POSITIVENESS OF THE REPRODUCING KERNEL IN THE SPACE PD(R)

IVAN J. SINGER*

An important problem in the study of the Hilbert space PD(R) of Dirichlet finite solutions of $\Delta u = Pu$ on a Riemann surface R is to know the behavior of the reproducing kernel in PD(R). The main result of this paper is that the reproducing kernel is strictly positive.

1. Let P(z)dxdy (z=x+iy) be a nonnegative not identically zero α -Hölder continuous $(0 < \alpha \le 1)$ second order differential on a Riemann surface R. We also assume that $R \notin O_{PD}$, i.e. there exists a nontrivial Dirichlet finite solution of

$$\Delta u(z) = P(z)u(z)$$

on R. If we mean by the scalar product of $u,v\in PD(R)$ the Dirichlet scalar product $(u,v)=D_R[u,v]=\int_R du\wedge *dv$ then PD(R) is a Hilbert space; and as shown by Nakai [2], PD(R) is then uniformly locally bounded on R. Hence there exists a unique reproducing kernel in PD(R) which is a symmetric function on $R\times R$. Denote this kernel by $K(z,\zeta)$.

To show the positiveness of $K(z,\zeta)$ on $R \times R$ it will be enough to examine the kernel at a point z_0 , i.e. the function $K(z,z_0)$, where $z_0 \in R$ is an arbitrary but fixed point. From now on, z_0 will be fixed and $K(z) = K(z,z_0)$.

Let Ω always be a regular subregion of R such that $z_0 \in \Omega$ and $P(z)dxdy \not\equiv 0$ on Ω . Then $\Omega \not\in O_{PD}$ and since $P(z) \not\equiv 0$ on Ω , the Neumann's and Green's functions on Ω of (1) are well-defined; hence by Ozawa [6] their difference is 2π -times the reproducing kernel in the space $PE(\Omega)$, i.e. in the space of all energy finite solutions of (1) on Ω , while the

Received September 25, 1971.

^{*} The work was sponsored by the U.S. Army Research Office—Durham, Grant DA-ARO-D-31-124-71-G20, UCLA.

scalar product of $u, v \in PE(\Omega)$ is the mixed energy integral $E_{\mathfrak{g}}(u, v) = D_{\mathfrak{g}}[u, v] + \int_{\mathbb{R}} u P v$. Denote this kernel by

$$(2) L_{\varrho}(z,\zeta) = \frac{1}{2\pi} (N_{\varrho}(z,\zeta) - G_{\varrho}(z,\zeta)) ,$$

where N_a , resp. G_a is Neumann's, resp. Green's function of (1) on Ω . Making use of the joint finite continuity of N_a , G_a (cf. Nakai [1]) we can prove the known fact that if a function $f(z) \in L_F^{\infty}(\Omega)$ with the measure P = P(z)dxdy, then $\int_a L_a(z,\zeta)P(\zeta)f(\zeta)d\xi d\eta$ ($\zeta = \xi + i\eta$) is a continuous function of z on Ω . We will extensively use this and also an important result of Nakai [3] that the vector space PBD(R) of bounded Dirichlet finite solutions of (1) is dense in PD(R) with respect to the CD-topology (for the notation cf. [7]).

2. For a regular subregion Ω , obviously $PE(\Omega) \subset PD(\Omega)$ but it may not be without interest to observe that the elements from the larger set PD are reproduced by the kernel $L_{\Omega}(z,\zeta)$. In particular, we have a simple but important lemma for our further work:

LEMMA 1. If $u \in PD(\Omega)$ then

(3)
$$u(z) = E_{\mathfrak{g}}(u(\zeta), L_{\mathfrak{g}}(z, \zeta))$$

for all $z \in \Omega$.

Proof. By [2] $PD(\Omega)$ possesses a Riesz decomposition, thus $u=u^+$ $-u^-$ where u^+, u^- are positive elements of PD. Assuming that, say $u^+ \not\equiv 0$, we show (3) for u^+ . According to [4] there exists a nondecreasing sequence $\{u_n^+\}$ of bounded PD-functions on Ω such that $u^+ = CD - \lim u_n^+$. Because $u_n^+ \in PE(\Omega)$ for each n, we may write

$$(4) \qquad u_n^+(z) = E_{\mathfrak{Q}}(u_n^+(\zeta), L_{\mathfrak{Q}}(z, \zeta))$$

$$= D_{\mathfrak{Q}}[u_n^+(\zeta), L_{\mathfrak{Q}}(z, \zeta)] + \int_{\mathfrak{Q}} u_n^+(\zeta) P(\zeta) L_{\mathfrak{Q}}(z, \zeta) d\xi d\eta .$$

But since for a given $z \in \Omega$, $L_{\Omega}(z, \zeta) \in PD(\Omega)$ and $u_n^+ \geq 0$ on Ω , the Lebesgue convergence theorem yields (3). The same can be proved for u^- , and hence (3) is valid for u.

COROLLARY 1. If $K_{\varrho}(z)$ is a reproducing kernel in $PD(\Omega)$ at the point z_0 , then

(5)
$$K_{g}(z) = L_{g}(z) + \int_{g} L_{g}(z,\zeta) P(\zeta) K_{g}(\zeta) d\xi d\eta$$

where $L_{\varrho}(z) = L_{\varrho}(z, z_0)$.

COROLLARY 1'. $K_{\varrho}(z) \in C(\overline{\Omega})$.

Proof. Since for any Riesz decomposition of K_{a} , both K_{a}^{+} , K_{a}^{-} satisfy (3) we have

$$K_{\varrho}^{\scriptscriptstyle \mp}(z) = D_{\varrho}[K_{\varrho}^{\scriptscriptstyle \mp}(\cdot), L_{\varrho}(z, \cdot)] + \int_{\varrho} K_{\varrho}^{\scriptscriptstyle \mp}(\cdot) P(\cdot) L_{\varrho}(z, \cdot) \; .$$

For any $z\in \Omega$, $\inf_{\zeta\in \mathcal{Q}}L_{g}(z,\zeta)>0$; thus K_{g}^{+},K_{g}^{-} are in $L_{P}^{1}(\Omega)$ and consequently $K_{g}\in L_{P}^{1}(\Omega)$. Then from (5) and by using Fubini's theorem we see that $K_{g}\in L_{P}^{2}(\Omega)$; therefore by Schwarz's inequality, directly from (5) we obtain $K_{g}\in L_{P}^{\infty}(\Omega)$. Thus by the remark in section 1, $K_{g}(z)\in C(\overline{\Omega})$. The corollary is then proved.

We denote by $P(\Omega)$ the family of solutions of (1) on Ω . As far as a solution of the integral equation (5) is concerned we may state

LEMMA 2. The integral equation

(6)
$$f(z) - \int_{\varrho} f(\zeta) P(\zeta) L_{\varrho}(z, \zeta) d\xi d\eta = L_{\varrho}(z)$$

has a unique solution in the class $C(\overline{\Omega}) \cap P(\Omega)$.

Proof. Denote by $Q: C(\overline{\Omega}) \to C(\overline{\Omega})$ the operator defined by

(7)
$$Qf(z) = \int_{a} f(\zeta)P(\zeta)L_{a}(z,\zeta)d\xi d\eta$$

for every $f \in C(\overline{\Omega})$. Q is well-defined and $Q(C(\overline{\Omega})) \subset C(\overline{\Omega}) \cap P(\Omega)$. If we define the norm $||f|| = \sup_{\Omega} |f|$ for $f \in C(\overline{\Omega})$ then

(8)
$$\begin{aligned} \|Qu\| &= \sup_{z \in \hat{g}} \left| \int_{g} u(\zeta) P(\zeta) L_{g}(z, \zeta) d\xi d\eta \right| \\ &\leq \|u\| \sup_{g} q(z) \end{aligned}$$

for $u \in C(\overline{\Omega}) \cap P(\Omega)$, where

(9)
$$q(z) = \int_{a} e_{a}(\zeta) P(\zeta) L_{a}(z, \zeta) d\xi d\eta$$

and e_g is the solution of (1) with constant boundary values 1. The function $q(z) \in C(\overline{\Omega}) \cap P(\Omega)$, and thus by the maximum principle $\sup_{\alpha} q(z) =$

q(z') = q, where $z' \in \partial \Omega$. From the construction of the Neumann's function N_{ϱ} , using the double of Ω , we observe that

(10)
$$q(z') = \frac{1}{2\pi} \int_{\mathcal{Q}} N_{\varrho}(z', \zeta) P(\zeta) e_{\varrho}(\zeta) d\xi d\eta ,$$

and

(11)
$$\frac{1}{2\pi} \int_{\varrho} N_{\varrho}(z,\zeta) P(\zeta) d\xi d\eta = 1$$

on $\overline{\Omega}$. Because from the maximum principle $e_{\mathfrak{g}} < 1$ on Ω and as assumed $P(\zeta) \not\equiv 0$ on Ω , (10) and (11) give q = q(z') < 1. Thus by (8)

$$\sum_{n=1}^{\infty} Q^n u \in C(\overline{\Omega})$$
;

and if $u(z) = L_{\rho}(z)$, by Harnack's principle

(12)
$$\sum_{n=1}^{\infty} Q^n L_{\mathcal{Q}} \in C(\overline{\mathcal{Q}}) \cap P(\mathcal{Q}) ,$$

since $L_{\varrho}(z) \geq 0$ on $\overline{\varrho}$. Hence $\sum_{0}^{\infty} Q^{n} L_{\varrho}$ is a solution of (6) and obviously it is unique in the class $C(\overline{\varrho}) \cap P(\varrho)$. This completes the proof.

By Corollaries 1, 1', and Lemma 2 we have the

LEMMA 3. If $K_{\alpha} \in PD(\Omega)$ is the kernel at the point $z_0 \in \Omega$, then

(13)
$$K_{\mathfrak{g}}(z) = \sum_{n=0}^{\infty} Q^n L_{\mathfrak{g}}(z) ,$$

and $K_{\varrho}(z) > 0$ on Ω .

3. Finally we show that the kernel $K(z) \in PD(R)$ at the point z_0 can be obtained as $\lim_{g \to R} K_g(z)$ where Ω exhausts R. Then K > 0 on R.

Take a regular exhaustion $\{\Omega_n\}_1^{\infty}$ of R by regular subregions such that $z_0 \in \Omega_1$ and $P \not\equiv 0$ on Ω_1 . By Lemma 3 for each $PD(\Omega_n)$ there exists a nonnegative reproducing kernel at z_0 , say K_{Ω_n} . Since $\Omega_n \subset \Omega_{n+1}$, we have

(14)
$$D_{q_n}[K_{q_{n+1}}, K_{q_n}] = K_{q_{n+1}}(z_0) .$$

By Schwarz's inequality

$$(D_{\alpha_n}[K_{\alpha_{n+1}},K_{\alpha_n}])^2 \leq K_{\alpha_{n+1}}(z_0)K_{\alpha_n}(z_0);$$

hence

$$(16) K_{g_{n+1}}(z_0) \le K_{g_n}(z_0)$$

and inductively

$$(17) D_{\varrho_m}[K_{\varrho_m}] \le D_{\varrho_n}[K_{\varrho_n}]$$

for $m \geq n$. Since $PD(\Omega_k)$ is a Hilbert space for each $k = 1, 2, \dots$, it follows from (16) and (17) that for any k there exists a subsequence $\{K_{\Omega_k}\} \subset \{K_{\Omega_n}\}, k_i \geq k$, and a function $K_k \in PD(\Omega_k)$ such that

(18)
$$D_{g_k}[K_{g_k}, u] \to D_{g_k}[K_k, u]$$

for each $u \in PD(\Omega_k)$ and thus for each $u \in PD(R)$. Moreover $\{K_{\alpha_{k_i}}\}$ can be chosen such that it converges to K_k uniformly on each compact subset of Ω_k . Using the diagonal process we obtain a subsequence $\{K_{\alpha_{n_i}}\} \subset \{K_{\alpha_n}\}$, converging to, say a function K, uniformly on any compact subset of R.

We show that K is in fact the kernel K at the point z_0 . From the limiting process we know that $K \geq 0$ and K is a solution of (1) on R. It remains to prove the finiteness of the Dirichlet integral and the reproducing property at z_0 of K.

On $\Omega \in \{\Omega_{n_i}\}$, $K|_{\mathfrak{g}} \in PD(\Omega)$ and $D_{\mathfrak{g}}[K_{\mathfrak{g}_{n_i}} - K] = D_{\mathfrak{g}}[K_{\mathfrak{g}_{n_i}} - K, K_{\mathfrak{g}_{n_i}}^{\text{pri}}] - D[K_{\mathfrak{g}_{n_i}} - K, K]$. By (18)

(20)
$$\lim_{n \to \infty} D_{g}[K_{g_{n_{i}}} - K, K] = 0$$

and by (17)

(21)
$$\lim_{n_t} \sup D_{\mathfrak{g}}[K_{\mathfrak{g}_{n_t}} - K, K_{\mathfrak{g}_{n_t}}] \leq K_{\mathfrak{g}_1}(z_0) + \|K\|_{\mathfrak{g}}(K_{\mathfrak{g}_1}(z_0))^{1/2},$$

where $\|\cdot\|_{\varrho}$ means Dirichlet norm. Also

$$D_{\mathfrak{g}}[K] \leq D_{\mathfrak{g}}[K_{\mathfrak{g}_{n_{i}}} - K] + D_{\mathfrak{g}}[K_{\mathfrak{g}_{n_{i}}}] + 2 \cdot \|K_{\mathfrak{g}_{n_{i}}} - K\|_{\mathfrak{g}} \cdot \|K_{\mathfrak{g}_{n_{i}}}\|_{\mathfrak{g}} \; .$$

Hence by (17), (20) and (21) we have for any $\Omega \in \{\Omega_{n_i}\}$ the estimate

$$||K||_{a}^{2} \leq 2a + b||K||_{a} + c\sqrt{a + b||K||_{a}}$$

where a,b and c are fixed positive constants. Therefore $\limsup_{n_i} D_{g_{n_i}}[K] < \infty$.

Let $u \in PD(R)$. For $\varepsilon > 0$ choose an n_j such that $||u||_{R-\mathfrak{Q}_{n_j}} < \varepsilon/(K_{\mathfrak{Q}_1}(z_0))^{1/2}$. Then for $n_i \geq n_j$

(23)
$$|D_{g_{n_j}}[K, u] - u(z_0)| = |D_{g_{n_j}}[K, u] - D_{g_{n_j}}[K_{g_{n_j}}, u]| \\ \leq |D_{g_{n_j}}[K - K_{g_{n_i}}, u]| + |D_{g_{n_j}}[K_{g_{n_i}} - K_{g_{n_j}}, u]|.$$

Using the reproducing properties of $K_{a_{n_t}}$ and $K_{a_{n_t}}$ by (16) we obtain

$$|D_{\varOmega_{n_i}}[K_{\varOmega_{n_i}}-K_{\varOmega_{n_i}},u]|\leq |D_{\varOmega_{n_i}-\varOmega_{n_i}}[K_{\varOmega_{n_i}},u]|<\varepsilon\ ,$$

By (18) and (23), $|D_{\Omega_{n_j}}[K, u] - u(z_0)| < \varepsilon$, and since $D_R[K] < \infty$, $D_R[K, u] = u(z_0)$. Thus we have proved the following

THEOREM. If $R \notin O_{PD}$ then there exists the reproducing kernel $K(z,\zeta)$ in the Hilbert space PD(R) and it is a strictly positive symmetric function on $R \times R$.

Unfortunately there is no such expression for K as (13), since by Nakai [5], $O_{PD} < O_{PE}$, i.e. there exists a Riemann surface which does not possess a nontrivial energy finite solution of (1); hence $L_R(z,\zeta) \equiv 0$ there, although if $R \in O_{PE} - O_{PD}$, the reproducing kernel $K \in PD(R)$ exists.

Still open questions remain as to whether or not the kernel $K(z,\zeta)$ as a function of one variable is bounded and if there exist more explicit expressions for K_{ϱ} as it was introduced in (13).

BIBLIOGRAPHY

- [1] M. Nakai, The space of non-negative solutions of the equation Δu=Pu on a Riemann surface, Ködai Math. Sem. Rep. 12 (1960), 151-178.
- [2] —, The space of Dirichlet-finite solutions of the equation Δu=Pu on a Riemann surface, Nagoya Math. J. 18 (1961), 111-131.
- [3] —, Dirichlet finite soltions of Δu=Pu, and classification of Riemann surfaces, Bull. Amer. Math. Soc. (3) 77 (1971), 381-385.
- [4] —, Dirichlet finite solutions of $\Delta u = Pu$ on open Riemann surface, Kōdai Math. Sem. Rep. (to appear).
- [5] —, The equation $\Delta u = Pu$ on the unit disk with almost rotation free $P \ge 0$, J. Diff. Eq. (to appear).
- [6] M. Ozawa, Classification of Riemann surfaces, Ködai Math. Sem. Rep. 4 (1952), 63-76.
- [7] L. Sario—M. Nakai, Classification Theory of Riemann Surfaces Springer, 1970, 446 pp.

Department of Mathematics University of California