# CORES OF POTENTIAL OPERATORS FOR PROCESSES WITH STATIONARY INDEPENDENT INCREMENTS 

KEN-ITI SATO

## 1. Introduction.

Let $X_{t}(\omega)$ be a stochastic process with stationary independent increments on the $N$-dimensional Euclidean space $R^{N}$, right continuous in $t \geqq 0$ and starting at the origin. Let $C_{0}\left(R^{N}\right)$ be the Banach space of real-valued continuous functions on $R^{N}$ vanishing at infinity with norm $\|f\|=\sup _{x}|f(x)|$. The process induces a transition semigroup of operators $T_{t}$ on $C_{0}\left(R^{N}\right)$ :

$$
T_{t} f(x)=E f\left(x+X_{t}\right)
$$

The semigroup is strongly continuous. Let $A$ be the infinitesimal generator of the semigroup, and $J_{\lambda}, \lambda>0$, be the resolvent. The potential operator $V$ in Yosida's sense [7] is defined by $V f=\lim _{h \rightarrow 0+} J_{2} f$ (limit in the strong topology) if and only if the set of $f$ for which the limit exists is dense. If $V$ is defined, then $A$ is one-to-one, $V=-A^{-1}$, and hence $V$ is a closed operator (see [7] or [4]). It is proved in [4] that the semigroup $T_{t}$ admits a potential operator except if $X_{t}=0$ with probability one. A subset $\mathfrak{M}$ of $\mathfrak{D}(V)$ is called a core of $V$, if for each $f \in \mathfrak{D}(V)$ there is a sequence $\left\{f_{n}\right\}$ in $\mathfrak{M}$ such that $f_{n} \rightarrow f$ and $V f_{n} \rightarrow V f$ strongly. The purpose of this paper is to describe cores of the potential operator $V$. An importance of finding cores of $V$ lies in the fact that the operator $V$ considered only on a core is enough to determine the semigroup. That is, if two strongly continuous semigroups $T_{t}^{(1)}$ and $T_{t}^{(2)}$ have potential operators $V^{(1)}$ and $V^{(2)}$, respectively, and if $V^{(1)}$ and $V^{(2)}$ coincide on a common core, then $T_{t}^{(1)}$ and $T_{t}^{(2)}$ are identical.

Let $\Sigma$ be the collection of points $x$ such that for each open neigh-
borhood $B$ of $x$ there is a $t>0$ satisfying $P\left(X_{t} \in B\right)>0$. Let © be the smallest closed subgroup which includes $\Sigma$. Let $\boldsymbol{M}$ be the collection of measures $\mu$ on the Borel sets in $R^{N}$ such that $\mu$ is finite for compact sets and is invariant under translation by every $x \in \mathbb{C}$. Let $C_{K}=C_{K}\left(R^{N}\right)$ denote the set of continuous functions on $R^{N}$ with compact supports. We will prove the following (Theorem 4.1): If the process is transient, then the set of functions $f \in C_{K}$ such that

$$
\begin{equation*}
\int_{R^{N}} f(x) \mu(d x)=0 \quad \text { for every } \mu \in \boldsymbol{M} \tag{1.1}
\end{equation*}
$$

is a core of the potential operator $V$. Under the conditions $\sqrt[C]{5}=R^{N}$ and $E\left|X_{t}\right|^{\alpha}<\infty$, we will make refinement of the above result (Theorem 5.1). Namely, we will prove that certain smaller sets are cores of $V$. We will further obtain similar results in recurrent non-singular case (Theorems 6.1 and 6.2), using results of Port and Stone [2]. If a moment of higher order exists, we can choose a smaller set as a core. This is not unnatural considering the following fact obtained from Port and Stone [2]: Suppose $N=1$ and $\mathscr{G}=R^{N}$. Then $\mathfrak{D}(V) \cap C_{K}$ is related with the existence of the first or second order moment. More precisely, let $\mathfrak{M}_{0}$ be the set of functions $f \in C_{K}\left(R^{1}\right)$ such that $\int f(x) d x=0$, and $\mathfrak{M}_{1}$ be the set of $f \in C_{K}\left(R^{1}\right)$ such that $\int f(x) d x=\int f(x) x d x=0$. In transient case,

$$
\mathfrak{D}(V) \cap C_{K}=\begin{array}{ll}
\mathfrak{M}_{0} & \text { if } E\left|X_{t}\right|<\infty, \\
C_{K} & \text { if } E\left|X_{t}\right|=\infty ;
\end{array}
$$

and in recurrent non-singular case,

$$
\mathfrak{D}(V) \cap C_{K}=\begin{array}{ll}
\mathfrak{M}_{1} & \text { if } E X_{t}^{2}<\infty, \\
\mathfrak{M}_{0} & \text { if } E X_{t}{ }^{2}=\infty .
\end{array}
$$

The following notations are used throughout this paper: $d$ is the dimension of $\mathbb{A}$; $m$ is a Haar measure of ${ }^{\leftrightarrows}$; $\nu$ is the Lévy measure (see Theorem 2.1); $C_{K}^{\infty}=C_{K}^{\infty}\left(R^{N}\right)$ is the set of $C^{\infty}$ functions on $R^{N}$ with compact supports; $x=\left(x_{1}, \cdots, x_{N}\right)$ and $|x|=\left(x_{1}^{2}+\cdots+x_{N}{ }^{2}\right)^{1 / 2} ; B_{a}=\{y:|y|<a\}$, the open ball in $R^{N}$ with radius $a$ and center at the origin; especially $B_{1}$ is the open unit ball; $B_{a}^{c}$ is the complement of $B_{a} ; \chi_{B}$ is the indicator function of a set $B ; B+x$ is the set $\{y+x: y \in B\} ; B-x=B+(-x)$; $B+C=\{y+z: y \in B$ and $z \in C\}$; and $B \backslash C$ is the intersection of $B$ and the complement of $C$.

## 2. Infinitesimal generators.

An explicit expression of $A u$ for nice functions $u$ has been known essentially from 1930s. We need the following result.

Theorem 2.1. Let $A$ be the infinitesimal generator in $C_{0}\left(R^{N}\right)$ of the transition semigroup of a right continuous process with stationary independent increments. Then, $C_{K}^{\infty} \subset \mathfrak{D}(A)$ and $C_{K}^{\infty}$ is a core of $A$. For each $u \in C_{K}^{\infty}, A u$ is of the form

$$
\begin{align*}
A u(x)= & \sum_{i, j=1}^{N} a_{i j} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(x)+\sum_{i=1}^{N} b_{i} \frac{\partial u}{\partial x_{i}}(x) \\
& +\int_{R^{N \backslash\{(0)}}\left[u(x+y)-u(x)-\chi_{B_{1}}(y) \sum_{i=1}^{N} y_{i} \frac{\partial u}{\partial x_{i}}(x)\right] \nu(d y), \tag{2.1}
\end{align*}
$$

where $a_{i j}$ and $b_{i}$ are constants, $\left(a_{i j}\right)$ is a symmetric nonnegative definite matrix, and $\nu$ is a measure on $R^{N} \backslash\{0\}$ satisfying

$$
\nu\left(R^{N} \backslash B_{1}\right)<\infty, \quad \int_{B_{1} \backslash\{0\}}|y|^{2} \nu(d y)<\infty .
$$

The constants $a_{i j}, b_{i}$ and the measure $\nu$ are uniquely determined by $A$. Conversely, for every choice of such $a_{i j}, b_{i}$ and $\nu$, we can find a corresponding $A$.

The measure $\nu$ is called Lévy measure. A proof of the above theorem is given in [3]. Another proof is as follows: Let $C_{0}^{\infty}$ be the set of $C^{\infty}$ functions whose derivatives of all orders belong to $C_{0}\left(R^{N}\right)$. By Theorems 1 and 2 of Courrège [1], $C_{0}^{\infty}$ is included in $\mathfrak{D}(A)$ and, for each $u \in C_{0}^{\infty}, A u(x)$ is of the form (2.1). Since $C_{0}^{\infty}$ is dense and mapped by $T_{t}$ into itself, $C_{0}^{\infty}$ is a core of $A$ by Lemma 2.2 of Shinzo Watanabe [6]. For each $u \in C_{0}^{\infty}$, it is easy to find a sequence $u_{n} \in C_{K}^{\infty}$ such that $u_{n} \rightarrow u$, $\partial u_{n} / \partial x_{i} \rightarrow \partial u / \partial x_{i}$ and $\partial^{2} u_{n} / \partial x_{i} x_{j} \rightarrow \partial^{2} u / \partial x_{i} \partial x_{j}$ strongly for all $i$ and $j$. It follows from (2.1) that $A u_{n} \rightarrow A u$ strongly. Hence $C_{K}^{\infty}$ is a core of $A$. The converse part is obtained from Theorem 4 of [1].

As we pointed out in Introduction, a potential operator $V$ is associated with $A$, unless $X_{t}=0$ with probability one, that is, unless $A$ is the zero operator. Since $V=-A^{-1}$, the following result is immediate.

Corollary 2.1. The set $\left\{A u: u \in C_{K}^{\infty}\right\}$ is a core of $V$.

## 3. General lemmas.

In this section $X_{t}(\omega)$ is the process described in Introduction and no further conditions are imposed. We will give lemmas which we need in the following sections.

LEMMA 3.1. If $\mu \in M, f \in C_{0}\left(R^{N}\right)$, and $f$ is $\mu$-integrable, then $J_{\lambda} f$ is $\mu$-integrable and

$$
\begin{equation*}
\lambda \int J_{2} f(x) \mu(d x)=\int f(x) \mu(d x) \tag{3.1}
\end{equation*}
$$

Hence every $\mu \in \boldsymbol{M}$ is an invariant measure for the process.
Proof. It suffices to prove (3.1) for $f \geqq 0$. Let $\kappa_{2}$ be a probability measure defined by

$$
\kappa_{\lambda}(B)=\lambda \int_{0}^{\infty} e^{-\lambda t} P\left(X_{t} \in B\right) d t .
$$

Then $\kappa_{2}$ is supported in $\Sigma$, and

$$
\lambda J_{2} f(x)=\int f(x+y) \kappa_{2}(d y) .
$$

It follows from $\mu \in \boldsymbol{M}$ that

$$
\begin{equation*}
\int f(x+y) \mu(d x)=\int f(x) \mu(d x) \quad \text { for } y \in \mathbb{B} . \tag{3.2}
\end{equation*}
$$

Hence we have (3.1) by Fubini's theorem.
Lemma 3.2. Let $\mu \in M$ and $u \in \mathfrak{D}(A)$. If $u$ and $A u$ are $\mu$-integrable, then $A u$ has $\mu$-integral null.

Proof. We have

$$
\int A u(x) \mu(d x)=\lambda \int J_{\lambda} A u(x) \mu(d x)=\lambda^{2} \int J_{\lambda} u(x) \mu(d x)-\lambda \int u(x) \mu(d x)=0
$$

by Lemma 3.1.
Lemma 3.3. The Lévy measure $\nu$ is supported in $\Sigma$.
Proof. The set $\Sigma$ obviously contains the origin. Suppose that $x^{0}$ is a point $\neq 0$ in the support of $\nu$. Given $\varepsilon$ such that $0<\varepsilon<\left|x^{0}\right|$, let $\nu^{(1)}$ be the restriction of $\nu$ to $x^{0}+B_{\varepsilon}$, and let

$$
A^{(1)} u(x)=\int(u(x+y)-u(x)) \nu^{(1)}(d y), \quad A^{(2)} u(x)=A u(x)-A^{(1)} u(x)
$$

for $u \in C_{K}^{\infty}$. We can assume $X_{t}=X_{t}^{(1)}+X_{t}^{(2)}$, where $X_{t}^{(1)}$ and $X_{t}^{(2)}$ are independent processes generated by $A^{(1)}$ and $A^{(2)}$, respectively. Let $\beta$ be the total mass of $\nu^{(1)}: \beta=\nu\left(x^{0}+B_{\varepsilon}\right)>0$. The process $X_{t}^{(1)}$ is a compound Poisson with jumping measure $\beta^{-1} \nu^{(1)}$, that is, $X_{t}^{(1)}=\sum_{n=1}^{Y_{t}^{t}} Z_{n}$, where $\left\{Z_{n}\right\}$ are independent identically distributed random variables, each $Z_{n}$ has distribution $\beta^{-1} \nu^{(1)}$, and $Y_{t}$ is a Poisson process with mean $E Y_{t}=\beta t$, independent of $\left\{\boldsymbol{Z}_{n}\right\}$. We have

$$
\begin{aligned}
& P\left(\left|X_{t}-x^{0}\right|<2 \varepsilon\right) \geqq P\left(\left|X_{t}^{(1)}-x^{0}\right|<\varepsilon\right) P\left(\left|X_{t}^{(2)}\right|<\varepsilon\right), \\
& P\left(\left|X_{t}^{(1)}-x^{0}\right|<\varepsilon\right) \geqq P\left(Y_{t}=1\right) P\left(\left|Z_{1}-x^{0}\right|<\varepsilon\right)>0,
\end{aligned}
$$

and also $P\left(\left|X_{t}^{(2)}\right|<\varepsilon\right)>0$ for small $t>0$. Hence $x^{0} \in \Sigma$ and the lemma is proved.

Lemma 3.4. If $u$ is in $C_{K}^{\infty}\left(R^{N}\right)$ with support in $B_{a}$, then

$$
\begin{equation*}
A u(x)=0 \quad \text { for } x \notin \mathbb{S}+B_{a} \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
|A u(x)| \leqq\|u\| \nu\left(B_{a}-x\right) \quad \text { for } x \notin B_{a}, \tag{3.4}
\end{equation*}
$$

and

$$
\begin{align*}
& \int_{|x+y| \geqq b}|x+y|^{\alpha}|A u(x+y)| \mu(d y)  \tag{3.5}\\
& \quad \leqq\|u\| \int_{B_{b-a}^{c}}\left(a+|z|^{\alpha} \nu(d z) \sup _{y \in \mathbb{G}} \mu\left(B_{a}+y-x\right)\right.
\end{align*}
$$

for an arbitrary measure $\mu$ on $R^{N}, x \in R^{N}, b>a$, and $\alpha \geqq 0$.
Proof. The assertion (3.3) follows from (3.4) by Lemma 3.3. We have from Theorem 2.1

$$
\begin{equation*}
A u(x)=\int u(x+y) \nu(d y) \quad \text { for } x \notin B_{a} \tag{3.6}
\end{equation*}
$$

which implies (3.4). Let us prove (3.5). We may assume $x=0$, because for a general $x$ we need only consider $\mu_{x}$ defined by $\mu_{x}(B)=\mu(B-x)$ instead of $\mu$. We have

$$
\begin{align*}
& \int_{B_{\delta}^{\varepsilon}}|y|^{\alpha}|A u(y)| \mu(d y) \leqq\|u\| \int_{B_{\delta}^{\delta}}|y|^{\alpha} \nu\left(B_{a}-y\right) \mu(d y)  \tag{3.7}\\
& \quad=\|u\| \int_{\Sigma} \nu(d z) \int_{B_{\delta}^{\mid}}|y|^{\alpha} \chi_{B_{a}}(y+z) \mu(d y)
\end{align*}
$$

by using (3.4), Lemma 3.3 and Fubini's theorem. If $y+z \in B_{a}$ and $y \in B_{b}^{c}$, then $|z|>b-a$ and $|y|<|z|+a$. Hence the last member in (3.7) is not larger than

$$
\|u\| \int_{\Sigma \cap B_{b-a}^{\delta}}(|z|+a)^{\alpha} \mu\left(B_{a}-z\right) \nu(d z)
$$

from which follows (3.5) for $x=0$. The proof is complete.
Lemma 3.5. If $u \in C_{K}^{\infty}$ and $\mu \in M$, then $A u$ is $\mu$-integrable and has $\mu$-integral null.

Proof. Suppose that $u$ has support in $B_{a}$. We use the estimate (3.5) with $x=0$ and $\alpha=0$. Since

$$
\sup _{y \in \mathscr{G}}\left(B_{a}+y\right)=\mu\left(B_{a}\right)<\infty,
$$

the right-hand side of (3.5) is finite. Hence $A u$ is $\mu$-integrable. The $\mu$-integral vanishes by Lemma 3.2.

Lemma 3.6. Let $f \in C_{K}\left(R^{N}\right)$. Then, (1.1) holds if and only if

$$
\begin{equation*}
\int_{\mathscr{G}} f(x+y) m(d y)=0 \quad \text { for every } x \in R^{N} \tag{3.8}
\end{equation*}
$$

Proof. Since for every $x \in R^{N}$ a measure $m_{x}$ defined by $m_{x}(B)=$ $m((B-x) \cap(5)$ is a member of $M$, (1.1) implies (3.8). Let us prove the converse. We can find a Borel set $H$ such that every $z \in R^{N}$ is uniquely represented as $z=x+y, x \in \mathbb{G}, y \in H$. Let $\mu \in \boldsymbol{M}$. Fix a Borel set $B^{0}$ in $(5)$ such that $0<m\left(B^{0}\right)<\infty$ and define a measure $\mu^{\prime}$ on $H$ by

$$
\mu^{\prime}(C)=m\left(B^{0}\right)^{-1} \mu\left(B^{0}+C\right) \quad \text { for } C \subset H
$$

For Borel sets $B \subset \mathscr{G}$ and $C \subset H$, we have

$$
\mu(B+C)=m(B) \mu^{\prime}(C)
$$

In fact, since $\mu(B+y+C)=\mu(B+C)$ for $y \in \mathbb{G}$, we have $\mu(B+C)=$ const $m(B)$ for a fixed $C$. The constant is no other than $\mu^{\prime}(C)$. Therefore, we have

$$
\int_{R^{N}} g(z) \mu(d z)=\int_{H} \int_{\mathscr{G}} g(x+y) m(d x) \mu^{\prime}(d y)
$$

for every nonnegative measurable $g$. Hence, if (3.8) holds, then $f$ has $\mu$-integral null by Fubini's theorem. The proof is complete.

Let $h(\xi)$ be a continuous function on $[0, \infty)$ such that $h(\xi)$ is 1 for $0 \leqq \xi \leqq 1,0$ for $\xi \geqq 4$, and $0<h(\xi)<1$ for $1<\xi<4$. Let $h_{n}(x)=$ $h\left(|x|^{2} / n^{2}\right)$ for $n \geqq 1$.

Lemma 3.7. Given $u \in C_{K}^{\infty}\left(R^{N}\right)$ and $f=A u$, define

$$
\begin{gather*}
g_{n}(x)=-\int_{\mathscr{G}} f(x+y) h_{n}(x+y) m(d y) / \int_{\mathscr{G}} h_{n}(x+y) m(d y),  \tag{3.9}\\
f_{n}(x)=\left(f(x)+g_{n}(x)\right) h_{n}(x), \tag{3.10}
\end{gather*}
$$

where we understand $g_{n}(x)=0$ when the denominator in (3.9) vanishes. Then, $f_{n} \in C_{K}\left(R^{N}\right), f_{n}$ has $\mu$-integral null for every $\mu \in M$, and

$$
\begin{array}{cl}
\sup _{x \in R^{N}}\left|g_{n}(x)\right|=o\left(n^{-d}\right) & \text { as } n \rightarrow \infty, \\
\left\|f_{n}-f\right\| \rightarrow 0 & \text { as } n \rightarrow \infty . \tag{3.12}
\end{array}
$$

Proof. The function $g_{n}(x) h_{n}(x)$ vanishes if $|x|>2 n$. If $|x|=2 n$ and $x^{\prime} \rightarrow x$, then $h_{n}(x)=0$ and $g_{n}\left(x^{\prime}\right) h_{n}\left(x^{\prime}\right) \rightarrow 0$ since $\left|g_{n}\left(x^{\prime}\right)\right| \leqq\|f\|$. If $|x|<2 n$, then the denominator in (3.9) is positive and $g_{n}(x)$ is continuous at $x$. Hence $f_{n} \in C_{K}$. We have

$$
\begin{aligned}
\int_{\mathscr{G}} f_{n}(x+y) m(d y)= & \int_{\mathscr{G}} f(x+y) h_{n}(x+y) m(d y) \\
& +g_{n}(x) \int_{\mathscr{G}} h_{n}(x+y) m(d y)=0
\end{aligned}
$$

for $x \in R^{N}$, since $g_{n}(x+y)=g_{n}(x)$ for $y \in \mathbb{G}$. It follows that $f_{n}$ has $\mu$-integral null for $\mu \in \boldsymbol{M}$ by Lemma 3.6. Suppose that $u$ has support in $B_{a}$. Let $D_{a}=\mathscr{S}+B_{a}$. If $x \notin D_{a}$, then $x+y \notin D_{a}$ for $y \in \mathscr{G}$ and $g_{n}(x)=0$ by (3.3) in Lemma 3.4. Let $x \in D_{a}$ and let us give estimation of $g_{n}(x)$. We have $x=x^{0}+x^{1}$ with $x^{0} \in \mathscr{C}$ and $\left|x^{1}\right|<a$, and hence

$$
\begin{aligned}
& \int_{\mathfrak{G}} h_{n}(x+y) m(d y) \geqq m\{y \in \mathscr{S}:|x+y| \leqq n\} \\
& \quad=m\left\{y \in \mathscr{G}:\left|x^{1}+y\right| \leqq n\right\} \geqq m\{y \in \mathbb{C S}:|y| \leqq n-a\} \geqq c(n-a)^{d}
\end{aligned}
$$

with a positive constant $c$. Noting that $f$ satisfies (3.8) by Lemma 3.5, we observe that

$$
\begin{aligned}
& \left|\int_{\mathscr{G}} f(x+y) h_{n}(x+y) m(d y)\right|=\left|\int_{\mathscr{G}} f(x+y)\left(1-h_{n}(x+y)\right) m(d y)\right| \\
& \quad \leqq \int_{|x+y|>n}|f(x+y)| m(d y) \leqq\|u\| \nu\left(B_{n-a}^{c}\right) m\left(B_{a}-x\right)
\end{aligned}
$$

by using Lemma 3.4. The last member tends to zero as $n \rightarrow \infty$ uniformly in $x \in D_{a}$. Thus we get (3.11). The assertion (3.12) follows from (3.11) and $f \in C_{0}$, since

$$
\left\|f_{n}-f\right\| \leqq \sup _{|x|>n}|f(x)|+\sup _{x \in R^{N}}\left|g_{n}(x)\right|
$$

Lemma 3.8. If $u \in C_{K}^{\infty}\left(R^{N}\right)$, then $A u$ is a $C^{\infty}$ function.
Proof. Using the expression (2.1) of $A u$ in Theorem 2.1, we can see that $A u$ is continuously differentiable and

$$
\frac{\partial}{\partial x_{i}} A u=A\left(\frac{\partial u}{\partial x_{i}}\right) .
$$

Hence $A u$ is a $C^{\infty}$ function by induction.
Lemma 3.9. Let $\alpha>0$. If

$$
\begin{equation*}
E\left|X_{t}\right|^{\alpha}<\infty \tag{3.13}
\end{equation*}
$$

holds for some $t>0$, then it holds for every $t>0$ and

$$
\begin{equation*}
\int_{R^{N}}|x|^{\alpha}|A u(x)| d x<\infty \tag{3.14}
\end{equation*}
$$

for every $u \in C_{K}^{\infty}$. If

$$
\begin{equation*}
E\left|X_{t}\right|<\infty \tag{3.15}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{R^{N}} x_{i} A u(x) d x=-\left(E X_{\left.t^{(i)}\right)} \int_{R^{N}} u(x) d x\right. \tag{3.16}
\end{equation*}
$$

for every $u \in C_{K}^{\infty}$, where $X_{t}^{(i)}$ is the $i$-th component of $X_{t}$.
Proof. Let $\phi_{t}(\xi)$ be the characteristic function of the distribution of $X_{t}$ :

$$
\phi_{t}(\xi)=E \exp \left(\sqrt{-1} \sum_{i=1}^{N} \xi_{i} X_{t}^{(i)}\right) \quad \text { for } \xi=\left(\xi_{1}, \cdots, \xi_{N}\right) \in R^{N}
$$

Then, it is known that

$$
\begin{align*}
\phi_{t}(\xi)= & \exp \left[t \left(-\sum_{i, j=1}^{N} a_{i j} \xi_{i} \xi_{j}+\sqrt{-1} \sum_{i=1}^{N} b_{i} \xi_{i}\right.\right.  \tag{3.17}\\
& \left.\left.+\int_{R^{N \backslash\{0\}}}\left(e^{\sqrt{-1} \xi y}-1-\chi_{B_{1}}(y) \sqrt{-1} \xi y\right) \nu(d y)\right)\right]
\end{align*}
$$

where $\xi y=\sum_{i=1}^{N} \xi_{i} y_{i}$. Hence $E\left|X_{t}\right|^{\alpha}$ is finite if and only if

$$
\begin{equation*}
\int_{|y|>1}|y|^{\alpha} \nu(d y)<\infty \tag{3.18}
\end{equation*}
$$

by the result of [5]. Therefore, if (3.13) holds for some $t>0$, then it holds for every $t$ and (3.14) holds by Lemma 3.4. If (3.15) holds, then we get on the one hand

$$
\int_{R^{N}} x_{i} A u(x) d x=-\left(b_{i}+\int_{|y| \geqq 1} y_{i} \nu(d y)\right) \int_{R^{N}} u(x) d x
$$

by elementary calculation from (2.1), and

$$
E X_{1}^{(i)}=-\sqrt{-1} \frac{\partial \phi_{1}}{\partial \xi_{i}}(0)=b_{i}+\int_{|y| \geqq 1} y_{i} \nu(d y)
$$

from (3.17) on the other hand. Hence (3.16).

## 4. Transient case.

We assume that $X_{t}$ is transient. Let $U$ be a measure defined by

$$
U(B)=\int_{0}^{\infty} P\left(X_{t} \in B\right) d t
$$

This measure is finite for compact sets and concentrated on $\Sigma$. We need the following analogue of the Blackwell-Feller-Orey renewal theorem.

Proposition 4.1. (Port-Stone [2]) (i) Suppose that $d \geqq 2$ or suppose that $d=1$ and $E\left|X_{t}\right|=\infty$. Then,

$$
\begin{equation*}
\lim _{x \in \mathscr{G},|x| \rightarrow \infty} U(B+x)=0 \tag{4.1}
\end{equation*}
$$

for every bounded Borel set B. (ii) Suppose that $d=1$ and $E\left|X_{t}\right|<\infty$. Assume $N=1$ for simplicity of statement. If $\pm E X_{t}>0$, then

$$
\begin{equation*}
\lim _{x \in \mathscr{G}, x \rightarrow \pm \infty} U(B+x)=c m(B), \quad \lim _{x \in \mathscr{G}, x \rightarrow \mp \infty} U(B+x)=0 \tag{4.2}
\end{equation*}
$$

with a finite positive constant $c$ for every bounded Borel subset $B$ of (5) such that the boundary of $B$ in the relative topology of ©s has zero m-measure.

As a consequence, we have

$$
\begin{equation*}
\sup _{x \in R^{N}} U(B+x)<\infty \tag{4.3}
\end{equation*}
$$

for every bounded Borel set $B$, if only transient. Note that if $d=1$, $E\left|X_{t}\right|<\infty$ and $E X_{t}=0$, then it is recurrent.

We will prove the following result.
Theorem 4.1. If $X_{t}$ is transient, then the set $\mathfrak{M}$ of functions in $C_{K}\left(R^{N}\right)$ which have $\mu$-integral null for every $\mu \in \boldsymbol{M}$ is a core of the potential operator $V$.

Lemma 4.1. If $f \in \mathfrak{M}$, then $f \in \mathfrak{D}(V)$ and

$$
\begin{equation*}
V f(x)=\int f(x+y) U(d y) \tag{4.4}
\end{equation*}
$$

Proof. Suppose that $f$ has support in $B_{a}$. Let $g(x)$ be the righthand side of (4.4). This is a uniformly continuous function. In fact, for a given $\varepsilon<0$, let $\delta$ be such that $0<\delta<1$ and $\left|f(x)-f\left(x^{\prime}\right)\right|<\varepsilon$ if $\left|x-x^{\prime}\right|<\delta$. Then we have

$$
\left|g(x)-g\left(x^{\prime}\right)\right| \leqq \varepsilon U\left(B_{a+1}-x\right) \leqq \text { const } \varepsilon
$$

by (4.3). Suppose that

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} g(x)=0 \tag{4.5}
\end{equation*}
$$

is proven. Since we have

$$
\left|J_{\lambda} f(x)\right| \leqq \int|f(x+y)| U(d y) \leqq\|f\| U\left(B_{a}-x\right)
$$

which is bounded by (4.3), $J_{2} f(x)$ tends to $g(x)$ boundedly and pointwise as $\lambda \rightarrow 0$; in other words $J_{2} f$ tends weakly to $g$, and hence $f \in \mathfrak{D}(V)$ and $V f=g$ by Theorem 2.4 of [4]. Let us prove (4.5). First, it follows from Proposition 4.1 and $f \in \mathfrak{M}$ that

$$
\begin{equation*}
\lim _{x \in \mathbb{G},|x| \rightarrow \infty} g(x+y)=0 \tag{4.6}
\end{equation*}
$$

for each fixed $y \in R^{N}$. Let $D_{a}=\mathscr{G}+B_{a}$, the $\alpha$-neighborhood of $\mathbb{G}$. We can find a Borel set $H$ such that every $z \in R^{N}$ is uniquely represented as $z=x+y, x \in \mathscr{F}, y \in H$, and that $H \cap D_{a} \subset B_{b}$ for some $b>0$. We claim that the convergence in (4.6) is uniform in $y \in H$. If $y \notin D_{a}$, then $g(x+y)=0$ for $x \in \mathbb{G}$. For a given $\varepsilon>0$, we can find by the uniform continuity a $\delta>0$ such that $\left|g(z)-g\left(z^{\prime}\right)\right|<\varepsilon$ if $\left|z-z^{\prime}\right|<\delta$. Let $y^{0} \in H \cap D_{a}$. If $x \in \mathbb{G}$ and $|x|$ is large enough, then

$$
|g(x+y)|<\left|g\left(x+y^{0}\right)\right|+\varepsilon<2 \varepsilon
$$

for all $y$ such that $\left|y-y^{0}\right|<\delta$. Since $H \cap D_{a}$ is a bounded set, it follows that (4.6) holds uniformly in $y \in H$. Given $\varepsilon>0$, let $p>0$ be such that if $x \in \mathscr{S}$ and $|x|>p$, then $|g(x+y)|<\varepsilon$ for all $y \in H$. If $|z|>p+b$, then $z=x+y, x \in \mathscr{S}, y \in H$, where $y \notin D_{a}$ or $|y|<b$. In either case we have $|g(z)|<\varepsilon$. Hence (4.5) is proved.

Proof of Theorem 4.1. We have $\mathfrak{M} \subset \mathfrak{D}(V)$ by the above lemma. Hence, by virtue of Corollary 2.1, it is enough to prove that for each $u \in C_{K}^{\infty}$ there are a sequence $\left\{f_{n}\right\}$ in $\mathfrak{M}$ and a $g$ in $C_{0}$ such that $f_{n} \rightarrow A u$ and $V f_{n} \rightarrow g$ strongly as $n \rightarrow \infty$. Let $f=A u$ and let $f_{n}$ be the one defined by (3.10). Then, by Lemmas 3.7 and 4.1, we have $f_{n} \in \mathfrak{M}, f_{n} \rightarrow f$, and

$$
\begin{equation*}
V f_{n}(x)=\int f_{n}(x+y) U(d y) \tag{4.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
g(x)=\int f(x+y) U(d y) \tag{4.8}
\end{equation*}
$$

The integral exists by (4.3) and Lemma 3.4. We claim

$$
\begin{equation*}
\lim _{n \rightarrow \infty} V f_{n}(x)=g(x) \quad \text { uniformly in } x \in R^{N} \tag{4.9}
\end{equation*}
$$

It follows from (3.10) and (4.7) that

$$
\left|V f_{n}(x)-g(x)\right| \leqq \int_{|x+y|>n}|f(x+y)| U(d y)+\sup _{z}\left|g_{n}(z)\right| \int h_{n}(x+y) U(d y)
$$

The first term of the right-hand side tends to zero as $n \rightarrow \infty$ uniformly in $x$ by (3.5) and (4.3), while the second term also tends to zero uniformly in $x$ by (3.11), since we have

$$
\begin{align*}
& \sup _{x \in R^{N}} \int h_{n}(x+y) U(d y) \leqq \sup _{x \in R^{N}} U\left(x+B_{2 n}\right)=\sup _{x \in \in \mathfrak{G} 1} U\left(x+B_{2 n}\right)  \tag{4.10}\\
& \quad \leqq c n^{d} \sup _{x \in \mathscr{G} 1} U\left(x+B_{1}\right) \leqq c^{\prime} n^{d}
\end{align*}
$$

by (4.3), where $\mathscr{G}_{1}$ is the $d$-dimensional Euclidean subspace including $\mathfrak{G}$, and $c$ and $c^{\prime}$ are constants. Hence we get (4.9), which proves that $g \in C_{0}$ and $\left\|V f_{n}-g\right\| \rightarrow 0$. The proof is complete.

## 5. Refinement in transient case.

We assume transience and $\mathbb{C}=R^{N}$ in this section. We say that a function $\phi(x)$ is $\alpha$ order homogeneous outside a compact set, if there is a $b>0$ such that

$$
\phi(\lambda x)=\lambda^{\alpha} \phi(x) \quad \text { for }|x| \geqq b, \lambda \geqq 1 .
$$

For such a function $\phi$ we define the homogeneous modification

$$
\tilde{\phi}(x)=\left(\frac{|x|}{b}\right)^{\alpha} \phi\left(\frac{b x}{|x|}\right) .
$$

Note that $\phi(x)=\tilde{\phi}(x)$ for $|x| \geqq b$.
TheOrem 5.1. Suppose $E\left|X_{t}\right|^{\alpha}<\infty$ for a real number $\alpha>0$. Let $\phi_{i}(x), 1 \leqq i \leqq l$, be an arbitrary number of continuous functions on $R^{N}$ such that $\phi_{i}$ is $\alpha_{i}$ order homogeneous outside a compact set, $0<\alpha_{i} \leqq \alpha$, and the set of the homogeneous modifications $\left\{\tilde{\phi}_{i}(x): 1 \leqq i \leqq l\right\}$ is linearly independent. Given real numbers $a_{i}, 1 \leqq i \leqq l$, let $\mathfrak{M}$ be the set of functions $f \in C_{K}^{\infty}\left(R^{N}\right)$ such that

$$
\begin{equation*}
\int_{R^{N}} f(x) d x=0, \quad \int_{R^{N}} f(x) \phi_{i}(x) d x=a_{i} \quad \text { for } 1 \leqq i \leqq l \tag{5.1}
\end{equation*}
$$

Then, $\mathfrak{M}$ is a core of the potential operator $V$.
Proof. The set $\mathfrak{M}$ is included in $\mathfrak{D}(V)$, since $\boldsymbol{M}$ consists only of multiples of the Lebesgue measure of $R^{N}$ in the present case. Using a $C^{\infty}$ function $h(\xi)$, let $h_{n}(x)$ be the function given in Section 3. Let $u \in C_{K}^{\infty}$ and $f=A u$. By Lemma 3.8, $f$ is a $C^{\infty}$ function. Let $\psi_{0}(x) \equiv 1$ and let $\psi_{i}(x), 1 \leqq i \leqq l$, be $C^{\infty}$ functions on $R^{N}, \alpha_{i}$ order homogeneous outside a compact set for each $i$. Let

$$
\begin{equation*}
f_{n}(x)=\left(f(x)+\sum_{j=0}^{l} b_{j n} \psi_{j}(x)\right) h_{n}(x) . \tag{5.2}
\end{equation*}
$$

Surely $f_{n}$ is in $C_{K}^{\infty}$. We want to determine constants $b_{j n}$ so that $f_{n} \in \mathfrak{M}$ and prove

$$
\begin{align*}
& \left\|f_{n}-f\right\| \rightarrow 0  \tag{5.3}\\
& \left\|V f_{n}-g\right\| \rightarrow 0 \tag{5.4}
\end{align*}
$$

for $g$ defined by (4.8). Let $\alpha_{0}=\alpha_{0}=0$. We have $f_{n} \in \mathfrak{M}$ if and only if

$$
\begin{equation*}
\int f(x) \phi_{i}(x) h_{n}(x) d x+\sum_{j=0}^{l} b_{j n} \int \phi_{i}(x) \psi_{j}(x) h_{n}(x) d x=a_{i}, \quad 0 \leqq i \leqq l \tag{5.5}
\end{equation*}
$$

where $\phi_{0} \equiv 1$. We have

$$
\begin{aligned}
\int \phi_{i}(x) \psi_{j}(x) h_{n}(x) d x= & n^{N} \int \phi_{i}(n x) \psi_{j}(n x) h_{1}(x) d x \\
= & n^{N} \int_{|x| \geq b / n} \tilde{\phi}_{i}(n x) \tilde{\psi}_{j}(n x) h_{1}(x) d x \\
& +n^{N} \int_{|x|<b / n} \phi_{i}(n x) \psi_{j}(n x) h_{1}(x) d x,
\end{aligned}
$$

hence

$$
\begin{equation*}
n^{-N-\alpha_{i}-\alpha_{j}} \int \phi_{i}(x) \psi_{j}(x) h_{n}(x) d x \rightarrow \int \tilde{\phi}_{i}(x) \tilde{\psi}_{j}(x) h_{1}(x) d x \tag{5.6}
\end{equation*}
$$

as $n \rightarrow \infty$. It follows that

$$
\begin{align*}
& n^{-N(l+1)-2 \beta} \operatorname{det}\left(\int \phi_{i}(x) \psi_{j}(x) h_{n}(x) d x\right)_{i, j=0, \cdots, l}  \tag{5.7}\\
& \quad \longrightarrow c=\operatorname{det}\left(\int \tilde{\phi}_{i}(x) \tilde{\psi}_{j}(x) h_{1}(x) d x\right)_{i, j=0, \cdots, l}
\end{align*}
$$

where $\beta=\sum_{i=1}^{l} \alpha_{i}$. Using Weierstrass' theorem, we choose the functions $\psi_{i}$ in such a manner that $\max _{|x|=b}\left|\phi_{i}(x)-\psi_{i}(x)\right|(1 \leqq i \leqq l)$ are so small that $c$ is positive. This is possible because we have

$$
\operatorname{det}\left(\int \tilde{\phi}_{i}(x) \tilde{\phi}_{j}(x) h_{1}(x) d x\right)_{i, j=0, \cdots, l}>0
$$

since it is the Gramian of $\left\{\tilde{\phi}_{i}(x) h_{1}(x)^{1 / 2}\right\}$ and the functions $\tilde{\phi}_{i}(x)$ restricted to $|x|<2 n$ are still linearly independent. Thus, for sufficiently large $n$, $\left\{b_{j n}: 0 \leqq j \leqq l\right\}$ which satisfies (5.5) uniquely exists. We have

$$
\begin{equation*}
\int f(x) h_{n}(x) d x=o(1) \text { and } \int f(x) \phi_{i}(x) h_{n}(x) d x=O(1) \tag{5.8}
\end{equation*}
$$

as $n \rightarrow \infty$ by Lemma 3.5 and by

$$
\begin{equation*}
\int|x|^{\alpha}|f(x)| d x<\infty \tag{5.9}
\end{equation*}
$$

which follows from the assumption $E\left|X_{t}\right|^{\alpha}<\infty$ by Lemma 3.9. Hence we can easily check that

$$
\begin{equation*}
b_{j n}=o\left(n^{-N-\alpha_{j}}\right) \quad \text { for } 0 \leqq j \leqq l, \tag{5.10}
\end{equation*}
$$

solving the linear equations (5.5) and using (5.6) and (5.7). It follows that

$$
\left\|f_{n}-f\right\| \leqq \sup _{|x|>n}|f(x)|+\sum_{j=0}^{l}\left|b_{j n}\right|(2 n)^{\alpha_{j}}=\sup _{|x|>n}|f(x)|+o\left(n^{-N}\right)
$$

Further we have

$$
\begin{aligned}
& \left|V f_{n}(x)-g(x)\right| \leqq \int_{|x+y|>n}|f(x+y)| U(d y) \\
& \quad+\text { const } \sum_{j=0}^{l}\left|b_{j n}\right| n^{\alpha_{j}} \int h_{n}(x+y) U(d y)
\end{aligned}
$$

using (4.7) and (4.8), and see that the right-hand side tends to zero uniformly in $x$ using (3.5) and (4.3) for the first term, and using (4.10) and (5.10) for the second term. Hence we get (5.3) and (5.4), completing the proof.

## 6. Recurrent case.

Let $X_{t}$ be recurrent. In addition we assume that $X_{t}$ is non-singular in the sense that for some $t$ the distribution of $X_{t}$ has non-trivial absolutely continuous part. We have necessarily $\mathscr{H}=R^{N}$ and $N=1$ or 2. Port and Stone give the following result.

Proposition 6.1. (Port-Stone [2], Section 17) If $f$ is bounded, measurable, vanishes outside a compact set, and has null integral, then $\int_{0}^{\infty} e^{-\lambda t} E f\left(x+X_{t}\right) d t$ is bounded uniformly in $\lambda>0$ and tends to a function $g(x)$ as $\lambda \rightarrow 0$. The convergence is uniform on every compact set. There are a continuous function $\alpha(x)$ and a finite measure $\mu_{2}$ such that the following hold: (i) The function $g$ is represented by

$$
\begin{equation*}
g(x)=-\int f(x+y) a(y) d y-\int f(x+y) \mu_{2}(d y) \tag{6.1}
\end{equation*}
$$

(ii) If $N=2$ or if $N=1$ and $E\left|X_{t}\right|^{2}=\infty$, then

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty}(a(x+y)-a(x))=0 \tag{6.2}
\end{equation*}
$$

uniformly in $y$ on every compact set. (iii) If $N=1$ and $E\left|X_{1}\right|^{2}=\sigma^{2}<\infty$, then

$$
\begin{equation*}
\lim _{x \rightarrow \pm \infty}(\alpha(x+y)-a(x))= \pm y / \sigma^{2} \tag{6.3}
\end{equation*}
$$

uniformly in $y$ on every compact set
The following is a direct consequence of the above result. Noting that (6.1) is written as

$$
\begin{equation*}
g(x)=-\int f(y)(a(y-x)-a(-x)) d y-\int f(x+y) \mu_{2}(d y) \tag{6.4}
\end{equation*}
$$

and recalling Theorem 2.4 of [4], we see that if $f \in C_{K}\left(R^{N}\right)$ and

$$
\begin{equation*}
\int f(x) d x=\int f(x) x_{i} d x=0 \quad \text { for } 1 \leqq i \leqq N \tag{6.5}
\end{equation*}
$$

then $g \in C_{0}\left(R^{N}\right), f \in \mathfrak{D}(V)$ and $V f=g$. Also, (6.2) as well as (6.3) imply

$$
\begin{equation*}
\sup _{x \in R^{N}}|a(x+y)-a(x)| \leqq \text { const }(|y|+1) \tag{6.6}
\end{equation*}
$$

Theorem 6.1. If $E\left|X_{t}\right|<\infty$, then the set of functions $f \in C_{K}^{\infty}$ satisfying (6.5) is a core of the potential operator $V$.

The proof is obtained by a simplification of the proof of the following theorem with trivial changes.

THEOREM 6.2. Suppose that $E\left|X_{t}\right|^{\alpha}<\infty$ for an $\alpha>1$. Let $\phi_{i}(x)$, $N+1 \leqq i \leqq l$ be an arbitrary number of continuous functions such that $\phi_{i}$ is $\alpha_{i}$ order homogeneous outside a compact set for some $\alpha_{i}$ satisfying $1<\alpha_{i} \leqq \alpha$ and the set of the homogeneous modifications $\left\{\tilde{\phi}_{i}: N+1 \leqq i \leqq l\right\}$ is linearly independent. Given real numbers $a_{i}, N+1 \leqq i \leqq l$, let $\mathfrak{M}$ be the set of functions $f \in C_{K}^{\infty}\left(R^{N}\right)$ which satisfy (6.5) and

$$
\begin{equation*}
\int f(x) \phi_{i}(x) d x=a_{i} \quad \text { for } N+1 \leqq i \leqq l \tag{6.7}
\end{equation*}
$$

Then, $\mathfrak{M}$ is a core of $V$.
Proof. Let $\phi_{0}(x) \equiv 1, \alpha_{0}=0, \phi_{i}(x)=x_{i}, \alpha_{i}=1$ for $1 \leqq i \leqq N$, and $a_{i}=0$ for $0 \leqq i \leqq N$. Given $u \in C_{K}^{\infty}, f=A u$, define $f_{n}$ by (5.2). By the same argument as in the proof of Theorem 5.1, we can determine for large $n$ the constants $b_{j n}$ in (5.2) in such a way that $f_{n} \in \mathfrak{M}$. We have also (5.8). This time we need a stronger result:

$$
\left|\int f(x) h_{n}(x) d x\right| \leqq \int_{|x|>n}|f(x)| d x \leqq n^{-\alpha} \int_{|x|>n}|x|^{\alpha}|f(x)| d x=o\left(n^{-\alpha}\right) .
$$

Noting that $X_{t}$ has mean 0 by the recurrence and $E\left|X_{t}\right|<\infty$ and using Lemma 3.9, we have similarly

$$
\int f(x) x_{i} h_{n}(x) d x=o\left(n^{1-\alpha}\right)
$$

Therefore we obtain

$$
\begin{equation*}
b_{j n}=o\left(n^{-N-1-\alpha_{j}}\right), \quad \text { for } 0 \leqq j \leqq l \tag{6.8}
\end{equation*}
$$

from (5.5) in the same way as we get (5.10). Thus (5.3) is obvious. Define $g(x)$ by (6.4). Existence of the first integral in (6.4) follows from (5.9) and (6.6). Expressing $V f_{n}$ in the form of (6.4), we have

$$
\begin{aligned}
& \left|V f_{n}(x)-g(x)\right| \leqq\left|\int_{|y|>n} f(y)(a(y-x)-a(-x)) d y\right| \\
& \quad+\sum_{j=0}^{l}\left|b_{j n} \int_{|y|<2 n} \psi_{j}(y)(a(y-x)-a(-x)) d y\right|+\left\|f_{n}-f\right\| \mu_{2}\left(R^{N}\right)
\end{aligned}
$$

In the right side, the first term tends to zero uniformly in $x$ by (5.9) and (6.6), and so does the second term by (6.8) and by

$$
\int_{|y|<2 n} \psi_{j}(y)(a(y-x)-a(-x)) d y=O\left(n^{N+1+\alpha_{j}}\right)
$$

which follows from (6.6). Hence we get (5.4), and the proof is complete.
Even if $X_{t}$ is recurrent and non-singular, we do not know a core which can be explicitly described of the potential operator in the case $E\left|X_{t}\right|=\infty$. In order to find such, it is desirable to get information on the relation between behavior of $|\alpha(y+x)-\alpha(x)|$ for large $|x|$ and mass distribution of the Lévy measure $\nu$ in neighborhoods of infinity. An example is the Cauchy process on $R^{1}$ with or without drift, for which we have

$$
|a(y+x)-a(x)| \leqq \mathrm{const}(|\log |(1+y) / x| |+1)
$$

and $\nu(d y)=$ const $y^{-2} d y$, and the set of functions in $C_{K}^{\infty}$ with integral null is a core of the potential operator (Example 5.4 of [4]).

## References

[1] P. Courrège, Générateur infinitésimal d'un semi-groupe de convolution sur $R^{n}$, et formule de Lévy-Khinchine, Bull. Sci. Math., $2^{e}$ série, 88 (1964), 3-30.
[2] S. C. Port and C. J. Stone, Infinitely divisible processes and their potential theory (First part), Ann. Inst. Fourier (Grenoble), 21, 2 (1971), 157-275; (Second part) 21, 4 (1971), 179-265.
[3] K. Sato, Semigroups and Markov processes, Lecture notes at University of Minnesota (1968).
[4] K. Sato, Potential operators for Markov processes, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, 3, to appear.
[5] K. Sato, A note on infinitely divisible distributions and their Lévy measures, to appear.
[6] S. Watanabe, A limit theorem of branching processes and continuous state branching processes, J. Math. Kyoto Univ., 8 (1968), 141-167.
[7] K. Yosida, The existence of the potential operator associated with an equicontinuous semigroup of class $\left(C_{0}\right)$, Studia Math. 31 (1968), 531-533.

Tokyo University of Education

