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UMBILICAL SUBMANIFOLDS AND MORSE FUNCTIONS

KATSUMI NOMIZU AND LUCIO RODRIGUEZ

Let Mn be a differentiable manifold (of class C°°). By a Morse
function on Mn we mean a differentiable function whose critical points
are all non-degenerate. If / is an immersion of Mn into a Euclidean
space Rm, we may obtain Morse functions on Mn in the following way.
Let p be a point of Rm and define a differentiable function Lp on Mn by

Lp(x) = d(p,f(x))2 , xeMn

where d denotes the Euclidean distance in Rm. Then, for almost all
peRm, Lp is a Morse function on Mn (see [2], p. 36).

It is a well-known theorem of Reeb that if a compact differentiable
manifold Mn admits a Morse function with exactly two critical points,
then Mn is a topological sphere (see [2], p. 25). In the present note we
shall prove the following results of a geometric nature (in contrast to
a topological nature).

THEOREM A. Let Mn be a connected compact differentiable manifold
(n ^ 2) immersed in a Euclidean space Rm. If every Morse function on
Mn of the form Lp,peRm, has exactly two critical points, then Mn is
imbedded as a Euclidean n-sphere.

Of course, a Euclidean ^-sphere in Rm means a hypersphere in a
Euclidean (n + l)-subspace Rn+1 of Rm. As a matter of fact, Theorem
A follows from the following more general result.

THEOREM B. Let Mn,n^2, be a connected, complete Riemannian
manifold isometrically immersed in a Euclidean space Rm. If every
Morse function on Mn of the form LpjpeRm

9 has index 0 or n at any
of its critical points, then Mn is imbedded as a Euclidean n-subspace or
a Euclidean n-sphere in Rm.
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As another corollary, we obtain

THEOREM C. Under the assumptions of Theorem B, if the index
is always 0, then Mn is imbedded as a Euclidean n-subspace of Rm.

1. Preliminaries.

It is necessary to recall certain concepts and results on focal points,
which can be found in [2, pp. 32-38]. Although this reference treats
submanifolds imbedded in a Euclidean space, the same results hold for
immersed submanifolds.

Let / be an immersion of a differentiate manifold Mn into a
Euclidean space Rm. A point of the normal bundle N of Mn is denoted
by (x, £), where x is a point of Mn and ξ is a vector normal to f(Mn)
at f(x). Let F be a differentiate mapping of N into Rm given by
F(x, ξ) = f(x) + ξ. A point peRm is called a focal point of M if
p = F(x, ?), where (x, f) is a point of N where the Jacobian F* of F is
degenerate. In this case, we also say that p is a focal point of (ikf, #).
By virtue of Sard's theorem, the set of focal points of M has measure 0.

It is known that a point p = F(x, ξ), where (x,ξ)e N, is a focal
point of (M, x) if and only if the endomorphism / — Aξ on the tangent
space Tx(Mn) is degenerate. Here / is the identity transformation of
Tx(Mn) and Aζ is the symmetric endomorphism corresponding to the
second fundamental form of M at x in the direction of ξ.

On the other hand, let p e Rm and consider the function Lp(x) =
d(f(x),p)2 on Mn. A point xeMn is a critical point of Lp if and only
if the vector ξ from /(#) to p is normal to f(Mn). In this case, the
Hessian H of Lp at x, which is a bilinear symmetric function on TX(M)
X TX(M), is given by

, Y) = 2<7 - A,(Z), Y> , Z, Γ 6 Γ,(MW) ,

where < , > is the inner product on TX(M) induced from the Euclidean
metric in Rm through the immersion /. Thus H is degenerate at x
(i.e., x is a degenerate critical point of Lp) if and only if I — Aξ is
degenerate (i.e., p is a focal point of (M, x)). If x is a nondegenerate
critical point of Lp, the index at x is equal to the number of negative
eigenvalues of / — Aξ, counting multiplicities, in other words, the number
of eigenvalues of Aξ that are larger than 1, counting multiplicities.
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Finally, let (x, ξ) e N, where ξ is a unit vector. For t > 0, let
p = F(x,tξ). Then p is a focal point of (M,x) if and only if 1/ί is an
eigenvalue of Ae. Suppose 1/ί is not an eigenvalue of Aξ. Then the
function Lp has # as a nondegenerate critical point and the index at x
is equal to the number of positive eigenvalues (counting multiplicities)
that are greater than 1/ί.

We now prove a lemma which is crucial in the proof of our results.

LEMMA. Let p eRm and assume that the function Lp has a non-
degenerate critical point x e Mn of index k. Then there exists a point
qeRm such that Lq is a Morse function which has a critical point z of
index k. (q and z may be chosen as close to p and x, respectively, as
we want.)

Proof. Let p = F(x,ξ), where ξ is a normal vector at fix). By
assumption, p is not a focal point of (M, x), that is, the Jacobian F*
is nondegenerate at (x,ξ). Thus there exists a neighborhood U of ix,ξ)
in the normal bundle N such that F gives a diffeomorphism of U onto
a neighborhood V = F(U) of p in Rm. (Of course, U and V may be
chosen as small as we like.) Now V has a point q such that Lq is a
Morse function (i.e., q is not a focal point of M), because the set of
focal points of M has measure 0. We have q = F(z, ζ) for some (2, ζ) e U.
We show that the index of Lq at z is equal to fe.

Consider a differentiable family of symmetric endomorphisms I — Av

on Ty(Mn), where (y, η) runs over U. If we denote the eigenvalues by

Uy> η) ^ Uv, v) ^ ^ Λ«(#, η),

then it can be shown that each λi is a continuous function on £7. Since
F * is nondegenerate at each point of [7, none of these functions takes
value 1 on C7. The index of Lp at x being k by assumption, we have
that λ19 '9λk are greater than 1 at (x,ξ) and Λfc+1, >,λn are less than
1 at (x,ξ). It follows that the same arrangement holds at (z,ζ). This
means that the index of Lq at z is equal to ft. We have thus proved
the lemma.

2. Proof of Theorem B.

Under the assumptions of Theorem B, we shall show the following
fact. If x e Mn and if £ is a unit vector normal to f(Mn) at fix)f then
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Aξ = cl for some constant c, that is, Aξ has only one eigenvalue (of
multiplicity n). Suppose Aξ has a non-zero eigenvalue, say, a. We may
assume that a > 0, because if a < 0, then A_f has — a > 0 as eigenvalue;
if we can show that A_ξ = (—α)J, then we know that Af = — A_ξ = α/.

Assuming thus that α is the largest positive eigenvalue of Aξ9 take
t > 0 such that I/a <t <l/b9 where δ is the next largest positive
eigenvalue if any (if a is the only positive eigenvalue, just consider
I/a < t). Then p = F(#, if) is not a focal point of (M, #) and the func-
tion Lp has a? as a nondegenerate critical point. The index at x is equal
to the multiplicity, say, k9 of the eigenvalue a. If Lp is a Morse func-
tion, the assumption in Theorem B implies k = n, since fc cannot be 0.
Now Lp may not be a Morse function (it can have a degenerate critical
point elsewhere). By the lemma in Section 1, however, we know that
there must exist a Morse function of the form Lqy qeRm, which has a
critical point z of index k. Thus we may conclude that k = n. This
means that a is an eigenvalue of Aξ with multiplicity n so that Aξ = α/.

What we have just shown implies that Mn is umbilical, that is, if
7] denotes the mean curvature vector field, then for any normal vector
ξ at x we have

*< = <<

Equivalently, every X e Tx(Mn) is a principal vector in the sense that
there exists a 1-form ω on the normal space Nx such that

At(X) = ω(ξ)X for all ξ e Nx and X e TX(M) .

It is known (see [1, p. 231]) that a complete Riemannian manifold
isometrically and umbilically immersed in Rm is actually imbedded as a
Euclidean w-subspace or a Euclidean ^-sphere. This completes the proof
of Theorem B.

It is quite easy to derive Theorem A from Theorem B. If a Morse
function Lp has exactly two critical points, then one is where Lp has a
maximum (hence of index n) and the other is where Lp has a minimum
(hence of index 0). Thus every Morse function Lp has index n or 0 at
a critical point.

Suppose Sn is a Euclidean n-sphere in Rm and assume we have
taken a rectangular coordinate system xu 9xm i n ^ m s o that
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Sn = \(xl9 , a?n+1,0, , 0) 2 4 = r2

Then we can see that the set of focal points of Sn is the Euclidean
(m — (n + l))-subspace defined by xx = = xn+1 — 0. If p is not a
focal point, the Morse function Lp has exactly two critical points, one
of index n and the other of index 0.

What we have just said is sufficient to derive Theorem C from
Theorem B.

3. Remarks.

Our main results may be formulated without explicitly involving the
notion of Morse functions and, indeed, under a weaker assumption.
Let D be a dense subset of Rm. In Theorems A, B and C, we may
replace "every Morse function on Mn of the form Lp,peRm" by "every
function on Mn of the form LpfpeD".

The proof of Theorem B under this weaker assumption remains
almost the same as before except for a corresponding change in the
lemma, namely, the conclusion of the lemma should be modified as
follows: "Then there exists a point qeD such that Lq has a critical

point z of index k."

Finally, we note that if M2 immersed in Rm is topologically a 2-
sphere, then our original assumption in Theorem A is equivalent to the
spherical two-piece property studied by T. F. Banchoff: The spherical
two-piece property and tight surfaces in spheres, J. Differential
Geometry 4(1970), 193-205 (see, in particular, Theorem 3).
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