. In Prop. 1.2 we show that Q as a left S
module is the S hull of S modulo J(S). i.e. Q = I(S/J(S)). Moreover
the left S endomorphism ring of Q is S. (See Prop. 1.3.)

In section 2 we consider an algebra S over a commutative ring R
(without chain conditions). For any maximal ideal p of R let J(p) be the
two sided ideal of S such that pS c J(p) and J(p)/pS is the Jacobson

radical of S/pS. Then Q J(P) = J(S), the Jacobson radical of S.
p max in R

In section 3 we assume R is a commutative, Noetherian ring and S
is an R algebra. Let p be a maximal ideal of R, then Prop. 3.2 states
the left S hull of S/J(p)9Ip, is HomΛ(S,/(B/0).

If we assume i? is semilocal, then we show in Prop. 3.4 that
I(S/J(S)) is countable generated.

In section 4, Prop. 4.1 we show that the left S endomorphism ring
of Ip is the completion of S with respect to the pS-adic topology. Also
Ip is injective over its endomorphism ring, see Prop. 4.3. If R is semi-
local, then the left S endomorphism ring of I(S/J(S)) is the completion
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10 JAMES OSTERBURG

of S with respect to the J(S) adic topology. Furthermore, I(S/J(S)) is
injective over its endomorphism ring, see Propositions 4.2 and 4.4.

In section 5, we set E = 0 Ip. We show that the left S endo-
p max in R

morphism ring of E is inv. limS/tt where II is a left ideal of S such
that S/VL is Artinian, see Prop. 5.3. In Prop. 5.5 we show the bicom-
mutator of E is the completion of S with respect to the finite topology.

I want to thank my advisor Goro Azumaya for all of his help and
encouragement.

§1. The Canonical Module in the Artinian Case

We assume A is a commutative, Artinian ring and S an algebra
over A. The Jacobson radical of S (respectively A) is J(S) (respectively
/(A).)

DEFINITION 1.1. The A canonical module is the A injective hull of
A/J(A). Denote the canonical module by F.

PROPOSITION 1.1. The A canonical module F is a finitely generated
A module. The ring map A —> End^ (F), which sends a e A to (x —> ax),
xeF is an isomorphism.

Proof. See Azumaya (1, Prop. 10, pβ 273)

If S is an algebra over A, then S is left and right Artinian.

DEFINITION 1.2. A hi-S module Q is called a canonical S-module if
Q is isomorphic as a bi-S module to ΈίomA (S,F).

Remark 1.1. We regard Ή.omA (S,F) as a biS module by defining
(sf) = {t -> f(ts))9 (fs) = (t-+ f(st)) for / e Hom^ (S, F), s,teS.

So with each base ring of S, there is a canonical S module. Azumaya
has shown that the canonical two sided S module is uniquely determined,
up to isomorphism, by the ring S and is independent of the choice of
the base ring (see 1, Thm. 21, p. 276).

PROPOSITION 1.2. If Q is the canonical two sided S module, then Q
as a left S module (respectively as a right S module) is the left (respec-
tively the right) injective hull of S/J(S) regarding S/J(S) as a left S
module (respectively as a right S module). Thus the left (or right) S
hull of S/J is a bί-S module.
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Proof. For any base ring A of S, as a two sided S module, Q ~

u (S,F). Now by (3, Prop. 6.1a, p. 30) Hom^ (S,F) is left and right

5 injective. It is well known that an injective S module is the hull of

its socle. It is also clear that rQ(J) = {qeQ\Jq = 0} is the socle of Q.

Now rQ(J) = Ή.omA (S/J,F) by (1, Lemma 3, p. 275). We decompose

S/J = S — Ί$eι + + Sen, where the Se t 's are simple subrings and e/s
n _ n _

are orthogonal idempotents. Then rQ{J) = 0 Horn A (SeuF) = © e*S =

S/J by (1, Lemma 2, p. 274). Thus the socle of Q as a left (or right

S) module is S/J. So as a left (or right S) module Q is the injective

hull of S/J.

PROPOSITION 1.3. Let S be an algebra over a commutative, Artίnian

ring, then the left S injective hull of S/J, I, is finitely generated and

contains a copy of every simple S-module. Moreover, the map S to

Ends I which sends s to (x —> xs),x e I,s e S is an isomorphism of rings.

We can replace left by right in the above.

Proof. As a bi-S module, / is of QF type (1, Thm. 19, p. 275).

Since S is left and right Artinian, we have established (iii) of Theorem

6 (1, p. 259), which is equivalent to (i) of Theorem 6 (1, p. 259). But

(i) Theorem 6 is our result.

§ 2 . The Jacobson Radical of an Algebra

We assume R is an arbitrary commutative ring and S an R algebra.

PROPOSITION 2.1. Let M be a non-zero simple left S module. Then

there exists a unique maximal ideal p of R such that pM = 0. Thus if

ψ is a left maximal ideal of S there exists a unique maximal ideal p of

R such that pS c Sβ. Moreover, p = {r eR\r ls c Sβ}, if R c center of

S, then p = R Γ\?β.

Proof. Follows easily from Azumaya (2, Theorem 5, p. 123).

PROPOSITION 2.2. For any algebra S over R, let J(p) be, for each

maximal ideal p of R, the two sided ideal of S such that pS C J(p) and

J(p)/pS is the Jacobson radical of the residue class algebra S/pS. Then

the radical J of S is the intersection of all the J(p)fs i.e. J(S) =

Π J(t>). So J(R)-S c J(S). Moreover, if p Φ q are maximal ideals
p maximal in R

of R, then J(p) + J(q) = S = pS + qS.



12 JAMES OSTERBURG

Proof. The first statement is the corollary of Lemma 2 (2, p. 125).
If p Φ q, then S = J2-S = (p + q)S d pS + qS d J(p) + /(q) c S . So S =
ί>S + qS = J(p) + /(q).

§ 3. From now on we assume R is a commutative, Noetherian ring
and S is an R algebra. Thus S is left and right Noetherian. Let p be
a maximal ideal of R.

Remark 3.1. Let S,R and p be as above and i > 1, then JB/p* is a
local, Artinian ring, S/jΛS is an algebra over R/p* and the radical of
S/p'S is

Proof. Now S/pS is finite dimensional over β/p, so S/pS is Artinian.
Thus the Jacobson radical is nilpotent i.e. for some k > 0, J(p)k c pS.
So /(p)ΐfc c p̂ S, but S/J(p) is semisimple and so has no non-zero nilpotent
ideals. Thus J(p)/p*S is the Jacobson radical of

PROPOSITION 3.1. Let p be a prime ideal of a commutative,
Noetherian ring R, call the injective hull of R/p,I9 and let Ai —
{a? e /1 ϊ>*α? = 0}, then At is a submodule of I,AiC:Ai+1 and I = (J A«.

Moreover, if p is a maximal ideal, then each At is finitely generated
R-module, thus I is a countable generated R-module.

Proof. See Matlis (4, Theorem 3.4, p. 520) and (4, Theorem 3.11,
p. 525).

PROPOSITION 3.2. Let p be a maximal ideal of a commutative,
Noetherian ring and S an algebra over R. Then the left S injective
hull of S/J(p), which we call Ip, is ΈίomR(S,I(R/p)). Thus Ip becomes
in the natural way a bi-S module. Moreover, Ή.omE(S,I(R/p)) is the
union of the canonical S/pίS modules i.e. Ip — [J Hom^ (S, At). We can

i

replace left by right in the above.

Proof. Since S is a finitely generated R module Hom^ (S,I(R/p)) =
U Hom^ (S, A,). Now for each i > 0, Hom^ (S, A,) = HomΛ/,i(S/jΛS, A,),
let S = S/ptS and R = Rjp1 we observe R is commutative, Artinian and
S is an algebra over R. By (1, Thm. 17, p. 272) At is the R injective
hull of R/p. Thus for each i > 0, Hom^ (S, At) = Hom^ (S, h(R/p)) = Q«
which is the canonical S module. We know by Proposition 1.2 and
Remark 3.1, that as a left S module Qt is the injective hull of S/J(p).
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Also Qi ci Qi+i, for A c Ai+1, thus S/J(p) is a large S submodule of U Qt

= KomR(S,I(R(p)). But Horn (S,I(R/p)) is injective by (3, Prop. 6.1a,

p. 30.). Thus Hom 5 (S,I(R/p)) is the left S injective hull of S/J(p). For

B a subset of S, let r(i?) = {j/ eIp\By = 0} and Z(J?) = {yeIp\yB = 0}.

PROPOSITION 3.3. Tfte notation as in Prop. 3.2, ίfeew /„ = U KpΉ) =

r(J(pY) =U
ί

Proof. Let i > 0 and regard Qt as an S-module, then the S hull of

Qi is 7,. Now r(p*S) = Qί as an S/p*S module (see 1, Cor. Thm. 17,

p. 273). So Ip = (J Φ*S) = U ZCp'S). Also S/pS is Artinian, so for some

k,J(p)« c pS. Thus 7P = U K/Ct))') = U
i ί

We call R semilocal, if R is commutative Noetherian ring with only

a finite number of maximal ideals, p19 ••-,&.

PROPOSITION 3.4. Let R be a semilocal ring and S an R-algebra.

Then the left S injective hull of S/J(S) is ΈLomB(S,I(R/J(R)). Thus

I(S/J(S)) becomes a bi-S module in the natural way. We can replace

left by right in the above.

Proof. By Prop. 2.2 and the Chinese Remainder Theorem, S/J(S)

= S/J(pO Θ Θ S/J(pt), so IS(S/J(S)) - IsiS/Jfa)) Θ Θ Is(S/J(pt)) =
^ OS,/(#/&)) ® • Θ Hom^ (S,I(R/pt)) - Horn* (S,I(R/J(R))

Let $ be a left maximal ideal of S, we know there exists a unique

maximal ideal p of R such that pS c ψ. Moreover, if R is contained in

the center of S, then p = B Π φ.

PROPOSITION 3.5. Lβί $β δβ α Zβ/ί maximal ideal of an algebra S

over a commutative noetherian ring R. Call the left S injective hull of

I. Let r (p<S) be {x e I \ (p^x = 0}. Then I = \J r(p's) = U r(J(pY).
i ί

Proof. Since S/?fi is a simple left S module, it is a simple left

S/J(p) module. Also S/J(p) is completely reducible, so S/Sβ is isomorphic

to a direct summand of S/J(p). Thus / is a direct summand of /„ =

UKt)'S). So 7 =

PROPOSITION 3.6. Let R, p, S and ψ be as above. Then the left S

injective hull of S/9β and S/J(p) are countable generated.
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Proof, Propositions 3.3, 3.5 and 1.3.

PROPOSITION 3.7. If R is a semilocal ring, then the left (or right)

S injective hull of S/J(S) is countable generated.

Proof. Propositions 3.6 and 3.4.

§4. We fix a maximal ideal p of a commutative, Noetherian ring

R. Let S be an JR-algebra with the "pS-adic" topology. We define the

completion of S with respect to the pS-adic topology to be inv. lim S/pίS,

denoted by Sp. Now Ip is a right Sp module. For let s = (s< + p*S) e Sp

and xelp. Then for k > 0, x(pkS) = 0, (by Prop. 3.3) define xs = xsk.

If x(pjS) = 0, assume / < fc, then sk — Sjβ pjS so ^(sfc — Sj) = 0 or ajs* =

ίcŝ . Since Jp is a bi S-module (Prop. 3.2), Ip becomes a bi-S — Sp module.

We also consider S with the /( p)-adic topology. We call inv. lim S/J(py,

the completion of S with respect to the /( p)-adic topology, denoted by

Sj ( p ). As above, Ip becomes a bi-S — SJiP) module. Since pS c J(p) and

c pS, then Sp = SJ(P).

PROPOSITION 4.1. The S endomorphism ring of Ip (as either a left

or right S module) is the completion of S with respect to the pS-adίc or

J(p)-adic topologies i.e. End 5 Ip — Sp.

Proof. Since (p{p
iS) Ip = 0,/p is a left S/Πί*S module. In other

i i

words, we may assume S is Hausdorff in the pS-adic topology. Now
/, = U K ^ ) So for / e Ends (/,) f\r{pi)S e E n d w * β (rQΛS)), where f\ript8)

i

means / restricted to r(p*S). It follows that End 5 Ip = inv. lim End^i^

(r(pιS)). We now find for each i > 0, End 5 / ί < 5 (r(p*S)).

In the proof of Prop. 3.3, we showed r(pιS) as a left S/pΉ module

is the S/pΉ hull of S/J(p). Using Prop. 1.3, we conclude E n d ^ ^ (r(p*S))

= S/ptS, the isomorphism given by right multiplication. Since the fol-

lowing diagram commutes

End* (r(t)'S)) < E n d s (r(pi+kS))

II il
< S/pί+kS

we conclude that Ends (h) = inv. lim Ends/^ (r(p*<S)) = inv. lim S/p*S.

By a semilocal ring R, we mean a commutative, Noetherian ring

with only a finite number of maximal ideals, ft, ,fo.
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PROPOSITION 4.2. Let R be a semilocal ring and S an algebra over
R. Then the endomorphism ring of the injective hull of S/J(S),I(S/J(S)),
is the completion of S with respect to the J(S)-adic topology.

Proof. We have seen (Prop. 3.4) I(S/J(S)) = © IίS/Jip*)). Let p Φ q

be maximal ideals of R9 we show for / e H o m s (/„,/,), then / = 0. Let
x e Ip> then (pkS)x = 0 and (qιS)f(x) = 0 for ft, Z > 0, by Prop. 3.3. Since
j3fe + qz = R, there exists αej3fc, b eqι such that α + 6 = 1. So fix) =
f(ax + bx) = /(as) + δ/(s) = 0. Thus / = 0. We conclude End5 (I(S/J(S))

= © End5 (IPi) = © inv. lim S/WS = S (x) ί© inv. lim R/p{\ = S (x) inv. lim

#//(#)* = inv.

Now S/J(R)'S is an algebra over the commutative, Artinian ring
R/J(R). So S/J(R)S is Artinian, thus its Jacobson radical is nilpotent
of index ft, so J(S)k c /(#)£. Also J(β)S c J(S), thus inv. lim S/J(R)kS =
inv. lim S/J(S)k.

Returning to a commutative, Noetherian ring R9 p a maximal ideal
of R and £ an R algebra, we call the left S endomorphism ring of Ip, Hp.
We have seen (Prop. 4.1) that Hp is S, the completion of S with respect
to the /(p)-adic topology. Let J(p) = mv.limJ(p)/J(py, then §P/J(p) is
S//(})) as left S modules.

PROPOSITION 4.3. The notation as above, then Ip is an injective Hp

module. In fact, Ip is the Hp injective hull of Sp/J(p). Moreover, Ak —

{xeIp\xJ(p)k = 0} and Ak = {xelp\χj(p)k = 0} are equal for all ft > 0.

Proof. Denote the right S module S /J(p) by C. Let D be the right
S hull of C. We show C is an essential S submodule of D. Now S is
a left and right Noetherian ring, since it is an algebra over inv. HmJS/ jΛ

So D — U A, where Z^ = {s e D | ̂ /(p)€ — 0}. Let 0 Φ deD so de Ak

for some ft. Also there exists s = (s* + /(p)4) e Sp such that 0 ̂  ds e C
hence 0 Φ dske C. So C is an essential right S module of D. Also by
Prop. 3.2, Ip is a right S injective module.

Thus we can find a right S map h such that hg = ΐ, where # =

(S/J(p) ~ S/J(p) c D) and ΐ are viewed as right S maps.
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0

0 — > S/J(p) -?-> D

flϋ/h

K
Now h is one to one for S/J(p) is an essential right S module. Since
7P is a right § module and D is an injective Sp module, D is a direct
summand of 7 r However, ί is essential, so D = 7P. The equality of

i4fc and Afc follows from /(p) == /(p)S.

§ 5. As usual we assume 72 is commutative Noetherian and S is an
72-algebra. The direct sum (as left S modules) of the 7/s, p ranging
over all maximal ideals of 72, we call the canonical cogenerator, E. i.e.
E = Θ 7P. Now E is the left S hull of F, where F is the direct sum of
the S/J(p)'&. Moreover, since S is a finitely generated 72-module, E =

HomΛ ίS, 0 7s(72/p)j. Thus i? becomes in the natural way a bi-S
\ i? max in R I

module and the right 5 hull of F. Because E contains a copy of each
simple left (right) S module, E is left (right) S cogenerator; hence, E
is faithful as a left (right) S module.

We denote by P the totality of all products of powers of maximal
ideal of R. If p*.. -pm

tn e P, then jV1 Π Π pm

tn = fcei pn

tn.
For B a subset of S, we call r(B) = {xeE\Bx = 0} and ί(B) =

{xeE\xB = 0}.

PROPOSITION 5.1. E = \j r(wS) = \J l(ws)
weP weP

Proof. Let x e E, then x = ^ + + xn, xt e IH i = 1, , n. By

Proposition 3.3, (p1

klS)x1 = 0 CpTO

fcnS)#TO = 0. So p^ 1- ί)TO

fcn = w e P

and (wS)x = 0.

The w-adic topology of S has as a basis of neighborhoods of zero
ideals of the form wS, w e P. We partially order P by inclusion. In
fact, P is a direct set. We call S* = inv. lim S/wS, the completion of

WGP

S with respect to the w-adic topology. Furthermore, E is a bi-S — S*
module. Let s* — (sw + wS) eS*, sweS,w eP and a; e £7, then 0 =
for v eP, define xs* = xsυ. If as(mS) = 0 for weP, then x((vw)S) = 0.
Thus sυ — svw; e vS and sw — sυw e wS, so xsυ = xsυw) = a^. We conclude
the multiplication is well defined.
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For any B a S, let lF(B) = {xeF\Bx = 0} and ẐCB) == {#6E\Bx =
0}, ^(5) c Z (̂B). For a fixed weP, let 5 = S/wS and R = β/w, S is
an algebra over the commutative, Artinian ring R. Thus S is both left
and right Artinian.

PROPOSITION 5.2. Tfce notation as above. If Q = rE(wS), then Q is
the canonical bί-S module.

Proof. Since E is the left S hull of F, rE(wS) is the left S hull of
rF{wS). ( S e e 1, T h m . 17 , p . 2 7 2 ) . N o w l e t w = fa*1- -pt

kt, p19 - ,pt

maximal ideals of R. We show rF(wS) = £//(&) Θ . Θ S/J(pt). Since
p,S c /(ft), . . . , ( ) t Sc /(ft), we have rF(wS) 3 S/Jί^) Θ Θ S/J(pt). Let
x e rF(wS), so x = xλ + + scn, 0 Φ xt = ̂  + /(q<), for ^ e S and q4 a
maximal ideal of i2 for i = 1, ,n. Now (wS)x = 0 implies (wS)x1 c
/(qi), > (wS)#n c /(qj. If qx ̂  &, , fo, then qx + w = R. Thus ^ 6
#i(c[i + ̂ 'S c ^(q^) + xx(wS) c /(qj) or ^ = 0. However, we assumed
xx φ 0, thus pi = qx (after renumbering) continuing we see qt — pt (after
renumbering) and t^n. Thus rF(wS) = S/Jifa) Θ Θ S/J(pt) so rE(wS)

by Prop. 1.2. Thus rE(wS) as a bi-S module is the canonical S module.

PROPOSITION 5.3. The endomorphism ring of E is the completion of
S with respect to the n-adic topology.

Proof. Since £7= (J r(wS) (Prop. 6.1) End5 # = inv. lim End5/Il,5
weP weP

(TE(wS)). By Propositions 5.2, 1.2 and 1.3 S/wS = End (r^(wS)) by
(α + WiS) —> (x -> a s), α e S, xe r(wS). If wS c vS, then the following
diagram commutes

End (r(wS)) r e s t r ί c t i o n

) E n d (r(vS))

l\ l\
S/wS > S/vS

So End^ (E) = inv. lim S/wS.
weP

The question arises: is E injective over its endomorphism ring?
F. L. Sandomierski has shown that as long as E has an infinite number
of direct summands, then E is not injective over its endomorphism ring.
(See Sandomierski) (5, Thm. 1, p. 244).

Let U be the collection {£/} of left ideals of S such that S/U is left
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Artinian. We order U by inclusion since the intersection of two ideals
of U is in U, U is directed. We call the inv. UmS/U the completion

veu

of S with respect to U topology. Now S/U has a composition series
S/U = Mo z> Mι D - => Mn = 0 for 17 e 17.

By Prop. 2.2 there exists a unique maximal pt of i? such that
ptMi c M<+1 for i = 0, ,n — 1. Now pn_!- -po(S/U) = 0 i.e. if w =
Pra-i Po> then wS a U and we P. Furthermore, by the Jordan-Holder
Theorem w is unique. Thus we show for each U e U there exists a
w e P such that wS d U i.e. {wS\weP} is cofinal in £7.

PROPOSITION 5.4. The endomorphism ring of E (as a left S module)
is the completion of S with respect to the U topology.

Proof. We have seen {wS \ w e P) is cofinal in U. Thus End5 E =
inv. lim S/wS = inv. lim S/U.

weP ueu

The finite topology on S has basic neighborhoods of zero of the form
UXl...Xn(0) = {s e S| 8Xχ = = sα;̂  = 0} for x19 , xTO e £7. Since £7 is
faithful the finite topology is Hausdorff. Moreover, by an argument
similar to the proof of Prop. 5.4 for each UXί...Xn(0)9xu ^-fxneE there
exists a w e P such that wS c UXl...Xn(0). Thus the finite topology is
coarser than the w-adic topology and the w-adic topology is Hausdorff.

By the bicommutator of E (Bic (E)) we mean the set of all endo-
morphisms of E as an Abelian group which commutes with every element
of H(=EndsE).

PROPOSITION 5.5. The bicommutator of E is the completion of S
with respect to the finite topology.

Proof. Let xl9 , xn e E and U — £^...^(0), we have a w e P such
that wS cz U. So S/U can be regarded as a module over an artinian
ring S/wS. We define a product on S/U X {xxH + + xnH) -• S, by
(s + [7, Σin χihd -* Σ?-i saj<^< e ^ I* ί s e a s ^ to see that S/U and xjl
+ . . + xnH form an orthogonal pair with respect to E. See (1, p. 254).
Now E is a quasi-Frobenius bi-S — H module because E is left S injective
and contains a copy of every simple left S module (See (1, Thm. 4, p.
257)). Furthermore S/U has a composition series as a left S/wS module
hence, S/U has a composition series as a left S module for wS ci C7.
Thus by (1, Prop. 2, p. 254) α̂ ff + + %nH has a composition series



AZUMAYA'S CANONICAL MODULE 19

as a right H module and S/U = Hom5 (xjl + + xnH,E) by (s + U)

-> ( Σ χihi -* Σ sxtht)). If ^HJL + + tfjϊ £ 2/iff + + #*#> ^i, ,

#π>l/i» \ -,yt£E, then ί7a?x...α.n(0) 2 UVι...Vt(0). The following diagram com-

mutes

S/ϋyί...Vt(fi) > S/UXι...xJfi)

II II
Hom Λ (i/jH + . . + 2/jiϊ, £7) > H o m ^ ( ^ H + + xnH, E)

Thus

inv. lim S/UVl...Vn(0) = inv. lim Hom^ (^fΓ + + VtH, E)

= HomJf (dir lim ^ί f + + 2/nH, E)

= HomH (£?, JS7) .

PROPOSITION 5.6. // β is a commutative, Noetherian ring, then the

completion of R with respect to the n-adic topology equals the completion

of R with respect to the finite topology.
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