SATURATED IDEALS IN BOOLEAN EXTENSIONS

YUZURU KAKUDA

0. Introduction. Let κ be an uncountable cardinal, and let λ be a regular cardinal less than κ . Let I be a λ -saturated non-trivial ideal on κ . Prikry, in his thesis, showed that, in certain Boolean extensions, κ has a λ -saturated non-trivial ideal on κ . More precisely,

THEOREM (Prikry [8]). Let κ , λ and I be as above. Let \mathscr{B} be a λ -saturated complete Bollean algebra. Let $J \in V^{(\mathscr{B})}$ such that, with probability 1, J is the ideal on $\check{\kappa}$ generated by \check{I} . Then, it is \mathscr{B} -valid that J is a $\check{\lambda}$ -saturated non-trivial ideal on $\check{\kappa}$.

The following questions naturally arise; 1) If I is κ -saturated (κ^+ -saturated), does J remain κ -saturated (κ^+ -saturated)? 2) If sat(\mathscr{B}) = κ , what is the saturatedness of J?

For 1), we obtain the following theorem.

THEOREM 1. Let κ and λ be as above. Let γ be a regular cardinal such that $\lambda \leq \gamma \leq \kappa^+$, and let I be a γ -saturated non-trivial ideal on κ . Let $\mathscr B$ be a λ -saturated complete Boolean algebra. Then, it is $\mathscr B$ -valid that J is γ -saturated.

For 2), we get the following theorems.

THEOREM 2. Let κ be an uncountable cardinal, and I be a κ -saturated non-trivial ideal on κ . Let $\mathscr B$ be a homogeneous complete Boolean algebra such that sat $(\mathscr B) = \kappa$. Then, it is $\mathscr B$ -valid that J is not κ -saturated.

THEOREM 3. Let κ be a measurable cardinal, and I be a non-trivial prime ideal on κ . Let $\mathscr B$ be a homogeneous complete Boolean algebra such that sat $(\mathscr B) = \kappa$. Then, it is $\mathscr B$ -valid that J is not κ^+ -saturated.

We will prove the above theorems as applications of a certain useful lemma, which will be proved in § 4.

Received February 7, 1972.

We assume that the reader is familiar with the Scott-Solovay Booleanvalued models for set theory.

1. Saturated ideals.

1.1. Let λ be a cardinal. Let $\mathscr B$ be a Boolean algebra. We say that $\mathscr B$ is λ -saturated if, for any pairwise disjoint family $\{b_{\alpha}\}_{\alpha<\lambda}$ of $\mathscr B$, there exists some $\alpha<\lambda$ such that $b_{\alpha}=0$. Clearly, if $\lambda<\gamma$ and $\mathscr B$ is λ -saturated, then $\mathscr B$ is γ -saturated. sat $(\mathscr B)$ denotes the least cardinal λ such that $\mathscr B$ is λ -saturated.

The following lemma is well-known.

LEMMA. If $sat(\mathcal{B}) \geq \aleph_0$ then $sat(\mathcal{B})$ is an uncountable regular cardinal.

- 1.2. Let κ be an uncountable cardinal. Let I be an ideal on κ . I is called non-trivial if;
 - 1) I is non-principal, that is, $\{\alpha\} \in I$ for all $\alpha < \kappa$.
- 2) I is κ -complete, that is, if whenever $\eta < \kappa$, and $\{A_{\alpha}, \alpha < \eta\}$ is a family such that $A_{\alpha} \in I$ for each $\alpha < \eta$, then $\bigcup_{\alpha < \eta} A_{\alpha} \in I$.

Let I be an non-trivial ideal on κ . We can form the quotient algebra $\mathscr{A} = P(\kappa)/I$. If \mathscr{A} is λ -saturated, we say that I is λ -saturated.

Solovay proved the following theorem.

THEOREM (Solovay [5]). Suppose that κ has κ -saturated non-trivial ideal on κ . Then, κ is the κ -th weakly inaccessible.

For more informations about saturated ideals, the reader may refer to Kunen [1], Kunen-Paris [2] and Solovay [5].

2. The ultrapowers inside $V^{(\mathscr{A})}$.

In this section, we restate the necessary results from Solovay [5]. From 2.1 to 2.3, we fix a transitive model M of ZFC, and an ordinal ρ in M.

- 2.1. Let $\mathscr U$ be a subset of $P(\rho) \cap M$. We say that $\mathscr U$ is an M-ultrafilter on ρ if:
 - (1) \mathcal{U} contains no singletons.
 - (2) If $A \in \mathcal{U}$, $B \in P(\rho) \cap M$, and $A \subseteq B$, then $B \in \mathcal{U}$.
 - (3) If $A \in P(\rho) \cap M$, then either $A \in \mathcal{U}$ or $\rho A \in \mathcal{U}$.

(4) Let $\eta < \rho$. Let $\langle A_{\xi}, \xi < \eta \rangle$ be a sequence such that $A_{\xi} \in \mathcal{U}$ for each $\xi < \eta$ and $\langle A_{\xi} : \xi < \eta \rangle \in M$. Then, $\bigcap_{\xi < \eta} A_{\xi} \in \mathcal{U}$.

The concept of *M*-ultrafilter is due to Kunen [1]. The reader should note that this definition somewhat differs from that of Kunen.

2.2. Let $\mathscr U$ be an M-ultrafilter on ρ . We define an equivalence relation \simeq on $M\cap M^{\rho}$ as follows; for $f,g\in M\cap M^{\rho}$ let

$$f \simeq g$$
 iff $\{\alpha < \rho; f(\alpha) = g(\alpha)\} \in \mathcal{U}$.

We denote by [f] the Scott equivalence class of f with respect to \simeq .

Next, we put $N = \{[f]; f \in M \cap M^{\rho}\}$. We define a binary relation E on N as follows; Let $f, g \in M \cap M^{\rho}$.

[
$$f$$
] $E[g]$ iff $\{\alpha < \rho; f(\alpha) \in g(\alpha)\} \in \mathcal{U}$.

It is clear that the definition of E does not depend on the choice of f and g. The relational structure $\langle N, E \rangle$ is denoted by $\mathrm{Ult}(M, \mathscr{U})$.

2.3. LEMMA 1 (Los). Let $\phi(v_0, \dots, v_{n-1})$ be a set-theoretical formula, and let f_0, \dots, f_{n-1} be elements of $M \cap M^{\rho}$. Then,

$$N \models \phi([f_0], \cdots, [f_{n-1}])$$
 iff $\{\alpha < \rho ; M \models \phi(f_0(\alpha), \cdots, f_{n-1}(\alpha))\} \in \mathscr{U}$.

Let x be in M. We define $c_x \in M \cap M^{\rho}$ by $c_x(\alpha) = x$ for all $\alpha < \rho$, and define $c: M \to N$ by $c(x) = [c_x]$.

LEMMA 2. c is an elementary embedding.

In the remainder of this section, κ will be uncountable cardinal, and I a κ^+ -saturated non-trivial ideal on κ .

2.4. We form the quotient algebra $\mathscr{A} = P(\kappa)/I$. Let $A \in P(\kappa)$. We denote by [A] the element of \mathscr{A} represented by A.

LEMMA 3.1) A is complete.

Let $V^{(\mathscr{A})}$ be the Scott-Solovay \mathscr{A} -valued model. We assume that $V^{(\mathscr{A})}$ is separated.

2.5. We define an element \mathscr{U} of $V^{(s)}$ as follows;

$$\|\check{A} \in \mathscr{U}\| = [A]$$
 for each $A \in P(\kappa)$.

¹⁾ See Sikorski, Boolean algebras, Springer-Verlag, Berlin, 1960 p.65, 21.3.

LEMMA 4. With probability 1. $\mathscr U$ is a $\check V$ -ultrafilter on $\check \kappa$.

By Lemma 4, we can form Ult (\check{V}, \mathscr{U}) inside $V^{(\mathscr{A})}$.

LEMMA 5. Let $f_0, \dots, f_{n-1} \in V^*$. Let $\phi(v_0, \dots, v_{n-1})$ be a set-theoretical formula. Then,

$$\|\operatorname{Ult}(\check{V}, \mathscr{U}) \models \phi([\check{f}_0], \cdots, [\check{f}_{n-1}])\| = [\{\alpha < \kappa; \phi(f_0(\alpha), \cdots, f_{n-1}(\alpha)] .$$

The lemma is easily proved by using Lemma 1 and the following sublemma.

SUBLEMMA. Let $x_0, \dots, x_{n-1} \in V$. Let $\phi(v_0, \dots, v_{n-1})$ be a set-theoretical formula. Then,

$$\|\check{V} \models \phi(\check{x}_0,\cdots,\check{x}_{n-1})\| = \mathbf{1}$$
 iff $\phi(x_0,\cdots,x_{n-1})$.

LEMMA 6. Let $x \in V^{(\mathscr{A})}$. Suppose that $||x \in \mathrm{Ult}(\check{V}, \mathscr{U})|| = 1$. Then, for some $f \in V^*$, $||x = [\check{f}]|| = 1$.

LEMMA 7. With probability 1, Ult (\check{V}, \mathscr{U}) is well-founded.

2.6. By Lemma 7, there exists a transitive class of $V^{(s)}$, N, and an isomorphism $\psi: \text{Ult}(\check{V}, \mathscr{U}) \to N$ inside $V^{(s)}$. Let $f \in V^{(s)}$. Let $\psi(f)$ be the element of $V^{(s)}$ such that $\|\psi(f) = \psi([\check{f}])\| = 1$. We put $x^* = \psi(c_x)$.

LEMMA 8. (1) With probability $\mathbf{1}$, N is a transitive class containing all ordinals.

(2) Let $f_0, \dots, f_{n-1} \in V^*$. Let $\phi(v_0, \dots, v_{n-1})$ be a set-theoretical formula. Then,

$$||N \models \phi(\psi(f_0), \dots, \psi(f_{n-1}))|| = [\{\alpha < \kappa; \phi(f_0(\alpha), \dots, f_{n-1}(\alpha))].$$

- (3) Let $||x \in N|| = 1$. Then, $x = \psi(f)$ for some $f \in V^*$.
- (4) If $\alpha < \kappa$, $\alpha^* = \check{\alpha}$.
- (5) $\|\kappa^* > \check{\kappa}\| = 1$.

LEMMA 9. With probability 1, N contains all $\check{\kappa}$ -sequences of N in $V^{(s)}$.

Proof. Let $s \in V^{(s)}$ be such that $||s|; \check{\kappa} \to N|| = 1$. For each $\alpha < \kappa$, we can choose $f_{\alpha} \in V^{\epsilon}$ such that $||s(\check{\alpha}) = \psi(f_{\alpha})|| = 1$. Let $\psi(g) = \kappa$. We define $f \in V^{\epsilon}$ by $f(\alpha) = \langle f_{\beta}(\alpha) : \beta < g(\alpha) \rangle$.

Clearly, $||N \models \psi(f)$ is a $\check{\kappa}$ -sequence || = 1. We claim that $||\psi(f) = s|| = 1$. Now, choose $h_{\alpha} \in V^{\epsilon}$ so that $||(\psi(f))(\check{\alpha}) = \psi(h_{\alpha})|| = 1$ for each $\alpha < \kappa$. Then, $||N| = \psi(h_{\alpha})$ is the value of $\check{\alpha}$ by $\psi(f)|| = 1$. By Lemma 8, for almost all $\beta < \kappa$, $h_{\alpha}(\beta)$ is the value of α by $f(\beta)$. Then, $||\psi(h_{\alpha}) = \psi(f_{\alpha})|| = 1$. We have just proven that $||(\forall \alpha < \check{\kappa})((\psi(f))(\alpha) = s(\alpha))|| = 1$. Since $\psi(f)$ and s are $\check{\kappa}$ -sequences, $||\psi(f) = s|| = 1$.

3. Boolean algebras in Boolean extensions.

Let \mathscr{B} be a complete Boolean algebra. Let $\mathscr{D} \in V^{(\mathscr{B})}$ such that $\|\mathscr{D}$ is a Boolean algebra $\| = 1$. We put $\mathscr{D}_{[\mathscr{B}]} = \{x \in V^{(\mathscr{B})} : \|x \in \mathscr{D}\| = 1\}$. We can make $\mathscr{D}_{[\mathscr{B}]}$ into a Boolean algebra, by defining Boolean operations as follows;

Let $x, y \in \mathcal{D}_{[\mathscr{B}]}$. Then, there exist uniquely z_1 and z_2 such that the followings are \mathscr{B} -valid respectively.

- 1) $z_1 \in \mathcal{D}$ and $x + \mathcal{D} y = z_1$
- 2) $z_2 \in \mathcal{D}$ and $-x = z_2$

Put $z_1 = x + \mathcal{Z}_{[\mathscr{B}]}y$ and $z_2 = -\mathcal{Z}_{[\mathscr{B}]}x$.

The following lemma is due to Solovay-Tennenbaum [7]

LEMMA 1. $\mathcal{D}_{[\mathscr{D}]}$ is complete iff it is \mathscr{B} -valid that \mathscr{D} is complete.

The proof of the following lemma is similar to Lemma 5.2.6 of Solovay-Tennenbaum [7]. So we omit the proof.

Lemma 2. Let λ be a regular cardinal. Then the following are equivalent:

- 1) \mathscr{B} is λ -saturated, and it is \mathscr{B} -valid that \mathscr{D} is λ -saturated
- 2) $\mathcal{D}_{[s]}$ is λ -saturated.

LEMMA 3.1) If there is a surjection Φ form $\mathscr B$ to $\mathscr D_{[\mathfrak s]}$ such that $\|\varPhi(b)=\mathbf 1_{\mathfrak s}\|=b$ and $\|\varPhi(b)=\mathbf 0_{\mathfrak s}\|=-b$ for all $b\in\mathscr B$, then $\mathscr D=\mathbf 2$ in $V_{(\mathfrak s)}$.

4. The basic lemma and proof of Theorem 1.

4.1. Let κ, I and $\mathscr A$ be as in § 2. Let $\mathscr B$ be a complete Boolean algebra. Let $J \in V^{(\mathscr B)}$ such that J is the ideal on $\check \kappa$ generated by $\check I$ in $V^{(\mathscr B)}$. Clearly $\|A \in J\| = \sum_{B \in I} \|A \subseteq B\|$.

LEMMA 1. If $\mathscr B$ is κ -saturated, then it is $\mathscr B$ -valid that J is non-trivial.

¹⁾ cf. Solovay-Tennenbaum [7], p.214.

Proof. Trivially, J is non-principal. The fact that J is κ -complete is easily proved by using the following sublemma.

Sublemma. If $\mathscr B$ is κ -saurated, then $\|A \in J\| = \|A \subseteq B\|$ for some $B \in I$.

4.2. Let $\mathscr{D} \in V^{(\mathscr{B})}$ such that $\|\mathscr{D} = P(\check{\kappa})/J\|^{(\mathscr{B})} = 1$.

Basic Lemma. If \mathscr{B} is κ -saturated, then $\mathscr{D}_{[\mathscr{I}]}$ is isomorphic to $\mathscr{B}_{[\mathscr{I}]}^*$

Proof. Let $x \in \mathcal{D}_{[\mathscr{I}]}$. Then, there exists $A \in V^{(\mathscr{I})}$ such that $\|x = [A]\|^{(\mathscr{I})} = 1$ and $\|A \subseteq \check{\kappa}\|^{(\mathscr{I})} = 1$. We define f_A ; $\kappa \to \mathscr{B}$ by $f_A(\alpha) = \|\check{\alpha} \in A\|^{(\mathscr{I})}$. Then, $\|\psi(f_A) \in \mathscr{B}^*\|^{(\mathscr{I})} = 1$. Put $\Phi(x) = \psi(f_A)$. We must show that the definition of $\Phi(x)$ does not depent on the choice of A. So let, $A, B \in P^{(\mathscr{I})}(\kappa)$ such that $\|[A] = [B]\|^{(\mathscr{I})} = 1$. Then, $\|A\Delta B \in J\|^{(\mathscr{I})} = 1$. ($A\Delta B$ denotes the symmetric difference of A and B.) By the sublemma of Lemma 1, for some $N \in I$, $\|A\Delta B \subseteq \check{N}\|^{(\mathscr{I})} = 1$. It follows that if $\alpha \notin N$, then $\|\check{\alpha} \in A\|^{(\mathscr{I})} = \|\check{\alpha} \in B\|^{(\mathscr{I})}$. Since $N \in I$, for almost all $\alpha < \kappa$, $f_A(\alpha) = f_B(\alpha)$. By Lemma 8 of § 2, we have $\|\psi(f_A) = \psi(f_B)\|^{(\mathscr{I})} = 1$. Since $V^{(\mathscr{I})}$ is separate $\psi(f_A) = \psi(f_B)$.

 Φ is surjective: Let $y \in \mathscr{B}_{\mathbb{L}^{s}}^{*}$. By Lemma 8 of § 2, for some $f \in V^{s}$, $\psi(f) = y$. We may suppose that $f : \kappa \to \mathscr{B}$. We define $A \in V^{(s)}$ by $\|\check{\alpha} \in A\|^{(s)} = f(\alpha)$ for $\alpha < \kappa$. Clearly, $\|A \subseteq \check{\kappa}\|^{(s)} = 1$. Let $\|x = [A]\|^{(s)} = 1$. Then, $x \in \mathscr{D}_{[s]}$. By the definition of Φ , $\Phi(x) = y$.

 Φ is injective: Let $x, y \in \mathscr{D}_{[\mathscr{I}]}$ such that $\Phi(x) = \Phi(y)$. Let $A, B \in V^{(\mathscr{I})}$ be such that $\|x = [A]\|^{(\mathscr{I})} = \|y = [B]\|^{(\mathscr{I})} = \mathbf{1}$. Then, $\psi(f_A) = \Phi(x) = \Phi(y) = \psi(f_B)$. Thus, $f_A(\alpha) = f_B(\alpha)$ for almost all $\alpha < \kappa$, that is, $\{\alpha < \kappa : \|\check{\alpha} \in A\| = \|\check{\alpha} \in B\| \} \in I$. By the definition of J, we have $\|A \Delta B \in J\|^{(\mathscr{I})} = \mathbf{1}$. It follows that $\|x = y\|^{(\mathscr{I})} = \mathbf{1}$.

 Φ is an isomorphism: Let $x, y \in \mathcal{D}_{[\mathscr{I}]}$ be such that $x \leq y$. Let A, $B \in P^{(\mathscr{I})}(\kappa)$ such that $\|x = [A]\|^{(\mathscr{I})} = \|x = [B]\|^{(\mathscr{I})} = 1$. Since $x \leq y$, we have $\|A - B \in J\|^{(\mathscr{I})} = 1$. By the sublemma of Lemma 1, for some $N \in I$, $\|A - B \subseteq \check{N}\|^{(\mathscr{I})} = 1$. Thus, if $\alpha \notin N$, then $\|\check{\alpha} \in A\|^{(\mathscr{I})} \leq \|\check{\alpha} \in B\|^{(\mathscr{I})}$. That is, for almost all $\alpha < \kappa$, $f_A(\alpha) \leq f_B(\alpha)$. It follows that $\psi(f_A) \leq \psi(f_B)$. So, $\Phi(x) \leq \Phi(y)$.

4.3. Now, we prove Theorem 1. Let λ be a regular cardinal less than κ , and γ be a regular cardinal $\lambda \leq \gamma \leq \kappa^+$. Suppose that I is γ -saturated and $\mathscr B$ is λ -saturated. Since $\mathscr B$ is λ -saturated and $\lambda < \kappa$, we have $\|\lambda\| = \mathscr B^*$ is γ -saturated $\|\alpha\| = 1$. Since $\mathscr A$ is γ -saturated, $\|\gamma\|$ is a cardinal $\|\alpha\| = 1$.

By Lemma 9 of §2 and the fact that $\lambda \leq \gamma$, we have $\|\mathscr{B}^*$ is γ -saturated $\|^{(s')} = 1$. By Lemma 2 of §3, we have $\mathscr{B}^*_{[s']}$ is $\check{\gamma}$ -saturated. By the basic lemma, $\mathscr{D}_{[s']}$ is γ -saturated.

Again, by Lemma 2 of § 3, $\|\mathscr{D}$ is $\check{\gamma}$ -saturated $\|^{(\mathscr{G})} = 1$. That is, $\|J\|$ is $\check{\gamma}$ -saturated $\|^{(\mathscr{G})} = 1$.

Remark. In the case when κ is measurable and I is a non-trivial prime ideal on κ , $\mathscr{A} = P(\kappa)/I = 2$. So we may consider N as a transitive class in the real world.

The following theorem can be proved by using the basic lemma.

THEOREM (Lévy-Solovay [3]). Let κ be a measurable cardinal and I be a non-trivial prime ideal on κ . Let $\mathscr B$ be a complete Boolean algebra such that card $(\mathscr B) < \kappa$. Then, it is $\mathscr B$ -valid that J is a non-trivial prime ideal on κ .

Proof. By the basic lemma, $\mathscr{D}_{[\mathscr{I}]}$ is isomorphic to \mathscr{B}^* . Let Φ be an isomorphism from $\mathscr{D}_{[\mathscr{I}]}$ to \mathscr{B}^* . Define $\Psi : \mathscr{B} \to \mathscr{B}^*$ by $\psi(b) = b^*$. Trivially Ψ is injective. Let $\psi(f) \in \mathscr{B}^*$. We may suppose that $f : \kappa \to \mathscr{B}$. Since card $(\mathscr{B}) < \kappa$, there is the unique $b \in \mathscr{B}$ such that $f(\alpha) = b$ for almost all $\alpha < \kappa$. Thus, $\psi(f) = \Psi(b)$. It follows that Ψ is bijective. Let $i = \Phi^{-1} \circ \Psi$. Let $b \in \mathscr{B}$. By easy computations, we have $\|(\Phi^{-1} \circ \Psi)(b) = \mathbf{1}_{\mathscr{I}}\| = b$ and $\|(\Phi^{-1} \circ \Psi)(b) = \mathbf{0}_{\mathscr{I}}\| = -b$. By Lemma 3 of §3, we have $\|\mathscr{D} = \mathbf{2}\| = \mathbf{1}$. That is, $\|J$ is prime $\|\mathscr{B}\| = \mathbf{1}$.

5. Proofs of Theorem 2 and 3.

5.1. Let \mathscr{B} a complete Boolean algebra, and π be an automorphism of \mathscr{B} . Then, π induces the automorphism π_* of $V^{(\mathscr{B})}$.

LEMMA 1. Let $\phi(v_0, \dots, v_{n-1})$ be a set-theoretical formula, and let x_0, \dots, x_{n-1} be elements of $V^{(s)}$. Then,,

$$\|\phi(\pi_*(x_0),\dots,\pi_*(x_{n-1}))\| = \pi(\|\phi(x_0,\dots,x_{n-1})\|)$$
.

Proof. The lemma is easily proved by induction on the length of ϕ . An element x of $V^{(\mathscr{F})}$ is called π -invariant if $x = \pi_*(x)$. x is called invariant if x is π -invariant for all automorphisms π of \mathscr{B} . For example, \check{x} is invariant for each $x \in V$.

By using Lemma 1, the following lemma is trivial.

LEMMA 2. Let $\phi(v_0, \dots, v_{n-1})$ be a set-theoretical formula, and let x_0, \dots, x_{n-1} be invariant elements of $V^{(s)}$. Then, $\|\phi(x_0, \dots, x_{n-1})\| = \pi(\|\phi(x_0, \dots, x_{n-1})\|)$.

5.2. Let \mathcal{B} be a Boolean algebra. We consider the following condition (*).

(*) 0 and 1 are the only invariant elements of B.

We say that a Boolean algebra \mathscr{B} is homogeneous if: for every 0 < b, c < 1, there exists an automorphism π such that $\pi(b) = c$. Clearly, if \mathscr{B} is homogeneous, then \mathscr{B} satisfies the condition (*).

LEMMA 3. Let $\phi(v_0, \dots, v_{n-1})$ be a set-theoretical formula, and $\mathscr B$ be a complete Boolean algebra satisfying the condition (*). Let x_0, \dots, x_{n-1} be invariant elements of $V^{(s)}$. Then, $\|\phi(x_0, \dots, x_{n-1})\| = \mathbf 0$ or $\mathbf 1$.

Proof. Suppose not. Put $\|\phi(x_0,\dots,x_{n-1})\|=b$. Then, 0 < b < 1. Since \mathscr{B} satisfies the condition (*), there exists an automorphism π such that $\pi(b) \neq b$. Then,

$$\pi(\|\phi(x_0,\dots,x_{n-1})\|) \neq \|\phi(x_0,\dots,x_{n-1})\|$$
.

This contradicts to Lemma 2.

Let $\mathscr P$ be a partially ordered set. We make $\mathscr P$ into a topological space by taking sets of the form

$$U_p = \{q \in \mathscr{P}; q \leq p\}$$

as a basis for the open sets. Let $\mathscr{B}_{\mathscr{F}}$ be the complete Boolean algebra of regular open sets of \mathscr{P} . Let π be an automorphism of \mathscr{P} . Then, π induces the automorphism $\bar{\pi}$ of $\mathscr{B}_{\mathscr{F}}$ by $\bar{\pi}(U) = \{\pi(p); p \in U\}$.

LEMMA 4. Let \mathscr{P} be a partially ordered set satisfying the condition (**).

(**) Let p and q be elements of \mathscr{P} . Then, there is an automorphism π of \mathscr{P} such that $\pi(p)$ and q are compatible.

Then, B satisfies the condition (*).

Proof. Suppose not. Then, there exists an element 0 < U < 1 of such that $\pi(U) = U$ for all automorphisms π of $\mathscr{B}_{\mathscr{P}}$. Let p and q be elements of \mathscr{P} such that $p \in U$ and $q \in \operatorname{interior}(-U)$. Since \mathscr{P} satisfies the condition (**) there exists an automorphism π of \mathscr{P} such that $\pi(p)$ and q are compatible. Then, there exists an element r of \mathscr{P} such that

 $r \le \pi(p)$ and $r \le q$. Since $\pi(U) = U$, $\pi(p) \in U$. By the fact that U is open, $r \in U$. Since $q \in \operatorname{interior}(-U)$, $r \in -U$. This is a contradiction.

5.3. Let κ be an uncountable cardinal, and let I be a non-trivial ideal on κ . Let $J \in V^{(\mathscr{B})}$ be the ideal generated by \check{I} inside $V^{(\mathscr{B})}$.

LEMMA 5. J is invariant.

Proof. Let π be an automorphism of \mathscr{B} . By Lemma 1, $\|\pi_*(J)$ is the ideal on $\pi_*(\check{k})$ generated by $\pi_*(\check{I})\|=1$. Since \check{k} and \check{I} are invariant, $\|\pi_*(J)$ is the ideal on \check{k} generated by $\check{I}\|=1$. Hence, $\|\pi_*(J)=J\|=1$. Since $V^{(\mathscr{F})}$ is separate, $\pi_*(J)=J$.

5.4. Let κ and I be as in 5.3. Suppose that I is κ -saturated.

LEMMA 6. Let \mathscr{B} be a complete Boolean algebra satisfying the condition (*). Suppose that sat $(\mathscr{B}) = \kappa$. Then, it is \mathscr{B} -valid that J is not κ -saturated.

Proof. Suppose not. Since $\mathscr B$ satisfies the condition (*), $\|J$ is $\check{\kappa}$ -saturated $\|\mathscr B = 1$ by Lemma 3 and Lemma 5. Let $\mathscr D \in V^{(\mathscr B)}$ such that $\|\mathscr D = P(\kappa)/J\|^{(\mathscr B)} = 1$. By Lemma 2 of § 3, $\mathscr D_{[\mathscr B]}$ is κ -saturated. By the basic lemma, $\mathscr B_{[\mathscr A]}^*$ is κ -saturated. Then, $\|\mathscr B^*$ is κ -saturated $\|^{(\mathscr A)} = 1$. Clearly, $\|N \models \mathscr B^*$ is κ -saturated $\|^{(\mathscr A)} = 1$. Choose $f \in V^{\kappa}$ so that $\psi(f) = \check{\kappa}$. We may suppose that $f: \kappa \to \kappa$. The, for almost all $\alpha < \kappa$, $\mathscr B$ is $f(\alpha)$ -saturated. Thus, sat $(\mathscr B) < \kappa$. This contradicts to the assumption of $\mathscr B$.

Now Theorem 2 is a corollary of Lemma 6.

5.5. Let κ be a measurable cardinal, and I be a non-trivial prime ideal on κ .

LEMMA 7. $2^{\kappa} < \kappa^*$.

Proof. Since $P(\kappa) = P(\kappa) \cap N$, $2^{\kappa} \leq 2^{\kappa(N)}$. On the other hand κ^* is measurable in N, so κ^* is strongly inaccessible in N. Hence, $2^{\kappa(N)} < \kappa^*$. Thus, $2^{\kappa} < \kappa^*$.

Theorem 3 is a corollary of the following lemma.

LEMMA 8. Let \mathscr{B} be a complete Boolean algebra satisfying the condition (*). Assume that $\operatorname{sat}(\mathscr{B}) = \kappa$. Let $J \in V^{(\mathfrak{B})}$ be the ideal on $\check{\kappa}$ generated by \check{I} inside $V^{(\mathfrak{B})}$. Then, it is \mathscr{B} -valid that J is not κ^+ -saturated.

Proof. By using Lemma 7, the proof can be carried out analogously

to the proof of Lemma 6. (Note that $\kappa^+ < \kappa^*$ by Lemma 7.).

- 5.6. We give an application of Lemma 8. Let κ and I be as in 5.5. We consider the following partially ordered set \mathscr{P} ; $p \in \mathscr{P}$ if
 - 1) p is a function
 - 2) the domain of p is a finite subset of $\kappa \times \omega$
 - 3) the range of $p \subseteq \kappa$
 - 4) $p(\langle \alpha, n \rangle) < \alpha$ whenever $\langle \alpha, n \rangle \in \text{domain}(p)$.

The ordering of \mathscr{P} is \subseteq . Clearly, \mathscr{P} satisfies the condition (**).

Lemma 9.1 Sat
$$(\mathscr{B}_{\mathfrak{P}}) = \kappa$$
. $\|\kappa = \mathbf{k}_1^{(\mathscr{B}_{\mathfrak{P}})}\| = 1$.

By the theorem of § 2 and Lemma 9, $\|\check{\kappa}$ has no $\check{\kappa}$ -saturated non-trivial ideal on $\kappa\|=1$. On the other hand, by Lemma 8 we have $\|J\|$ is not an $\mathbf{k}^{(\mathscr{G}_{\mathscr{P}})}$ -saturated ideal on $\check{\kappa}=\mathbf{k}^{(\mathscr{G}_{\mathscr{P}})}\|=1$, where J is the ideal on κ generated by \check{I} inside $V^{(\mathscr{G}_{\mathscr{P}})}$.

REFERENCES

- [1] K. Kunen, Some applications of iterated ultrapowers in set theory. Annals of Math. Logic 1. (1970) 179-227.
- [2] K. Kunen and J. B. Paris, Boolean extensions and measurable cardinals. Annals Math. Logic Vol. 2 No. 4 (1971) 359-377.
- [3] A. Lévy and R. Solovay, Measurable cardinal and the continuum hypothesis, Israel Journal of Math. Vol. 5 (1967) 234-248.
- [4] D. Scott and R. Solovay, Boolean-valued models for set theory, Proc. 1967. U.C.L.A. Summer Institute, to appear.
- [5] R. Solovay, Real-valued measurable cardinals. Proc. of symposia in pure math. Vol. XIII, Part I (1971) 397-428.
- [6] R. Solovay, A model of set-theory in which every set of reals is Lebesgue measurable. Annals of Math. 92 (1970) 1-56.
- [7] R. Solovay and S. Tennenbaum, Iterated Chen extensions and Souslin's problem. Annals of Math. Vol. 94 No. 2 201-245.
- [8] K. L. Prikry, Changing measurable into accessible cardinals. Dissertationes Math. (Rzprawy Mat.) 68 (1970).

Nagoya University

¹⁾ See Solovay [6], p.15.