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Introduction

Throughout this paper, k is a perfect field of characteristic p > 0,
R is a complete discrete valuation ring with residue field k and quotient
field of characteristic zero, and Z is a connected smooth prescheme of
finite type over k.

In their papers [6,8] Monsky and Washnitzer have developed a de
Rham cohomology theory for certain varieties in characteristic p. In
particular, they construct functors from the category of "very smooth"
k varieties (which includes all affine complete transversal intersections)
to the category of R (g)z 2-vector spaces:

Z — > HKX,R®zQ) i > 0

which vanishes for ί > dim Z. We refer to these spaces as the MW-
cohomology groups.

In this paper we add to the accumulating evidence that Monsky and
Washnitzer have defined a "good" cohomology theory. We investigate
the functor

Z —>H\X,R®ZQ)

and show that this functor may be extended to the category of all smooth
k-varieties. We prove that:

(1) if U is an open subset of Z, the assignment

[/—>H\U,R®ZQ)

is a sheaf Jf71 on Z ;
(2) if V c U are open subsets of Z, then the restriction morphism
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100 DAVID MEREDITH

H\U,R®ZQ) > H\V,R®ZQ)

is injective;
(3) if U is an open subset of Z, we show that there is an exact

sequence (which is functorial on pairs (Z, Z7))

0 — > Γ(X, J?1) -^-> Γ(U, 3ti?1) — > G(X, U) — >

ίP(Z, M>1) -^> H\U, J^1) > 0

where G(X,U) is a finite dimensional R ®z β-vector space and r and r'
are the restriction morphisms. We show further that Hl{Xy J?1) = 0 for

At the end of this paper we have appended several short applica-
tions of the main theory, including a proof that the MTF-cohomology
theory yields "correct" results for algebraic curves: e.g. if g is the genus
of a complete curve Z then d i m ^ Q H1(X,R<S>ZQ) = 2g, and a proof that
the group Hι(X, R ®z Q) is a birational invariant of complete varieties Z.

In a later paper, we will prove that the following theorem: if Z is
a complete smooth (connected) fc-variety, and if S(Z) (resp. ^ α (Z), @t(X))
is the group of divisors on Z (resp. the divisors algebraically equivalent
to zero, the divisors linearly equivalent to zero) and if

H(X) = limH\U,RΘzQ)
u

as U runs through the open subsets of Z, then we have natural iso-
morphisms :

H(X) „
H\X,R®ZQ) - "

Much of the research upon which this paper is based was completed
while I was a graduate student at Brandeis University, where Professor
Monsky served as my advisor. I am indebted to him for proposing the
initial hypotheses for this work and for providing many valuable sug-
gestions.

1. Differentials on Weak Formal Preschemes

In [5, 4.1], we defined weak formal (wf) preschemes, which arise in a
natural way from wcfg algebras [8]. Suppose (Z f, Θ\) is a w/-prescheme.
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DEFINITION 1. The sheaf of differentials, Ω'xyR, of Θx is defined on

affine wf open sets U c X by:

where D'(Γ(U, Θx)) is the module of m-separated i2-diff erentials of Γ(U, Θx)

[8, pp. 196].

The following lemma will prove that ΩX\,R is a coherent ^-module.

LEMMA 2. Suppose AHs α wcfg algebra (over R) andfeA*. Then

D(At) is a finite A^-module. Moreover, the natural map A1 —> A\n induces

an isomorphism:

ψ: D'(Aη (g^t A\n > D'(A[n) .

(where A\n = (A])\)

Proof. The finiteness of D'(A^) is proven in [8, Th. 4.5]. D'(A^)/(ms)

(resp. D'(A[n)/(ms)) is the algebra of differentials D^A1 j^A1) (resp.

D'(Aln/msA[fl)) [8, Th. 4.4]. Consequently the AJ/rhomomorphism ψ is

bijective modulo ms for all s > 0. Since A\n is a Zariski ring and both

^•(AO (g)̂  A[n and D'(A[n) are finite AJ/3-modules, ψ is bijective.

The coherent ^-module Ωxt/R is direct sum of components ΩxyR, i > 0,

and there exists the β-linear derivation d: ΩxyR

DEFINITION 3. Let (X\ Θx) be a ^/-prescheme, and let Ω'xyR be the

sheaf of differentials on d)x. Define a presheaf f̂* (of JS ®Z g-modules)

on A7 by:

The sheaves ^ associated to jj?1 are the MW-cohomology sheaves.

Note that if Z f is an affine ^/-scheme, then since ΩxyR is a coherent

^-module, i > 0,

PROPOSITION 4. if0 = ^ ° ; i.e., «|f0 ΐs α

Proof. The differentiation map ώ: βχt/i2 —» βχΐ/Λ is a homomorphism

of sheaves, and so ker d is a sheaf. Since Q is flat over Z and the

underlying space is noetherian, (ker d) (g)z Q = ^° is also a sheaf.
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PROPOSITION 5. Suppose the sheaf Θx is flat over R, and that the k-

prescheme (X, ΘΣ) = (X\ Θx ®B k) is smooth over k. Suppose further that

X1" is irreducible. Let K be the algebraic closure of R/m in the function

field of &X9 and let S be a weak formalization of K over R. Then ^f°

is canonically isomorphic to the constant sheaf S®ZQ.

Proof. Monsky and Washnitzer prove that whenever U is an affine

wf open set of X such that Γ(U,~ΘΣ) is very smooth, then Γ(U,^?°) is

canonically isomorphic to S®ZQ [8, Th. 7.1]. Their proofs also show

that this canonical identification commutes with the restriction maps of

the sheaf <|f0. Since X is smooth, X has a neighborhood basis of very

smooth open sets. Consequently <*f ° is canonically isomorphic to the con-

stant sheaf with stalk S®ZQ.

This paper devoted primarily to a sheaf closely related to $}. The

following proposition will be essential.

PROPOSITION 6. Suppose Θx is flat over R and the k-prescheme

(X\Θx®Rk) is smooth over k. Then tf} = it1; i.e., it?1 is a sheaf.

Proof. Let Bλ (resp. Zt) be the presheaf of exact (resp. closed) one-

forms in ΩxyR. Bλ and Zx are defined on affine wf open sets of X. We

have two exact sequences of presheaves:

0 > ^ o > Θx ®ZQ • Bλ ®ZQ > 0

0 > Bx ®ZQ • Zx ®ZQ > je1 > 0

®\®zQ is a sheaf and ^° is a sheaf with H^U,^0) == 0 for any open

set U and i > 0. Consequently Bλ®zQ is a sheaf. Further, for affine

wf open sets U c X\ Hι(JJ, B,(g)zQ) = 0 because H\U, ΘX®ZQ) = 0.

Also, Zλ ®z Q is a sheaf, because it is the kernel of the sheaf map

d (x) 1: ΩxyR ®zQ -> Ω\yR ®ZQ.

Thus, for U an affine wf open set of X, Γ(U,^1) = Γ(U9^% which

proves that ^} is a sheaf.

2. Definitions and Elementary Properties

Recall that X is a smooth scheme of finite type over k. If U c X

is an affine open set and Γ(U,ΘZ) is very smooth, we shall say that U

is very smooth affine. For the definition of very smooth, see [8, Def. 3.1].

A complete transversal intersection [8, Def, 3.3] is very smooth affine
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[8, Th. 3.6], and a very smooth affine open set can be covered by princi-

pal open subsets which are complete transversal intersections. Also, very

smooth affine open sets are absolutely non-singular [8, Th. 2.5 et. passim.,

also 2, 0IV, 22.5.8].

If U c X is a very smooth affine open set, we may associate to U the

Monsky-Washnitzer cohomology groups ff(Γ(C7,(Px),R ®ZQ) [8, Th. 5.6].

If V c U are both very smooth affines, then the restriction morphism

Γ(U, Θx) -> Γ(V, Θz) induces a unique homomorphism Hι(Γ(Ό, Θz)> R ®z Q)

DEFINITION 1. 34?ί is the presheaf of R ®z g-modules defined on very

smooth affine open sets U c X by:

Γ(U,^) = HKWU,Oz)9R®ZQ) .

3?1 is the ΐ-th M-W (Monsky-Washnitzer) presheaf.

Since any principal open subset of a very smooth affine open set is

a very smooth affine ^ is defined on a basis of the topology of X.

If (X, Θz) is the reduction modulo m of a wf prescheme (X\ Θx) flat

over R [5, 4.1], and if Ω'xyR is the sheaf on continuous ^-differentials

of (9X, then X may be identified with X\ and the presheaf at?1 (1.3) is

canonically isomorphic to ^f * on those open subsets where tf1 is defined.

Thus the sheaves ^ and tff1 are canonically isomorphic all i > 0.

Although (Z, 0y) may not be liftable to a smooth wf prescheme over

R, the existence of liftings for very smooth open subschemes of X leads

to a proof of the following theorem.

PROPOSITION 2. ^° and yf1 are both sheaves.

Let K be the algebraic closure of k in Γ(X9ΦZ). K is separable and

finite over k. Consequently K has a weak formalization £ which is a

discrete valuation ring and a finite extension of R [8, Lemma 7.2].

PROPOSITION 3. Jf° is α constant sheaf isomorphic to S®ZQ.

Proof. Since any two open sets of X have non-empty intersection,

we may assume that X itself is very smooth affine. In this case the

theorem follows trivially from (1.5).

3. The Residue Map

Suppose A is a very smooth fc-algebra and t e A is not a unit or a

zero-divisor. Monsky has defined the notion of an admissible pair [6, Def.
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4.1]; an example of such a pair is (A,t) if A and A/(t) are both com-

plete transversal intersections.

DEFINITION 1. Let U c X be an open affine set, and let D c X be

a hyper surf ace (i.e. a reduced subprescheme of pure codimension 1 in X).

U is an admissible neighborhood of D if and only if:

(1) the ideal I(D ΓΊ U) is principal on some t e Γ(U, OΣ)

(2) (Γ(U,Θx),t) is an admissible pair.

If s,teΓ(ϋ,Θx) each generate I(D Π E7), and if (Γ(U,Θx),t) is an

admissible pair, then (Γ(U,(9χ),s) is an admissible pair. That is, U being

an admissible neighborhood of D is independent of the choice of gener-

ator for I(D Π U).

Suppose U is an admissible neighborhood of D, and V is a princi-

pal open subset of U such that V Π D Φ 0. Then V is an admissible

neighborhood of D [8, Th. 3.5]. Thus, if a point p e l ) is contained in

an admissible neighborhood of D, there is a neighborhood basis at p con-

sisting of admissible neighborhoods of D.

Notice that if U is an admissible neighborhood of D, then U is an

admissible neighborhood of any (reducible or irreducible) component of

D which has non-empty intersection with U and which is principal on U.

For if E is a component of J9, then since Γ(U Π D>ΘD) is very smooth,

Γ(U Π E, ΘE) is a direct summand of Γ(U Π Z>, ΘD) and consequently is

very smooth [8, Cor. to Th. 3.5].

PROPOSITION 2. Let U c X be an affine complete transversal inter-

section, and let D be a hypersurface on X, Suppose pu - > ,preD Π U

are non-singular on D. Then there exists an admissible neighborhood V

of D such that V c U and PieV, i = 1, , r.

Proof. There is, in fact, a principal open subset V of U such that :

(1) PieV;

(2) D f] V is non-singular;

(3) I(D Π V) is principal in Γ(V,ΘZ).

To find V, let pt = /(#<) c Γ(C7,0Z), and let α be the ideal of the singular

subvariety of D Π U pulled back to Γ(C7,0X). Let S = Γ(t7,0*) - Uί=i fo

Since α <£ pi9 a ςt Uί-i& Thus there is an element feaΠS. Also,

Γ(U,Θx)s is a regular semi-local ring and so is a P/ϋ . Consequently
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there is an element g e S such that I(D Π U)g is principal. Let V = Ufg.
V satisfies conditions (1), (2), and (3) above.

Γ(V9ΘΣ) is a complete transversal intersection, Γ(V Γϊ D,(DD) =
Γ(V,ΘX)/I(D Π V) is regular, and Iφ Π V) is principal. Since k is per-
fect, these three conditions imply that Γ(V Π D, ΘD) is a complete trans-
versal intersection. Thus V is an admissible neighborhood of D satisfying
the proposition.

COROLLARY 3. Suppose D is a hypersurface on X and p is a non-
singular point of D. There is an X-neighborhood of p which is an admis-
sible neighborhood of D.

Proof, Choose U c X to be an affine complete transversal inter-
section which contains p. Proposition 2 gives a neighborhood V c U of
p satisfying the corollary.

COROLLARY 4. Let U c X be open and suppose D is a hypersurface
on X. Then there is an admissible neighborhood V of D such that
y - f l c ί / , Further, if U Π Dφfd, we can choose V c [7.

Proof. Suppose U Π D Φ 0. Choose a point p eU ΓΊ D which is
regular on Ό, and let W be an admissible neighborhood of D which con-
tains p. Take V to be a principal open subset of W such that p e V c U.
V is an admissible neighborhood of D.

In general, select an admissible neighborhood W of D. Such admis-
sible neighborhoods exist by Corollary 3. Let A = Γ(W, Θx) and I(D Π W)
— tA. Choose se A — tA such that Wst c [/. This is possible because
W Π U Φ &, as Z is irreducible. Let V = T ŝ. 7 is an admissible neigh-
borhood of Dy and 7 - Z) == Vt c [7.

For an admissible pair (A, £), Monsky has defined the residue map:

res: H\At,R®ZQ) > f

This homomorphism is part of the long, exact Gysin sequence:

> HKA, K) > HKAt, K) > W-1 ( A , K) > W+\A, K) >...

where K = R®ZQ.

Using the Gysin sequence, we will define the residue of a local section
of the sheaf J^1 with respect to a prime divisor (i.e. an irreducible hyper-
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surface) on X. The idea is to map sections of 2/Pι to the "zero'th M-W

cohomology" of D in such a way that the kernel of this map consists

precisely of those sections which extend to points of D. First we must

specify what we mean by the "zero'th M-W cohomology" of D, as D is

not in general a smooth variety.

Fix a prime divisor D on X, and let E c D be the maximal smooth

open subvariety of ΰ . E is an irreducible fc-prescheme of finite type.

Let KD be the algebraic closure of k in Γ(E,ΘE). Since k is perfect, we

may set SD = the weak formalization of KD over R. The next lemma

shows that SD®ZQ functions as the "zero'th M-W Cohomology group"

of D.

LEMMA 5. Suppose U c D is a very smooth affine set. Then SD ®ZQ

Proof. Since U is smooth, U c E. E is connected, and so KD is

the algebraic closure of k in Γ(U,(9D). The lemma is then a consequence

of (2.3).

DEFINITION 6. Let i:D-*X be the inclusion map. Let KD denote

the constant sheaf SD®ZQ on X. Define 2tf*D — i# oi*(KD), and define

SfD to be the kernel of the canonical surjection KD -* 30%.

2tf*D is the extension by zero of the constant sheaf SD (x)z Q on D, and

we have an exact sequence:

0 • <fΏ • KD • ̂ D • 0 .

PROPOSITION 7. If ϋ a X is open, r{U,SfD) = 0 for almost all prime

divisors D.

Proof. X is a noetherian space, so X — U contains at most a finite

number of prime divisors D. Γ(U,S?D) Φ 0 if and only if D Π U = 0,

so Γ(U, S?D) = 0 for almost all prime divisors D.

Suppose that V is an admissible neighborhood of a prime divisor D.

By Lemma 5 and the Gysin sequence, Monsky's residue map is a homo-

morphism:

res*: Γ(V ~ D, Jf1) > Γ(V ~ D, S?D) .

If -ψ is the restriction map, the following sequence is the initial portion

of the Gysin sequence, and thus is exact:
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0 — > Γ(V, ^f1) - U Γ(V ~ D, ̂ f1) ^ i Γ(7 - D, S?D) .

The remainder of this section is devoted to extending the homo-
morphism resD to a morphism of sheaves,

For notational purposes, D will continue to denote some fixed prime
divisor on X.

LEMMA 8. Suppose W c V are admissible neighborhoods of D. Then
the following diagram commutes (where the vertical arrows are restric-
tion maps):

o —• πv, je1) -t> nv ~ D, jf1) ^ > πv ~ D,

0 • Γ(W, 2Fι) -^> Γ(W - D, Jfι) - ^ Γ(W ~ D,

Proof. Let A = Γ(7, ^ ) , £ = J W , ^ ) , sA = I(V Π D), and ίA =
Π D). The restriction homomorphism A —> B induces a map of admis-

sible pairs (A,s) —> (2ϊ,ί) which has ramification degree one [6, Def. 4.2];
consequently the lemma follows from Lemma 5 and [6, Th. 4.3].

DEFINITION 9. Define the morphism

as follows: If U c X is open, choose V so that V is an admissible neigh-
borhood of D and V ~ D c U (Corollary 4). The homomorphism

res^: Γ(V ~ D, #ι) • Γ(V - D, srD)

is Monsky's residue map. Extend res^ to U in such a way that the fol-
lowing square commutes (where the vertical arrows denote restriction
maps):

I
4. A Theorem on Residues

Retain all of the notation of §3.
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The main business of this section is to prove the following theorem:

if D is a prime divisor on X and p e D> then there is an X-neighborhood

U of p such that res β : Γ(JJ ~ D, ̂ f1) -> Γ(U ~ D, SfD) is surjective. Thus

we can find a cohomology class on U ~ D which has a prescribed residue

at D and zero residue on every other prime divisor passing through p.

In fact, our proof will show that every very smooth aίfine neighborhood

U of p such that each "absolutely irreducible" component of D is globally

principal on U has the desired property.

We will first prove the theorem under the additional assumption that

D is "absolutely irreducible", i.e. KD = k. Then we will construct an

appropriate neighborhood U of p and a field extension K of k such that

the components of K x k D are absolutely irreducible. Given a residue on

D, we will construct a cohomology class on K χkU ~ K χkD which, when

pushed down to U ~ D, has the required residue.

PROPOSITION 1. Let (A, t) be an admissible pair. There exists

aeH\A,R®zQ) such that res (σ) = 1.

Proof. Let A1" be a weak formalization of A, let B f be a weak

formalization of A ί ? and let T be a preimage of t in Ar. The differ-

ential dT/TeDι(B*) is clearly closed. Monsky's map λt: D°(AyTA^ -+

A1), which is a homology isomorphism, yields λt(X) = dT/T mod

Thus res (dT/T) = 1. [cf. 6, Th. 1.5, Th. 4.1]

COROLLARY 2. Lei D be a prime divisor on X and p e D. Suppose

further that KD = fc. Tftβw /or ever?/ wπ/ smooth affine neighborhood

U of p such that D Π U is principal on U, the residue homomorphism:

resD: Γ(U ~ D, M>1) > Γ(U ~ D, yD)

is surjective.

Proof. Let teΓ(U,Θx) generate I(D Π U). Select an admissible

neighborhood V of D such that V c Z7 (3.4). If Γ is the preimage of

t in some weak formalization of Γ(U,ΦX)9 then the differential dT/T

represents a cohomology class σeΓ(U ~ D,^1). The proof of Proposi-

tion 1 shows that if τ is the restriction of a to Γ(V ~ D, M"1), then

res,, τ = 1 e Γ(V - D, &D). Consequently resD σ = 1 e Γ(J7 - £>, ̂ ) . Since

Γ(U~D,<yD) — R®ZQ by assumption, resχ> is surjective.

Having proven a special case of our theorem, we need now to study
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the effect of ground field extension on the cohomology sheaves. In order
to study extension of the ground field, we must give a further sheaf-
theoretic interpretation of Monsky's residue map. In particular, we must
clarify the notion of a residue at a not necessarily irreducible hyper-
surface.

If U is an admissible neighborhood of a prime divisor D, let
A = Γ(Uy Θz) and tA = I(D Π U). Then by definition Γ(U ~ D, JT1) =
Hι(At,R®zQ); and by (3.5), Γ(U ~ D,SrD) = H\AjtA,R®zQ). Further,
the residue map:

res: H\At,R®ZQ) • H*(-A, R ®zQ

is precisely:

res,,: Γ(U ~ D, ^) > Γ(U - D, S?D) .

Suppose now that (A,ί) is an admissible pair. Let U = spec A and
D — V(tA). If D is irreducible, then we may make the identifications
of the previous paragraph, but D need not be irreducible. We want to
interpret the residue homomorphism:

res: H\At, R®ZQ) > HQ [A-, R®ZQ

when D is not necessarily irreducible. The basic idea is that the residue
at D of a cohomology class of U ~ D is the direct sum of the residues
on each irreducible component of D.

To make this precise, let Dlf-- ,Dn be the irreducible components
of D. We shall assume that each Ώi is principal on U. Let ttA = I(Di),
and let gt: A/tA-» A/ttA be the projection map. Since A/tA is very
smooth,

i = l tA i = l ttA

is bijective. Consequently each A/t^A is very smooth [8, Cor. to Th. 3.5].
That is, U is an admissible neighborhood of each Dt. The induced map:

is an isomorphism (5, Th. 5.7). Since
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IP (-A-, R ®z Q) = Γ(U ~ D,

we have a canonical isomorphism:

This leads to a diagram which will relate the homomorphisms res and

(1)

LEMMA 3. (1) is a commutative diagram.

Proof. It suffices for the lemma to show that the following diagram
commutes:

Γ(U

κ J

Let B = Atl...^...ίn. Then At = β^, and the inclusion map f:A—>B is
a map / : (A,t)-> (2?,t<) of admissible pairs of ramification degree one
[6, Def. 4.2]. Consequently we have a commutative square [6. Th. 4.3]:

The homomorphism ίΓ(/) is the identity map. Further, B\tβ = A/tA,
as the primes ^A are comaximal. Thus H°(f) = ί^^)^ resέί = res^, and
the diagram (3) is just the same as (2), which proves the lemma.

The next lemma is an extension of (3.4). It demonstrates an im-
portant local property of ground field extension.
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L E M M A 4. Let D be a prime divisor on X and let K be a finite

extension of k. Suppose U is an affine neighborhood of the generic point

of D. Let D19 - -9Dn be the irreducible components of K χkD. There

exists an admissible neighborhood V c U of D such that V XkK is an

admissible neighborhood (over K) of each Dt.

Proof. Choose W c U to be an admissible neighborhood of D (3.4).
Let A = Γ(W9OZ) and tA = I(D Π W). Because W is admissible, both
A and A/tA are very smooth over k. Consequently, both A (x)fc K and
A/tA®kK are very smooth over K (5, Th. 5.9).

Let S = A ~ tA. S is a multiplicative set since D is irreducible.
More importantly, (A ®k K)s is a regular semilocal ring of height 1 whose
maximal ideals correspond to the components Ot of D χkK. Thus there
is an element feS such that the ideal of each Dt is principal in (A ®kK)f.
Let V = Wf. V is an admissible neighborhood of D. We shall prove
that V X A; K is an admissible neighborhood of each Dt

Let B = Γ(V XkK,ΘvXkK) = Af ®fc K, and set I(V χkKΠ D%) = tfi.
No ti is a unit, and the ideals tβ are the minimal primes of tB. Both
B and B/tB are very smooth over K, as they are localizations of very
smooth rings. Since B/tB is very smooth, each BjtiB is very smooth
[8, Cor. to Th. 3.5]. Thus V χkK satisfies the conditions required by
the lemma.

Retain the conditions and notation of Lemma 4, and assume in addi-
tion that U is very smooth affine and D is principal on U. Let S be a
weak formalization of K. We shall use Uκ to denote U xkK, Dκ to
denote D χkK, etc. Note that Uκ is considered as a K-variety, and that
all M-W cohomology sheaves on V are formed with respect to S. We
will prove that if every map

r e s ^ : Γ(UK ~ Di9 ^ι) > Γ(UK ~ Di9

is surjective, then

: Γ(U ~ D9 Jf1) > Γ(U ~ D9 όf

is surjective. This result, stated as Corollary 6, is the key to proving
the theorem announced at the beginning of this section.

In order to prove this result, we will first construct isomorphisms
ψ and p which make the diagram below commute:
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Γ{ϋ ~ D,^ι)®RS—-^-^-* Γ{ϋ

(4) P\

We will also prove that if res^ ® 1 is onto, resD is onto. The desired
corollary will then follow easily.

Let A = Γ(U, ΘΣ), tA - I(D Π U), and B = A ®k K = F(£7*, 0^).
Both A and B are very smooth, and the inclusion map At —> Bt induces
an isomorphism [8, Th. 5.9]:

p: H\At,R®ZQ)®BS > H\Bty S®ZQ) .

This is the first of the two required maps.
To construct ψ, choose an admissible neighborhood V c C7 of D such

that Ftf c Uκ is an admissible neighborhood of each Dt (Lemma 4). Note
that the restriction maps:

r: Γ(U - 2 ) , ^ )

r,: Γ(UK - /?,, ^z

are bijective. Because these maps are bijective, we may construct -ψ over
V instead of over [7.

Let Af = Γ(7,(PX), B' = A7®*X = AF^,^^), and tfi1 = /(Z), (Ί F J .
We still have £A7 = I(V Π D) and ίδ 7 = I(DK Π V^). A'/ίA7, B'/tB', and
B'lUB' are all very smooth, and the natural map f\Ar\tAf-*Br\tB' in-
duces an isomorphism [8, Th. 5.9]:

H\f) 0 1: # ° ( - ^ > β ® z

From (3.5), ΈL\A'\tAf,R®ZQ) = Γ(i7 ~ DfS?D; and from Lemma 3 there
is the isomorphism

: ff ί-^-,S® zβ]-^ΣΘ Γ(yx ~ Dκ,
\ Zt

Let ψ = g# o (fl (/) (g) 1).

In order to show that (4) commutes, we consider first the square:
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H\A't,R®zQ)®RS > H°L^-,R®ZQ\®RS

(5) HHh)\

HKB't,S®zQ) — ^ - >

where Hι(h) is the cohomology homomorphism derived from the inclusion

map h\Ar -*Bf. To see that (5) commutes, replace H°(A'/tA', R®ZQ)

ΘBS, by H1φ(A0/D(A'))®zQ®RS, and replace H\B''/tB'\S®ZQ) by
Hι(D(A't)ID(A'))®BS®zQ. These substitutions are permissible, as S is

a free i?-module.

In terms of our sheaves and Lemma 3, (5) becomes

Γ(V D #*Λ (x) 9 respg)! n ^ m .

(6) , |

Σ
nvκ ~ DK, je\

Diagram (6) is a special case of (4), where V has been substituted

for U. Taking account of the fact that the restriction maps r and rt

are bijective, the commutativity of (4) is immediate from (6).

Suppose now that res^ ® 1 is surjective. Then res^ must itself be

surjective, as >S is a free β-module.

We collect the above results into

LEMMA 5. Let U be a very smooth affine neighborhood of the generic

point of a prime divisor D on X. Suppose D ΓΊ U is principal on U. Let

K be a finite extension of k, and let Uκ — U Xk K. Uκ is considered as

a K-variety, and all M-W cohomology sheaves on Uκ are constructed with

respect to a weak formalization S of K over R. Let Du - ,Dn be the

irreducible components of Dκ on Uκ.

If the homomorphism:

Σ res^: Γ(UK ~ DK9 ^ι) > g θ Γ(JJK - D

is surjective, then

resD : Γ(U - D, ^ι) > Γ(U - Z), S?D)

is surjective.
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COROLLARY 6. Situation as in Lemma 5. If each homomorphism

is surjective, then

ress: Γ(U ~ D, Jf1) — • Γ(U ~ D, SfD)

is surjective.

Proof. By Lemma 5, all we need prove is that

Σ res*,: Γ(UK ~ Dκ, Jf1) — • g Θ Γ(UK ~ Dκ, ^Di)

is surjective. Let (τ*) e Σ?=i ® Γ(UK~DK, S?Dt). Choose σt e Γ(Uκ~Dί9 Jί?1)

such that res^ (^) = r*. Note that since Dt ςzί Ds all i ^ λ Γ(Uκ~Di9 SfΌ)

= 0. Consequently, res^fo) = 0, all i Φ j . Viewing each σt as an ele-

ment of Γ(JJK ~ DK9 ^f1), let σ = Σ?-i ̂  T h e n Σ?-i ^ ^ ^ W = W

The next lemma is used to show that a divisor may be split up into

absolutely irreducible components by a finite extension of the ground field.

LEMMA 7. Let A be a finitely generated, integrally closed domain

over a field k9 and let kr be the algebraic closure of k in A. Suppose kf

is separable over k, and suppose K is a finite separable extension con-

taining a splitting field of k' over k. Let p be a minimal prime of A ®k K.

Then K is algebraically closed in (A(S)icK)/p.

Proof. F = (A (x)fc K)/p is a free join of A and X over k. Since K

contains a splitting field of kr

9 F is also a free join of A and K over k'9
provided we identify kr with an appropriate conjugate in K. Because kf

is algebraically closed in the quotient field of A and K is separable over

k\ F = A ®fc, K. Thus K is algebraically closed in F. [cf. 10, Chap. Il l ,

Th.'s 37, 39, 40.]

The preliminaries are finished, and we come to the main result of

this section.

THEOREM 8. Let D be a prime divisor on X and p eD. There exists

a neighborhood U of p such that the homomorphism:

res,): Γ(U - D9 jf
1) — > Γ(U ~ D9 &>D)

is surjective.
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Proof. Let K be the splitting field of KD over fc, and let S be a weak

formalization of K over R. KD and K are separable over k, because k

is perfect. Since ΘZtP is regular, there is a very smooth affine neigh-

borhood U C. X oΐ p such that :

(1) D Π U is principal on Z7;

(2) D χkK has only principal components on U XkK.

Set T7 = U XkK, and let D19- -9Dn be the irreducible components of

D χkK. V is considered as a X-variety, and all M-W cohomology sheaves

on V are taken with respect to S.

By Corollary 6, it suffices to prove that

res*,: Γ(V ~ Di9 Jf1) > Γ(V ~ Di9 S?Dt)

is surjective for each i. We will show that KD. = if, which by Corollary 2

implies that res^. is surjective.

Let Uf aU be an admissible neighborhood of D such that V ~Uf XkK

is an admissible neighborhood of each Z^ (Lemma 4). Define A = Γ(U\ Φz)9

B = ΓC77, Θy) = A®kK, tA = I(D Π £/'), and ^ β = /(/)< Π FO Recall

that K/) is the algebraic closure of k in A/tA, and if^ is the algebraic

closure of K in JB/^B. A/ίA is integrally closed, so—by Lemma 7—2£ is

algebraically closed in B/tiB. That is, KD. = K.

5. The sheaf ^

The results of the foregoing sections permit us some theorems de-

scribing the cohomology of Jf71. As previously, {X,ΘX) is a connected,

smooth prescheme of finite type over a perfect field k, and R is a com-

plete, discrete valuation ring with residue class field k. As in 4, we will

use finite ground field extension to facilitate the following proofs.

LEMMA 1. Let U c X be an affine complete transversal intersection,

and let D be a principal hypersurface on U. There exists a finite exten-

sion K of k and principal hyper surf aces D19 ,Dn on U XkK such that

if UQ = U xkK9 and Ut = UxkK~ UUDJ:

(1) Γ(Ui9Θjj) is a complete transversal intersection;

(2) Γ(Ui Π Di+1,ΘDi+1) is a complete transversal intersection;

(3) DχkK = Dn.

If we set V = U — D and VQ = V X k K, we may conclude from the

lemma: there exists a decreasing sequence of open sets Uo ZD U1 Z)
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D Un c Vo such that if Dt = Uί=1 ~ Ui9 then Dt is a principal hyper-

surface on Ui_ly and (Γ(Ui_ιyΦUo), /(£/*_! Π Dt)) is an admissible pair. In

the case where K — k, this means that we may cut out of U a very

smooth hypersurface, then from what is left a second very smooth hyper-

surface, and so on, until what is left is a subset of V. Moreover, if k

is infinite, we may always take K — k.

Proof. It is not difficult to show that, if A is a finitely generated

smooth algebra over k and if fe A is such that A If A is reduced, then there

exists a finite extension K of k and non-zero-divisors ί0 = 1, t19 - ,tn_x,

tn = t of A (x)fc K such that

(A <&&),....„.,
(ίi)

is a smooth ft-algebra, 1 < i < n. Thus there exist principal hypersurface

Di such that Dn = D XkK and Γ(Ui Π Di+1, @Di+1) is a regular ring. Since

Γ(Ui, ΘUo) is a localization of Γ(U, Oz) ®k K, Γ(Uif ΘUo) is a complete trans-

versal intersection. Thus Γ(Ui Π Dί+1,ΘDi+1) is a regular ring which is

a complete transversal intersection modulo a principal ideal. Moreover,

dim Γ(Ui Π Di+1, ΘDi+1) = dim Γ(C7i, ̂ ^0) - 1. Consequently, since k is per-

fect, Γ(Z7ί Π Dί+1,ΘDi+1) is a complete transversal intersection.

The next proposition shows that a cohomology class—that is, a local

section of Jfι—is determined by its value on any non-empty open subset

of its domain of definition.

PROPOSITION 2. Let U c X be a non-empty open set. The restric-

tion morphίsm r: Γ(X, Jf1) -> (U, Jf1) is injective.

Proof. Since ^fι is a sheaf (1.2), it suffices to prove the proposition

for X an affine complete transversal intersections and U a principal open

subset of X. Let A = Γ(X, ΘΣ) and U = Xt for some teA. If (A, t) is

an admissible pair, then by the Gysin sequence the proposition is true.

If (A,t) is not an admissible pair, we must resort to the construc-

tion given in Lemma 1. Let K be an appropriate extension of k. Set

χ0 = x x k K and UQ — U x k K. Recall that, when considering a finite

field extension, all M-W cohomology sheaves on Xo are constructed with

respect to some fixed weak formalization S of K. By Lemma 1, there exist

open sets XQZ) - *- Z) Xn c: UQ such that the restriction maps

iiJf1) are injective. Thus the restriction map:
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is injective. This last map can be rewritten as:

Since S is a free i?-module, r must then be injective.

As a converse to the previous proposition we next present a theorem

which describes the maximal extension of a section of Jf1. A lemma

is required.

LEMMA 3. Let U c X be an affine complete transversal intersection,

and let V c U be open affine. Let K be a finite extension of k, and let

S be a weak formalization of K over R. Let Uo = U χkK, Vo — V x k K,

and 7r: C70 —> Z7 be the natural projection. Suppose σ e Γ(V, Jf1) is such

that for any prime divisor D on U, resD a — 0. Then for any prime

divisor Df on UQ, res^ π*(σ) = 0.

Proof. Let Όf be a prime divisor on Z70, D = π(D'), and D" = π~\D).

D is a prime divisor on U, and Df is a component of D". Denote the

components of D" by Df — D", , D". According to the discussion pre-

ceeding (4.5), Γ(VQ, Jf1) = Γ(V, tf') ® Λ S and 2 r e s ^ = res^ ® 1. Under

this identification, π*(σ) = σ ® 1. Since by hypothesis, res^ (x) l(σ (x) 1)

= 0, res^/ π*(σ) = 0.

THEOREM 4. Lei U aX be open, and let σe ΠU,^1). Then σ ex-

tends to an element of Γ(X,yfι) if and only if, for every prime divisor

D C X, res^ σ = 0.

Proof. Suppose a extends to Γ(X, Jf1). Then res^ σ 6 Γ(X, SfD), and

To prove the opposite implication, assume first that X is an affine

complete transversal intersection and that D = X — U is a principal

hypersurface on X with irreducible components Όit Let A = Γ(X,ΘX).

If ίA = /(D) and (A,t) is an admissible pair, then (4.3) and the exact

Gysin sequence;

o — > r{x, ^ι) — > Γ{u, #*) ΣreSDi> Σ θ (17, seΏ)
i

shows that σ extends to Γ(X,Jfι).
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If (A,t) is not an admissible pair, we shall construct an appropriate

field extension K of k as in the proof of Proposition 2. Then we will

show that σ(x) 1 extends from U xk K to X χkK, and that this exten-

sion is the image of a cohomology class on X.

Choose K to satisfy Lemma 1, and define Xo = X x k K. Let π: Xo—>X

be the canonical projection, and fix a weak formalization S of K over R.

As usual Xo is considered as a K-variety, and all M-W cohomology sheaves

on Xo are constructed with respect to S. Let Uo — U XkK, and construct

on Xo principal hypersurfaces Dίf ,Dn such that if Xt = Xo — Uy=i^>

then (Γ(Xi,Φzχ I(Di+1 Π X*)) is an admissible pair, and Uo z> Xn.

By Lemma 3, res^, TΓ̂ GJ) = 0 for any prime divisor Df on Xo. Con-

sequently we may use (4.3) and the exact Gysin sequence to prove that

if 7r*(σ) e Γ(Xiy Jf1), then 7r*(σ) extends to an element of Γ(Z f_x, Jf1). Thus

we have shown that π*(σ) is defined on Xo. Since Γ(X0, Jf1) = Γ(X, ^f1)

® Λ S, and Γ(X, .r 1 ) c Γ(Z7, ̂ f1), a e Γ(X, ^f1) [10, 1.3.5.10]. Thus we have

proven the theorem in the case that X is a complete transversal inter-

section and X — U is a principal hypersurface on X.

In general, replace Z7 by an open subset of U such that X ~ U = D

is a hypersurface. Then X can be covered by affine complete transversal

intersections Wi9 where either Wt c U or D Π Wt is principal on W€.
In either case, <y extends to an element σ€ e Γ(Wί9 Jί?1). By Proposition 2,

the (̂  patch together to extend a to Γ(X, ^f1).

Recall (3.6), where we defined sheaves JP*D9 KD, and £fD. Let S be

the collection of prime divisors on X, and define sheaves:

£p V""1 (T\ cp

κ= Σ^θ^z,

Of X"1 Π\ *!/P0
U — 2_ι vP e ί ? ri>

We have an exact sequence:

0 — > $ > — > K — > « r — > 0 .

LEMMA 5. For every open set U c X and i > 0, #*([/, 50 = 0.

Proo/. By [2, Π.4.12.1], HKU,K) = Σne*<&HKU,KD), and H%U,3r)

for i > 0. Thus ^(27, X) = 0 and H\Ό,&) = 0
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for i > 0 . Also, Γ(U,K) -> Γ(JJ,F) is surjective, because Γ(U,KD)

Γ(U,^f°D) is surjective for each ΰ e S . The lemma follows.

By (3.7), the map:

is a morphism of sheaves. Let # = ker ( 2 res^) and # ' = coker (2] res^).

We shall prove that Ή and #" are constant sheaves.

LEMMA 6. Ή is a constant sheaf with stalk Γ{X,2Fι).

Proof. Let P e l be open. By Proposition 2 and Theorem 4,

is precisely the kernel of the homomorphism Σ resD:

Next we shall construct a constant sheaf which will turn out to be

canonically isomorphic to W'.

Define a module:

lim Γ(U,2Fι)
ZJ U open

and let H be the constant sheaf with stalk H. The composite map for

each open set U:

Γ(U9 jpi) ΣreSD> r(U, 6^ > Γ(U, K)

has kernel equal to Γ(X, ^f1). Consequently, this map induces a mono-

morphism ψ: H —> K.

Let <€" — coker ψ. The canonical injection ^-^K induces a morphism

p: <£' —> ^" , and we have a commutative diagram of sheaves:

0 > H — ψ — > K > <€" > 0

LEMMA 7. p is bijective, so Ψ = ^ / r is constant.

Proof. First we will prove that p is injective. Suppose U c Z

is open. Since Γ(U9^) -»Γ(U,K) is injective, it suffices to show that
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xe Γ(U, H) Π Γ(Z7, Sf) implies that x pulls back to an element y of
Γ(U, Λ

Because xeΓ(U,H), there is an open set V c U such that x pulls
back to an element y e Γ(V, Jf1). On the other hand, x e Γ(U, Sf) implies
that f O£ any prime divisor D such that D Π U Φ 0, res^ 7/ = 0. By
Theorem 4, 2/ extends to an element of Γ(Uy ^f1).

In order to prove that p is surjective, we will show that for any
point peX, £fv + Hp = Jfp. If S^ is the module defined in (3.6), then:

— v

κP=
P

Σ θ

Thus, to prove the lemma, it suffices to show that one can construct a
cohomology class having prescribed residues on the prime divisors D such
that p e D, provided that almost all of the prescribed residues are zero.
The existence of this cohomology class will follow easily from the results
of §4.

Suppose we prescribe residues τ< e SD{ ®z Q for some finite collection
of Diβ^ passing through p. Using (4.8), select a neighborhood Ut of
p and a cohomology class σieΓ(Ui ~ Dt,^1) such that res^σ^ = τt. If
D Φ Di is another prime divisor passing through p, then res^ at — 0.
The cohomology class a = Σ< σi> defined on f]t Z7< — IJ* A> has the pre-
scribed residues τt on Di and zero residue on every other prime divisor
passing through p.

We conclude this section with a theorem which gives information
about the cohomology of the sheaf 2tfι. One short construction facilitates
the statement of the theorem.

Let ££ be the sheaf im ( 2 res^). We have two exact sequences of
sheaves:

(1) 0 — > <g — > 2tfι — > & — > 0
(2) o — > <e — > y — • w — > o

) = Γ(X,i?) = 0, and by Lemma 5 H\X,S?) = 0. Thus we may
identify Γ(X,#0 with Hl(X,SP). On the other hand, since # is constant,
H\X, J?1) ^ HKX, Sf). If U is open in X, let ψ: Γ(C7, ̂ ) — H 1 ^ , ̂ ) be
the composite map Γ(U,sr)
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THEOREM 8. Let ϋ c X be open, and let

rr: H\X, Jf1) • H\U,

be the restriction morphίsms. The following is a long exact sequence:

0 • Γ(X, 2?1) - ^ Γ(U, 2Fι) Σ TeSD > Γ(U,

-ί-> H\X, JFι) — Hι(JJ, ^f1) > 0 .

Consequently, coker rr and ker rf are both finite R®zQ-modules. More-

over, HKX, ά?1) = 0 for i > 2.

Proof. Sequences (1) a n d (2), together w i t h L e m m a s 6 a n d 7, imply

immediately that:

0 > Γ(U, <#) • Γ(U, 2?1) > Γ(U, <¥>)

• ΠU, Φ) • HKU, &) > 0

is exact. But Γ(TJ,<#) = Γ(X,M>1), Γ{U,%') = H\X,^1), and H\ϋ,&)

= H\U, 34?1). Consequently the proposed sequence is exact.

Coker r and ker / are finite because Γ(U, S?) is finite. By Lemma 5,

HKU, y ) = 0 for i > 2. Thus, by sequence (1), HKU,^1) - 0 for i > 2.

Remark. Monsky has proven [7] that for any simple fc-scheme X,

Γ(X, M31) is a finite R <S)Z β-module. His proof is quite long, however—

by an easy application of [5, 5.4]—if X is protective and liftable to a

protective smooth ϋί-scheme then both Γ(X,Jfι) and H\X,Jtι) are finite

dimensional R (x)zβ-modules.

6. Applications

Algebraic Curves

Suppose that the fc-scheme (X, Θx) is a connected, absolutely non-

singular protective curve. Then (Z, Θx) may be lifted to a flat, nonsingular,

protective β-scheme (X', Θ'z) [9, pp. 35]. &x possesses two important

properties: its weak completion (Z f, Θx) is a weak formalization of (X, Θx)

and X'®ZQ = Z* is a nonsingular projective curve over the field K =

R®ZQ. Furthermore, if we assume that k is algebraically closed in Θx,

then K is algebraically closed in Θx\ also, the genus g of Z equals the

genus of Z* [3].
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Let ΩXΊR be the sheaf of 1-forms on X'. Then the sheaf of 1-forms

Ω\^ιB on X1" may be identified with the weak completion of ΩXΊR (1.1).

Also, ΩXΊR ®ZQ = Ωχ*/κ is the sheaf of 1-forms on X*. Let β* (resp. &)

be the sheaf of exact 1-forms on X* (resp. X*). We will use the canoni-

cal identification H%X*,B*) = iϊ*(X*,0*), i > 1, arising from the exact

sequence of sheaves:

0 >K >Θ* >B* >0;

where K is the constant sheaf with stalk K. Similarly, we will identify

HKX\B^) = HKX\ΘX), i > 1.

We need two exact sequences: the first involves the group of differ-

entials of the second kind H = Γ(X*,β^v*/i?*) over X*. It is namely,

0 • Γ(X*, Ωxvκ) >H > H\X*, 0*) > 0 .

This sequence is exact, because dim^ί ί = 2^, and dim^Γ(X*,β^V Λ :) =

dimκHKX*,O$) = g U, pp. 127, 130].

The second sequence is a dagger version of the first it is the initial

segment of the long exact cohomology sequence relating, B*9 and ^f1:

0 > ΠX\ Ω\yR) ®ZQ • Γ(X\ ^f1) > H\X\ Θ\) ®zQ .

THEOREM 1. Dim* H°(X, 2?1) = 2g. Also, dim* H\Xy Jfι) = 1.

Proof, Note that we may identify the sheaf Jf1 over (X, Θx) with

the sheaf tf} over (Xt, ί^). Let i:Xt-^X/ be the canonical morphism.

If H is the collection of differentials of the second kind over X*, we

have a natural homomorphism a: H —> Γ(X\M"1) induced by the maps Ω\*/κ

—^—• Ωx

x\ίR®zQ and 5*—^ > Bϊ®ZQ. This homomorphism permits

us to connect the two exact rows below into a commutative diagram:

0 — > Γ(X*,β^/J — > H — •

0 • Γ(X\ ΩxyR) ®ZQ • Γ{X\ ^) • H\X\ Θx) ®zQ .

By the comparison theorem [5, 5.4], the maps i% are isomorphisms.

Consequently, a is bijective, which implies dim* Γ(Xt, M31) = dim* H — 2g.

Moreover, since s is surjective, sτ is surjective. Thus the natural

map ί ί 1 ( X t , β ^ t / i 2 ) ® z ρ - > i ϊ 1 ( X , ^ 1 ) is bijective (since Hl(X\Ox) = 0 for

i>2 by the comparison theorem). By the comparison theorem again,

dim* HKX\ Ωxt/R) ®ZQ = dim* J5Γ(Z*, Ωxvκ) = 1.
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COROLLARY 2. Retain all of the above notation. Let U c X be

open, and let X ~ U = {P19 ,P r}. The divisor D = Σϊ=ipi has degree

dg-D — Σli dimA ($]

P./
fmPi). We have the following formula for the Euler

characteristic of Jf1 on U:

dim,, Γ(U, 2Fι) - dim,, H\U, ά?1) = 2g + dg D - 1 .

Proof. By the exact sequence of (5.8),

dim x Γ(U, 2Fι) = dim x # W , jf1) = 2g - 1 + dim,, Γ(U, <¥>) .

Since Γ{U,^) = ΣUιΓ(U,<yPi), it suffices to prove that άimΣ Γ(U,S?Pt)

= dim^ SPί ®ZQ — dimfc (0P i/mPi). Since SP. is the weak formalization of

ΦPi/mPt, the necessary equality follows from [8, Lemma 7.2],

Remark. If A is an absolutely non-singular, finitely generated, one-

dimensional fc-algebra, then H1 (spec A, Jf1) = 0. Consequently, the pro-

ceeding lemma gives us a technique for computing dimκ H\A; R ®ZQ).

In particular, suppose k is algebraically closed. Then dim^ H\A )R®ZQ)

is just 2g + m — 1, where m is the number of points needed to complete

spec A to a protective curve. This is the result suggested by topological

consideration. A more computational proof of this result is given in

[9, Th. 15.12].

Further Numerical Results

Let (X'9 Θf

x) be a smooth scheme over R, with weak completion (X\ Θ^x)

and reduction modulo m{X,Θx). If jf% i > 0, denote the cohomology

sheaves of the complex of ^-modules Ω'xyR®zQ9 we have the spectral

sequence:

Eξ* = H^X\ ^q) =» Hn(X\ Ωxt/R ®z Q)

Moreover, the topological space Z f may be identified with the topological

space X, and via this identification there is a canonical isomorphism of

sheaves $t = ^λ and if2 ^ ^ 2 (cf. §§1, 2). Thus the spectral sequence

may be written

Eξ* = HKX, &q) =» H\X\ ΩxyR ®ZQ)

PROPOSITION 4. (a) The canonical map H\X\ ΩxyR ®ZQ) -> Γ{X, J?1)

arising from the spectral sequence is bijective.

(b) We have the following exact sequence, where the maps are all

natural {that is, they commute with morphisms of R-schemes):
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0 • HKX, ̂ ι) > H\X\ Ωxt/R ® z Q) > Γ(X, %2) > 0

Proof. In our spectral sequence, E\J = 0 if any of the following

conditions are satisfied (5.8):

3 < 0

< 0

j = 0 and ί > 1

j = 1 and i > 2 .

Thus (a) and (b) follow immediately.

Suppose X' is a protective smooth β-scheme. Let X* = X ' χ z g .

Then ΩXVR®ZQ = β X 7 S ® * β , and ff(X*,fli / Λ ® z β ) = ff(X', flX7Λ ® z Q)

(The second equality follows from [5, 5.4], and the third from Proposi-

tion 4.) Similarly, we have the exact sequence:

0 > H\X, Jf1) > H\X*, Ω'XVR ®z Q) • Γ(X, i f 2 ) • 0

COROLLARY 5. // g is the dimension of the Picard group of X, then

COROLLARY 6. If V is a complex analytic manifold obtained from X*

by imbedding a finitely generated field of definition for X* into C, then

dim* Γ(X, je2) + dim* H\X, JT1) = B2(V) ,

the second Betti number of V.

Proofs. Corollary 6 follows from the equality:

dim* Γ(X, JT2) + dim* H\X, MTι) - dim* JΪ2(X*, ΩXVR ®zQ)

and dimκHXΩXVB)<S)zQ) = B2(V), by [4].

To prove Corollary 5, we will show that dim* H\ΩXVR ®z Q) = 2g.

If g is the dimension of the Picard group of X, then g is also the dimen-

sion of the Picard group of X* [3]. By (4) again, dim* H\ΩXVB ®z Q)

= Bλ(V) = 2g.

Remark. Using the Z-adic cohomology of Grothendieck, one can prove

that B2(V) is independent of the choice of the lifting X' and the imbed-

ding X' -» V. Consequently, the conclusions of Corollaries 5 and 6 do

not mention the lifting X', and one might conjecture that they remain

true even when (X,(9χ) has no global lifting.
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Birational Invariance of 2/F1. We shall prove that the group of global

cohomology classes of J?1 is a birational invariant for complete, abso-

lutely non-singular varieties over k.

Suppose that K is a finitely generated extension of our perfect ground

field k. Let 2 be the collection of prime divisors of K/k (where a prime

divisors is a discrete valuation ring in K which has quotient field K and

contains k). If °U is the collection of affine, non-singular models of K/Jc,

we shall view °U as an inductive set under the relation U < V if and

only if Γ(U, <9Ό) c Γ(F, Θv) as subsets of K.

If U < V, then there is a natural injection:

as follows. The inclusion map Γ(U) —> Γ(V) induces a continuous map

μ: V —> U. Let si be an open cover for U and 3S be an open cover for

V subordinate to μ~ι(s/). Since k is perfect and U and V are nonsingular,

U and V are smooth. Thus we may assume that s/ and Sβ contain

only very smooth affine open sets. If Uf e si and F e ^ are such that

μ(V0 c Z77, then the associated homomorphism Γ(JJf) -> Γ(70 induces a

homomorphism

[8, Th. 5.6]. These homomorphisms patch together to give ψϋfV. To

show that ψu>v is injective, choose each element of St to be a principal

open subset of some element of si. Recall (5.2), which shows that if

V c U' is open, then Γ(JJf,^1) -> ΓίV 7 ,^ 1 ) is injective. Consequently,

-ψ^)F is injective.

Since r̂ is inductive, we may define:

Γ is analogous to the classical notion of one-dimensional cohomology

classes of the third kind. Note that if W e °U, then the natural map

lim Γ(U, Jf1) • T
UCLU'

is bijective. The map is onto because the open sets U c V are cofinal

in ^ the map is injective because ψUtV is injective.

If De £&, then Ue °U is an admissible neighborhood of D if and only if:
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(1) D dominates a prime divisor Df on U;

(2) TJ is an admissible neighborhood of Df.

LEMMA 7. If D e 9, then there is an admissible neighborhood of D.

Proof. If U is an affine model of K/k on which D dominates a

prime divisor, then U contains an admissible neighborhood of D (3.4).

Thus it suffices to prove the following.

SUBLEMMA. Let K be a finitely generated extension of a perfect

field k, and suppose (S,n) is a discrete valuation ring of K/k. There

exists a regular, finitely generated k-algebra A c S with quotient field K

such that n ί l A has height one.

Proof. Let n = tr>dg kK, and choose xl9 •,#„_! e S to be algebra-

ically independent over k in S/n. Define C = k[xl9 , # J , where xn is

a generator for n in S. Since xn is transcendental over k(xl9 « ,#Λ_i),

K is a finite extension of k(x19 ,# w ) . Let B be the integral closure of

C in K. The quotient field of B is K, and tr dg-k(B/n Π B) = n - 1.

Thus n ί l δ has height one. Since B is integrally closed and n ί l δ has

height one, there exists an element feB~n such that A = Bf is regular.

A satisfies the sublemma.

Suppose D e 2 and (S, n) is the ring of D. Let kf be the algebraic

closure of k in S/n, and define Kr = H\k';R®zQ). Note that if [7 is

a model of J5Γ/Λ such that D dominates a prime divisor Όr on C7, then

SD, is a weak formalization over R of λ/ (3.6). Moreover, K' — SD> ®ZQ-

DEFINITION 8. Suppose ωeT. Then res^ ω e Kr is defined as follows:

choose an admissible neighborhood U of D and an open affine subset

V a U such that ω e Π F , ^ 1 ) . Let Όr be the hypersurface on U domi-

nated by JD. Set

resp ω = resD, ω .

We must show that this definition does not depend on the choice of U.

The definition is obviously independent of the choice of V c U. Note

that the definition of res^ also remains invariant whenever we replace

U by a principal open subset of U which is still an admissible neighbor-

hood of D. Since any two admissible neighborhoods of D contain princi-

pal open subsets which are admissible neighborhoods of D and which
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may be identified with one another, res^ ω is independent of the choice

of U.

PROPOSITION 9. Let D e @. Suppose U is a model of K/k such that
D dominates some point P of U (not necessarily a point of codimension
one). If ωe Γ(U, J?1) c T, then res^ ω = 0.

Proof. If P has codimension one, then the proposition follows im-
mediately from (5.3). Otherwise choose V to be an admissible neighbor-
hood of D. Let (S, n) be the ring of D. Γ(U) c S and Γ(V) c S further,
π Π Γ(V) has height one. Since V is nonsingular, Γ(V)nf]Γ(V) = S. Thus
there exists feΓ(V) ~ n such that Γ(V)f Z) Γ(JJ). Vf remains an admis-
sible neighborhood of D, and U < Vf. Considering ω as an element of
Γ(Vf, jeι), (5.3) proves that res^ ω = 0.

THEOREM 10. If X is a complete, non-singular model of K/k, then
Γ(X, ^f1) = {ω e T resD ω = 0 for every D e 2). Consequently, Γ(X, J^1)
is a biratίonal invariant.

Proof. Let T = {ω e T resD ω = 0 for every fle^}, Proposition 9
shows that Γ{X,^1) c T and (5.3) proves the opposite inclusion.

Remark. T' is analogous to the differentials of the second kind on X.
If U and V are both models of K/k (complete or not), then Γ(U,^1)
and Γ(V, Jf1) each contains a subgroup corresponding to T'. We may
extend the conjecture which follows Corollary 6, and suggest that perhaps
dim^^QUT = 2g, where g is the dimension of the Picard group of any
complete normal model for K/k. We must use normal model here, be-
cause T can be defined even if K/k has no complete nonsingular model.
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