V. Ozols

Nagoya Math. J.
Vol. 48 (1972), 169-172

PERIODIC ORBITS OF ISOMETRIC FLOWS

V. OZOLS

1. Introduction

Let M be a compact C^{∞} Riemannian manifold, X a Killing vector field on M, and φ_{t} its 1 -parameter group of isometries of M. In this, paper, we obtain some basic properties of the set of periodic points of φ_{t}. We show that the set of least periods is always finite, and the set $P(X, t)$ of points of M having least period t for the vector field X is a totally geodesic submanifold, with possibly non-empty boundary. Moreover, we show there are at least m geometrically distinct closed geodesic orbits of φ_{t}, where m is the number of least periods which are not integral multiples of any other least period.

2. Finiteness of least periods

Let M be a complete Riemannian manifold of dimension n. Let $I^{0}(M)$ be the identity component of its isometry group, and $i(M)$ the Lie algebra of $I^{\circ}(M) . \quad i(M)$ is naturally identified with the Lie algebra of Killing vector fields on M, and we will identify an element $X \in i(M)$ with the corresponding Killing vector field. If X is any vector field on M, let Zero $(X)=\left\{p \in M \mid X_{p}=0\right\}$. We use Fix (f) for the set of fixed points of a map $f: M \rightarrow M$.

Lemma. Let $X \in i(M)$ and φ_{t} its 1-parameter group. For each $p \in M$ there is a neighborhood U of p such that the set of least periods of periodic orbits of φ_{t} which intersect U is finite.

Proof. (i) If $p \in \operatorname{Zero}(X)$ then $\left(\varphi_{t}\right)_{*}: T_{p} M \rightarrow T_{p} M$ is a 1-parameter subgroup of the orthogonal subgroup of the orthogonal group of $T_{p} M$, so there is a basis of $T_{p} M$ in which $\left(\varphi_{t}\right)_{*} \mid T_{p} M$ has the form:

$$
\left(\varphi_{t}\right)_{*}=\operatorname{diag}\left\{a_{1}(t), \cdots, a_{k}(t), I_{n-2 k}\right\}
$$

[^0]where
\[

a_{i}(t)=\left($$
\begin{array}{rr}
\cos \alpha_{i} t & \sin \alpha_{i} t \\
-\sin \alpha_{i} t & \cos \alpha_{i} t
\end{array}
$$\right)
\]

$\alpha_{i} \neq 0$ for $i=1, \cdots, k$, and $I_{n-2 k}$ is the $(n-2 k) \times(n-2 k)$ identity matrix. The periodic points of φ_{t} in a spherical neighborhood of p correspond, by $\exp _{p}: T_{p} M \rightarrow M$, to periodic vectors in $T_{p} M$ under $\left(\varphi_{t}\right)_{*}$. The least periods of such vectors are the least common multiples of subsets of the set of numbers $\left\{2 \pi / a_{1}, \cdots, 2 \pi / a_{k}\right\}$ and thus are finite in number.
(ii) If $p \notin \operatorname{Zero}(X)$, let t_{0} be the least period of p. (Let $t_{0}=+\infty$ if p is not periodic). If $t_{0}=\infty$, then either p lies in a neighborhood of non-periodic points, or there is a sequence of periodic points $p_{i} \rightarrow p$. In the first case we're done, and in the second we replace p by a p_{i} sufficiently close to p so p lies in a convex normal neighborhood of p_{i}. Thus we assume p is periodic of least period $0<t_{0}<+\infty$. For each $\varepsilon>0$ let $N_{\varepsilon}=\left\{Y \in T_{p} M \mid Y \perp X_{p}\right.$ and $\left.|Y|<\varepsilon\right\}$. If ε is sufficiently small, then $\varphi_{t}\left(\exp _{p} N_{s}\right) \cap \varphi_{t}\left(\exp _{p} N_{t}\right) \neq \emptyset \quad$ only when $t-t^{\prime} \equiv 0 \quad\left(\bmod t_{0}\right), \quad$ and $\bigcup_{t} \varphi_{t}\left(\exp _{p} N_{s}\right)$ is a tubular neighborhood of the closed orbit $\left\{\varphi_{t}(p) \mid t \in R\right\}$. Let $\delta \in\left(0, t_{0} / 2\right)$ be so small that $U=\bigcup_{t}\left\{\varphi_{t}\left(\exp _{p} N_{\epsilon}\right)| | t \mid<\delta\right\}$ is a normal neighborhood of p. We may assume the p_{i} we chose to replace p is close enough to p so they both lie in U. Now if we put $\left(\varphi_{t_{0}}\right)_{*} \mid T_{p} M$ in the same normal form as in (i), the same argument shows there are only finitely many least periods of periodic points in U.
q.e.d.

Remark. It follows from the proof that the number of least periods in each of the neighborhoods U is bounded above by the maximal number possible of least common multiples in a set of [$n / 2$] numbers; namely $2^{[n / 2]}$. This is independent of the choice of X, but the neighborhood U does depend on X.

Corollary. If M is compact, the set of least periods of φ_{t} is finite.
This corollary thus follows from a simple geometrical argument. One can derive the same result using a theorem of Yang ([4]), which says that a compact Lie group acting differentiably on a compact manifold has only finitely many non-conjugate isotropy subgroups.

From now on, M will always be compact. The Lie algebra $i(M)$ has an $\operatorname{ad}\left(I^{\circ}(M)\right.$-invariant positive definite symmetric bilinear form, and we let S be the unit sphere in $i(M)$ with respect to this form.

Lemma. There is a number $a>0$ such that for every $X \in S$ and every isotropy subgroup G_{p}, if $0<t_{0}<a$ and $\exp \left(t_{0} X\right)$ is in G_{p}, then $\exp (t X) \in G_{p}$ for all $t \in R$.

Proof. $I^{0}(M)$ is a compact Lie group and therefore a compact symmetric space whose geodesics are the translates of 1-parameter subgroup $\exp (t X)$. If we assume $X \in S$ then t is arc-length. Let U_{s} be the open ball of radius ε about 0 in $i(M)$, and assume $\varepsilon>0$ is so small that $\exp \left(U_{\varepsilon}\right)$ lies in a normal neighborhood of e in $I^{0}(M)$. Suppose $0<t_{0}<\varepsilon$ and $\exp \left(t_{0} X\right) \in G_{p}=$ identity component of G_{p}. There is a minimizing geodesic $\exp (t Y)$ from e to $\exp \left(t_{0} X\right)$ lying entirely in G_{p}^{0}, whose length is less than $\varepsilon\left(\right.$ since $\exp \left(U_{\varepsilon}\right) \cap G_{p}^{0}$ is the ε-ball about e in $\left.G_{p}^{0}\right)$. Now $\exp \mid U_{\varepsilon}$ is $1-1$ so we must have $\exp (t Y)=\exp (t X)$ for all t.

If G_{p} is not connected, it has finitely many components and we let $r_{p}=$ distance $\left(e, G_{p}-G_{p}^{0}\right)$. Clearly $r_{p}>0$ since $G_{p}-G_{p}^{0}$ is compact; and r_{p} is constant on the conjugacy class of G_{p} since the metric in $I^{0}(M)$ is invariant by conjugation. There are only finitely many conjugacy classes so $r=\min r_{p}>0$. Then any $0<\alpha<\min (\varepsilon, r)$ satisfies the requirements of the lemma. q.e.d.

From this lemma we can derive a "uniform" period bounding lemma for Killing vector fields:

Corollary. The positive least periods of periodic orbits of 1-parameter groups of isometries are bounded away from zero uniformly if their generators X are taken from S.

Proof. A point $p \in M$ is periodic of least period t_{0} for the 1-parameter $\operatorname{group} \exp (t X)$ if $\exp \left(t_{0} X\right) \in G_{p}$ but $\exp (t X) \notin G_{p}$ if $0<t<t_{0}$. The number a of the previous lemma is then the required lower bound. q.e.d.

3. Submanifolds of periodic points

For each $X \in i(M)-\{0\}$ and each $0<t<\infty$, let $P(X, t)=\{p \in M \mid p$ has least period t for the 1-parameter group $\exp (t X)\}$. Let $P(X, 0)=$ Zero (X), and $P(X, \infty)=$ set of non-periodic points of $\exp (t X)$. Then we know $P(X, t)=\emptyset$ except for a finite subset of $[0, \infty]$. Now assume $X \in i(M)-\{0\}$ is fixed, and φ_{t} is its 1-parameter group. It is well-known that for each $0<t<\infty$, $\operatorname{Fix}\left(\varphi_{t}\right)$ is a closed totally geodesic submanifold of M.

Let $0<t_{1}<t_{2}<\cdots<t_{N}$ be the positive least periods for $X \in i(M)$. Let $\beta_{1}, \cdots, \beta_{m}$ be the subset of least periods which are not integral multiples of any other least period. Use the notation $t_{i} \mid t_{j}$ if $t_{j}=k t_{i}$ for some integer k, and call the β_{i} the basic periods for X. It is easy to see that for each $i=1, \cdots, N, P\left(X, t_{i}\right)=\operatorname{Fix}\left(\varphi_{t_{i}}\right)-\cup\left\{\operatorname{Fix}\left(\varphi_{t_{j}}\right)\left|t_{j}\right| t_{i}\right\}$ - Zero (X), the union consisting of finitely many closed totally geodesic submanifolds of Fix $\left(\varphi_{t_{i}}\right)$. Therefore we have:

Proposition. Each $P\left(X, t_{i}\right)$ is a totally geodesic submanifold of M (possibly with a finite number of closed submanifolds deleted).

Theorem. If the Killing vector field X has m basic periods, there are at least m geometrically distinct smooth closed geodesics on M which are orbits of the 1-parameter group of X.

Proof. For each $i=1, \cdots, m, P\left(X, \beta_{i}\right)=\operatorname{Fix}\left(\varphi_{\beta_{i}}\right)-\operatorname{Zero}(X)$. Now Fix $\left(\varphi_{\beta_{i}}\right)$ is a closed totally geodesic submanifold of M, and X is tangent to it, so X is Killing vector field on Fix $\left(\varphi_{\beta_{i}}\right)$. Let $p \in \operatorname{Fix}\left(\varphi_{\beta_{i}}\right)$ be a point at which $|X|$ achieves its maximum. Then $|X|^{2}$ has a critical point at p, so ([2]) the orbit of p is a geodesic. The orbit is non-trivial since $p \notin \operatorname{Zero}(X)$.
q.e.d.

Remarks. (1) In fact, we get a closed geodesic for each component of Fix $\left(\varphi_{p_{i}}\right)$.
(2) The same argument as in Kobayashi ([1]), shows that the Euler numbers of the Fix $\left(\varphi_{t_{i}}\right)$ all equal that of M.

BIBLIOGRAPHY

[1] S. Kobayashi, Fixed points of isometries, Nagoya Math. J. 13, pp. 63-68.
[2] V. Ozols, Critical points of the displacement function of an isometry, J. of Differential Geometry 3 No. 4 (1969), pp. 411-432.
[3] --, Critical points of the length of a Killing vector field, (to appear).
[4] Yang, C. T., On a problem of Montgomery, Proc. Amer. Math. Soc., 8 (1957), 255-257.

University of Washington
Seattle

[^0]: Received November 16, 1971.

