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THE FIELDS OF MODULI FOR POLARIZED ABELIAN
VARIETIES AND FOR CURVES

SHOJI KOIZUMI

In the study of moduli of polarized abelian varieties and of curves
as well as in the theory of complex multiplications, the notion of fields
of moduli for structures plays an essential role. This notion was first
introduced by Matsusaka [7] for polarized varieties with some pleasing
properties and later was given a more comprehensible treatment by
Shimura [10] in the case of polarized abelian varieties or polarized abelian
varieties with some further structures. Both authors discussed fields of
moduli not only in algebraic geometry of characteristic zero but also in
that of positive characteristic, but in the latter case the definition of
fields of moduli seems somewhat artificial and there have been no essential
applications of them so far.

The purpose of the present paper is, despite our pretensions to
achieve generality in § 1, to prove the following fact, which is known in
geometry of characteristic zero.

( I ) Assume that the characteristic of the universal domain is not
two. Let S be a polarized abelian variety or a complete non-singular
curve then the field of moduli for S coincides with the intersection of
all possible fields of rationality for all possible structures isomorphic to S.
(Corollary 3.2.2)

We have followed the definition of "field of moduli" given by Matsu-
saka and Shimura in the above statement, but in this paper the fields of
moduli are defined in a somewhat different way and hence the expression
of our Corollary is adjusted to our definition. We shall now give a
summary of the contents of this paper.

After giving some fundamental notations we recall some properties
of a Picard variety of a complete variety with no divisorial singularities,
which are used in Example 1.2.3 and in the proof of Proposition 3.1.
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In this part we followed the notations and formulations in Lang's book
[3] as a general principle, where we find proofs of all our statements
except the duality theorem of abelian varieties (i.e., the fact that the
map κA is an isomorphism), which actually is not used in the paper (§ 0.).
In § 1, we start by defining FM-structures S for which the notions of
fields of rationality, the transform Sσ by an automorphism σ of the uni-
versal domain and the isomorphy relation are given with very natural
axioms (/m). We then define the notion of the "field of moduli for S",
which is different from the old definition in appearance but will be shown
the same in the case of polarized abelian varieties. By several examples
we try to explain how our notion works in algebraic geometry. Before
studying polarized varieties we consider an ^-structure % consisting of
a complete non-singular variety and an algebraic equivalence class on it
satisfying some conditions (see 2.1) and see the existence of the field of
moduli for Si under a condition (A) (see 2.1). This is discussed in §2
and since that section does not include any new results, most proofs are
omitted or only sketched. In § 3, we prove the existence of the field of
moduli for a polarized variety under the assumptions (T) and (P) (see
Theorem 3.2). These assumptions seem too strong for general theory of
polarized varieties, though they are general enough for our purpose as
far as we are concerned with polarized abelian varieties or curves. Using
our new definition of "fields of moduli" the statement (I) can be rewrit-
ten in the following way: (Γ) The assumptions and S being as in I),
the field of moduli for S in our sense exists and it coincides with the
old field of moduli for S (in spite of their difference in appearance).
Statement (I) is reduced to a special case of Theorem 3.2 on account of
Proposition 3.1.

§0. Terminology and notations.

We follow the terminology and definitions in Weil [13,14]. Through-
out the paper the universal domain is fixed and denoted by K. Any field
we consider is a subfield of K, and a variety is an absolutely irreducible
variety rational over a field. For a field F, Aut (K/F) means the sub-
group of the automorphism group Aut (10 of K consisting of elements
acting as the identity of F.

Let V be a complete variety non-singular in codimension 1 then we
denote by @(V), 9a{V) and @e(V), respectively the group of V-divisors,
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the group of F-divisors algebraically equivalent to zero and the group of
V-divisors linearly equivalent to zero. For a divisor X e @(V), the linear
equivalence class determined by X is denoted by Cl(X).

When we regard an abelian variety A as a variety without consider-
ation of its composition law, we call it the underlying variety of the
abelian variety A and sometimes denote it by the same letter A. Thus
an abelian variety is a couple of its underlying variety and its composi-
tion law. An abelian variety is rational over a field k if and only if
both the underlying variety of A and the origin 0 of A are rational over k.

Let V and A be as above and let D be an (A x F)-divisor. A 7-divisor
D(ά) for a e A is defined by

D-(βX V) = aχD(a)

if the intersection on the left side is defined on A x 7. When the inter-
section is not defined, D(a) denotes a F-divisor belonging to

Cl(D(-x + y + a) + D{x) - D(y))

where x and y are two points on A such that D(—x + y + a), D(x) and
D(y) are defined in the old sense. We know that CliPia)) depends only
on the point a and does not depend on the choices of x and y in the
latter case. Thus D(a) is defined at any point αeA. If k is a common
field of rationality for 7, A and D, D(a) is rational over k(a) in the former
case and D(a) can be chosen such that it is rational over k(a) in the
latter case if V has a fc-national simple point. Especially if V is an abelian
variety too, an A-divisor '!)(&) for b e V is defined by

D (A χb) = tD(jb) X b

if the intersection is defined on A x V; the definition of ιD(b) is gener-
alized in the same way as that of D(a).

Let V be now a complete variety non-singular in codimension 1,
rational over a field k and having a fc-rational simple point; then we
have a Picard variety (V,D) of V, rational over k where V is an abelian
variety rational over k and D is a (V X 7)-divisor rational over k, which
is called a Poincare divisor of V [4]. If we define a map θ of V to
@a(V)/@£(V) by θ(x) = Cl(D(x) - Z?(0)), ^ is a group isomorphism. A
group homomorphism Φv (or simply Φ) of 2a(V) onto V is defined by
φv = θ~ιoπ where π is a natural surjection of @a(V) to @a(V)/@4(V) and
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obviously the kernel of Φv is equal to S>XV). We consider a special case
where V is an abelian variety and denoted by A. It is trivially true
that a map of A defined by x —• Φ(D(x) — D(0)) for xe A is the identity
automorphism 1̂  of A and furthermore we know that a map κA of A
to A defined by tcΛ(x) = Φ^D{x) — ιD(fi)) for xe A is an isomorphism
[9], For an A-divisor X, a homomorphism ψΣ of A to A is defined by
φΣ(x) = Φ(XX — X) where X̂ . is the image of X by a translation map of
A: z I-* # + #. For two A-divisors X and Y, ^ = ψγ if and only if X
is algebraically equivalent to Y. Let 2? be another abelian variety
rational over k, let 2 be a homomorphism of A to B, and let Y be a
B-divisor. An A-divisor λ~\Y) is defined in the usual way when the
intersection Γλ (A x Y) is defined on A x B where Γλ is the graph of λ
and if λ'\Y) is not defined in the usual way, λ~\Y) denotes a divisor
belonging to CU}r\Y')) where Yr is a B-divisor linearly equivalent to Y
such that λ~KY') is defined in the usual way. If Y and λ are rational
over k, λ~\Y) is rational over k when it is defined in the usual way;
and when λ'\Y) is defined in the generalized way λ~\Y) can be chosen
as a divisor rational over k. The dual homomorphism λ of λ is a map
of B to A which is defined by λ(ΦB(Y)) = ΦA(λ'KY)) for any Y e ^ α (#)
Especially for a homomorphism ^ x of A to A defined above, we have
an equality ΦX°KA — ψx- Let Ax be another abelian variety rational over
k and let (A> A) be a Picard variety of Aλ rational over k. A map ξ
of ^α(A X AJ/&XA X A0 to 9a(A)l9HA) X 9a(Adl&JLAύ defined by
ξ(PKX)) = CZC-̂ ίO)) X CKΆO)) for any Xei^(A x Ax) is an isomorphism
and if we denote, by J5 (resp. A), a divisor on A x Ax X A x A1 which
is the image of a divisor Z) x Aλ x Ax (resp. i x A x DJ by a permuta-
tion isomorphism of AχAχAγχAλ to A x Ax x A x Al9 then (A x Au

D + ^i) is a Picard variety of A x At rational over k. The homomor-
phism ΦΛxΛl of @a(A x Ax) to A x A, is given by ΦAxAl(X) = Φ^CX(0)) x

for any ΐ e ^ ( A x Ax).

§ 1. jFM-structures.

We start with defining FM-systems © ô  er a field F and FM-structures
S in ©, where we can discuss the jfiβM o/ moduli for S.

DEFINITION 1.0. Let F be a field; let © be a collection of geometric
objects S,S', , together with the following three laws:
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i) Given an object S and a field k containing F, it is defined whether

or not k is a field of rationality for S. (When k is a field of rationality

for S, we say that S is rational over k.)

ii) Given two objects S and S\ it is defined whether or not S is

isomorphic to S' (noted by S = S').

iii) Given an object S and an automorphism σ in Aut (K/F), the

transform Sσ of S by σ is defined and belongs to ©.

When the pair (©,F) satisfies the following conditions, © is called

an FM-system over F and an object S in © is called an FM-structure

(in ©).

fm i) If an object S is rational over a field k, S is rational over

any field k' containing k.

fm ii) The relation of isomorphy ^ is an equivalence relation.

fm iii) Given S and S' in © and given two automorphisms σ and

τ in AutCfiΓ/F), we have

1) Sσ — S iί σ acts as the identity on a field of rationality for S.

2) Sσ is rational over fc* if S is rational over a field fc.

3) S = Sr implies Sff ^ S/σ.

4) S"7 = (Sσ)'.

When ί7 is the prime field PF, © is called an FM-system. Sometimes

in this paper we simply say that a geometric object S is an FM-structure,

without explicit explanation about the FM-system © to which S belongs,

when the situation is clear enough.

In many cases, as you see later, an FM-structure S is defined by a

set of a variety and cycles and a field of rationality for S is a common

field of rationality of the variety and some cycles constituting S. But

still we have another type of FM-structures such as PFL-types or

especially CM-type in the theory of abelian varieties, which are defined

and discussed by Shimura and Taniyama [11,12].

1.1. Let © be an FM-system over a field F and let S be an FM-

structure in ©. A subset G(S,©) (or simply G(S)) of Ant (K/F) is

defined by

GKS, ©) = {σ e Aut (K/F) | S° s S} .

We can easily see that G(S,©) is a subgroup of Aut (K/F) depending

only on © and the isomorphy class <S> of S (from/mii) and fm iii 3,4)).
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DEFINITION 1.1. Let ks be a field containing F. If ks satisfied the
following two conditions, it is called the field of moduli for S over F
(or simply the field of moduli for S).

FM 1) For an automorphism σ e Aut (K/F), σ is contained in G(S,©)
if and only if the restriction of a on ks is the identify.

FM 2) ks = ΠK

where K runs over the set of all fields of rationality for all S' isomor-
phic to S, (containing F).

1.1.0. An FM-structure S has at most one field of moduli for it.
The field of moduli for S depends only on the isomorphy class of S (noted
by <£». In other words, if S and S' are isomorphic to each other, a
field k0 is the field of moduli for £ over F if and only if it is the field
of moduli for S' over F. Thus the field of moduli ks for S over F is
sometimes called the field of moduli for the isomorphy class <(£> over F
and is denoted by k<s>.

1.1.1. Let kQ be a field containing F and satisfying the condition
FM1 for S, let K be a field of rationality for S' isomorphic to S; then
k0 and K-k0 are purely inseparable respectively over K (Ί k0 and K, and
especially there exists a purely inseparable extension of K which con-
tains kQ. In fact, we have only to prove that k0 is purely inseparable
over K Π k0 because the other parts are straight forward from it. We
have

G(K/K) = {σe Aut (K) \σ\K = lx}d G(S) - G(K/k0) .

This inclusion relation implies

u K*-* -D 0 n~v

where p is the characteristic of K. Thus for any element a e k0, there
exists a non-negative integer μ such that apμ is contained in K.

1.1.2. Assume that the characteristic of K is zero. For an FM-
structure S, there is at most one field kQ which satisfies the condition
FMl, and the field k0 (if it exists) is contained in any field of rationality
K for any S' isomorphic to S. Furthermore we can easily see that the
field Π K on the right side of the equality in FM2 is a Galois (especially
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algebraic) extension of kQ. Thus if there is a field of rationality for S'
which is a regular extension of kQ, the field k0 satisfies the condition
FM2 and becomes the field of moduli for S.

1.1.3. Let S be an FM-structure. If there exists an FM-structure
S' isomorphic to S, which is rational over a finite algebraic extension of
the prime field, then we have one and only one field k0 which satisfies
FM1 for S, and the field ΠK on the right side of the equality in FM2
is a Galois extension of k0.

1.2. Examples. We start with a rather trivial example.

1.2.1. Let © be the collection of affine (or projective) varieties. For
a variety V in ©, a field of rationality for V and the transform Vσ by
an automorphism σ e Aut (K) are defined in the usual way. For two
varieties V and V in ©, we say that V is isomorphic to V if and only
if V is identical with V. Then obviously © becomes an FM-system over
the prime field and for each V in ©, the field of moduli kv for V exists.
In this case V is rational over kv (see [13]).

1.2.2. Let V be a variety rational over a field F ; let © be the total
set of cycles on V. In the same manner as in 1.2.1 we can define an
FM-system (©,F), especially in this case the isomorphy relation means
the identity relation. It can be proved that the field of moduli kx for
X over F exists for any X e © and X is rational over kx if X is a divisor,
but for a cycle of lower dimension the same statement is not true. If
the ambient variety V is projective, kx is generated by the Chow point
associated to X over F. (see [15]).

1.2.3. Let V be a complete variety rational over a field F, non-
singular in codimension 1. The field of rationality for a divisor I e f ( F )
and the transform Xσ of X by an automorphism σeA(K/F) are defined
in the usual way, and we say that two divisors X and Xr on V are iso-
morphic if they are linearly equivalent. Thus (@(V),F) makes an FM-
system. Assume that V has an F-rational simple point. It is known
that there exists the field of moduli kcux) for any Xe9(V) and that
there exists a divisor X' rational over kcl(X), linearly equivalent to Z.
Let (V,D) be a Picard variety of V, rational over F, and let Φ be the
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homomorphism of ^aiY) to V defined in § 0 then for any divisor X e
we have k0l(I) = F(Φ(X)). (see [2,3])

1.2.4. Let V be a projective non-singular variety rational over a
field F having an F-rational point P; let &(V) and &a(V) be the group
of zero-cycles on V and the group of zero-cycles on V which are of degree
zero and let (φ,A(V)) be an Albanese variety of V rational over F where
A(V) is an abelian variety rational over F and ψ is a map of V to A(V),
rational over F, with ψ{P) = 0. We say that for two cycles X and Xf

in 3T(V), X is isomorphic to X' if X - Xf e %a{V) and £ w^(P*) =
2 tt^CPJ) where X = £ ^(P,) and X7 = £J n'jiPj). The field of rationality
for X and the transform X° of X by σ e Aut CfiΓ/F) being defined in the
usual way, we have an FM-system (&(V),F). In this case we can also
prove the existence of the field of moduli kCUX) for X e S(V) and that
kCHX) is the extension of F generated by the point 2 niψ(Pi) on A(V),
where X is as above. The problem whether there exists a zero-cycle Xf

isomorphic to X and rational over kmz)9 is not settled so far. (see [1]).

1.2.5. We shall give one more example which is of rather different
type from the previous ones. Every detail is proved by Shimura [11] and
we follow his definitions and notations without precise description. We
consider a Pί7L-type Ω in the sense of Shimura. The transform Ωσ of
Ω by a e Aut (K) and the isomorphy between two P£7L-types are defined
in his theory. We say that Ω is rational over a field K if there is a
PZ?L-structure of type Ω which is rational over K. It is proved that Ω
is an FM-structure and that the field kΩ in [11, 5.1] is the field of
moduli for Ω in our sense.

On the other hand although a CM-type Ωf in the sense [12] is an
FM-structure in the same manner, the field of moduli for Ωf does not
exist in general. Actually the dual field of Ωf satisfies FM1 for Ωf and
does not satisfy FM2. In order to treat this case in our line some
modifications are needed in the condition FM2, but we do not discuss
them.

§ 2 . Fields of moduli for ^-structures.

2.0. Let V be a complete non-singular variety let ^(V), 2a(V) and
3JiV) be as in § 0. For a divisor X e @(V), s/(X) and Se(X) are the set
of positive F-divisors algebraically equivalent to X and linearly equivalent
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to X respectively, and L(X) is a set of rational functions on V defined by
L(X) = {/1 div (/) + X > 0} where div (/) implies the F-divisor of the
function /. We know that L(X) is a finite dimensional vector space over
the universal domain K and that if k is a common field of rationality
for V and X, L(X) admits a linear base (/0,/i, - ,fι), each function ft

of which is rational over k. If we fix a base (/0,/i, ,fι) of L(X) as
above, we have a rational map 9?(x;/0,...,/;) of V into a protective space
Pi of dimension I defined by

<P(X;fo,-,fύ : V > P l
0) O)

Z is called to be very ample if ^(Z) has no fixed component and <P(x-fo,...,fl)
is an isomorphism of V onto the image variety, and a divisor Z is called
to be ample if there is a positive integer m such that mX is very ample.
These notations will be used throughout the rest of the paper.

2.1. Under the assumptions and notations in 2.0, a pair Sί = (V, J / ( Z ) )

is called an ^/-structure if sf(X) is an irreducible family of divisors (i.e.,
an algebraic family of divisors, parametrized by a variety) and any divisor
in J / ( Z ) is very ample, and V is called the underlying variety of the
^-structure 31. We say that a field k is a field of rationality for 2ί if
V is rational over k and some Z' 6 J / ( Z ) is rational over k. For an
automorphism σ e Aut (JO, the transform 2ίσ is defined by 2ϊ* = (F% jf(Xσ)),
which is easily seen to be an j/-structure. Let 2Γ = (V, st(X')) be an-
other ^/-structure and let ψ be an isomorphism of V to V then p is
called an isomorphism of Sί to 2Γ if p maps ^/(Z) to ̂ (Z 7 ). Under
these definitions ^-structures become FM-structures and we can discuss
the problem of fields of moduli for ̂ /-structures.

Now we consider a condition (A) on an j/-structure SI — (V, J / ( Z ) ) :

(A) For any ^structure W — (V7, J / ( Z 0 ) ίsomorphίc to SI, rational
over a field K, the irreducible family stf(Xf) is rational over K.

N.B. We say that the irreducible family <stf{X') is rational over K
if the family admits a parameter variety W and a correspondence divisor
Γ on W X y;, both rational over K. If 77 is a protective variety, this
condition is equivalent to the fact that the Chow variety C(J/(Z0) as-
sociated with J / ( Z 0 is rational over K. The ^-structure Sί satisfies the
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condition (A) if for any ^/-structure 2Γ = (V, sί(X')) isomorphic to 21,
rational over K and with a protective variety V as its underlying variety,
the family <s/(X') is rational over K.

Concerning the condition (A) have the following proposition.

PROPOSITION 2.1.1. An ^/-structure 21 = (V9s/(X)) satisfies the con-
dition (A) in either case of the following four cases:

i) V is a curve,
ii) V is the underlying variety of an abelian variety,

iii) the set {X' — X \ Xf e st(X)} covers a complete set of representa-
tives of &a(V)/@e(V),

iv) the characteristic of the universal domain is zero.

We may assume that 21 is rational over a field of k and V is pro-
jective. The case i) is just trivial and case iii) is a theorem of Matsu-
saka [4, II, Prop. 1]. Under the assumption of ^-structures it is easily
seen that the Chow variety c{stf(X)) is rational over a purely inseparable
extension of a field of rationality k for 21. This proves the case iv). In
the case ii) if an abelian variety A with the underlying variety V is
rational over k, it is easy to see that the variety c{^{X)) is rational
over k. In general case c(A(X)) is rational over the field k(x) where x
is a generic of point of V over k and since x is an arbitrary generic
point of V over k, we can conclude that c(s/(X)) is rational over k.

2.2. Following Matsusaka and Shimura's idea we can prove

THEOREM 2.2. Let 21 = (V,<%?(X)) be an ^/-structure satisfying the
condition (A). Then the field of moduli k% for 2ί exists and there is an
sf-structure 2Γ isomorphic to 2ί and rational over a regular (or a finite
separable algebraic) extension of k%.

Since the theorem is not new but is perfectly proved in [7,10], we
shall sketch the idea of the proof which appeared in the literature. Let
& be a field of rationality for 21 and let X be a generic divisor of <z/(X)
over k, which is rational over a regular extension k(x) of k. Let (/0,/i,
• - ',fι) be a linear base of LiX) such that each f€ is rational over k(x).
Put ft = Σ±)=*uiίfi d = 0,1, .,Z), where (uu) are a set of (I + I)2 in-
dependent variables over k(x). V denotes the image variety of the map
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and is a protective variety rational over k(x,ui3), isomorphic to V. Let
W be the locus of the Chow point c(V) associated to V over k. The
smallest field of rationality (or the field of moduli in the sense of
Example 1.2.1) for W is the field of moduli k% for 2Ϊ.

2.2.1. When 21 = (A,s/(X)) is an ^/-structure where A is the under-
lying variety of an abelian variety A, we can define a new Filf-structure
2ί0 on the same pair (A,J/(X)) i.e., a field k is called a field of ration-
ality for 2ί0 if it is a common field of rationality for the ^/-structure 21
and the abelian variety A the transform SΓj of 2ί0 by a e Aut (K) is a
pair (Aσ,s/(Xσ)) where Aσ is an abelian variety for another ^/-structure
2IQ = (A', <stf(X')) with an abelian variety A', an isomorphism φ of 2ί to
the ^/-structure 2Γ = (A', s/(X')) derived from 2ί£ is called an isomorphism
of 2I0 to 2IQ if 9 is an isomorphism of the abelian variety A to the abelian
variety A'. Under these definitions the pair (A9s/(X)) becomes an FM-
structure 2I0 different from the ^/-structure 21. We shall call the new
FM-structure an ^-structure. Thus a pair (A,s/(X)) of an abelian
variety A and an irreducible family stf(X) of very ample A-divisors
determines two FM-structures—^-structure 21 and j/0-structure 2ί0, and
according to Proposition 2.1.1 and Theorem 2.2 we know that the field
of moduli k% for the ^/-structure 2Ϊ exists.

COROLLARY 2.2.2. An β\-structure 2I0 = (A, si(X)) admits the field of
moduli ku0 for 2I0 and there is an substructure isomorphic to 2ί0 and rational
over a regular (or a finite separable algebraic) extension of k%Q, Further-
more if 21 is the stf-structure consisting of the same pair (A,sd(X)) as
2ί0, then k%0 coincides with the field of moduli k% for 2ί.

We are going to prove that the field of moduli k% for 21 satisfies
the conditions FM1 and FM2 for 2I0. Let % = (A',^(X0) be another
j/0-structure. It is easily seen that (A9s/(X)) and (A',^(X0) are isomor-
phic as ^-structure if and only if they are isomorphic as ^/-structure.
This proves k% satisfies FM1 for 2ί0. Concerning the equality ΓΊ K — k%
where K runs over the set of all fields of rationality of all 21$ isomorphic
to 2ί0, the inclusion relation Π K z> k% is obvious from the condition FM2
for 2L To prove the opposite inclusion relation Π K c k%, it is sufficient
to see that if K' is a field of rationality for the underlying variety V
of an abelian variety, K' — K'(x) Π K'(y) where x and y are two indepen-
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dent generic points of V over K' and that each of K'(x) and K'{y) is a
field of rationality of an abelian variety with underlying variety V. This
proves that there exists a field of moduli for 2l0 and it coincides with k%.
The other part of our corollary is straightforward from Theorem 2.2
and what we have proved above.

2.3. Let V be a complete non-singular variety. It is known that
the torsion subgroup T of the group @(V)/@a(V) is of finite order [6]
and we denote by t the order of T. Let 31 = (F, *s/(X)) be an ^/-structure
with underlying variety V. If (V,s/(mX)) for a positive integer m is
also an ^/-structure, we denote it by Sίm.

PROPOSITION 2.3. Let 2ί = (7, J/(X)) and 2ϊm = (7, s/(mX)) be two
^-structures satisfying the condition (A). Then we have

i) the field of moduli k% for SI is a finite algebraic extension of
the field of moduli k%™ for SIm,

ii) if m is prime to t, k% is purely inseparable over k%™,
iii) if m is prime to tp where p is the characteristic of the universal

domain, k% coincides with k%m.

The first assertion i) is proved in [7, Lem. 8]. To prove the second
one ii) we have only to see the equality G(Sί) = G(Sίm), which is obvious
from the assumption that m is prime to t (as for the definition of G(SΪ), see
1.1). The third one iii) is a combination of ii) and Lem. 10 in [7].

§ 3 . Fields of moduli for ^-structures (polarized varieties).

3.0. Let V be a complete non-singular variety and X a divisor on
y. We denote by &*(X) the set of all positive F-divisors X' for which
there exist two positive integers m and ml such that mX is algebraically
equivalent to m'X'. A pair Sβ = (7,0>(X)) of V and &(X) as above, is called
a ^-structure (or a polarized variety) if &*(X) contains an ample divisor
and V is called the underlying variety of the ^-structure $β in the case. In
the usual way and in the same way as in ^-structures (see 2.1) we can
define the notion of field of rationality for ψ, the transform ψ of Sβ by
σ e Aut (K) and isomorphisms of ^-structures then we know that ^f-
structures become FM-structures.

Now we consider a condition (T) on a complete non-singular variety V:

(T) The torsion subgroup of the group @(V)/@a(V) is trivial.
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If the underlying variety V of a ^-structure Sβ = (V, &>(X)) satisfies the
condition (T), there exists a 7-divisor Xo (not necessarily positive) such
that a positive Y-divisor X' belongs to &>(X) if and only if Xf is algebraic
equivalent to mX0 with some positive integer m. The divisor Xo with
this property is uniquely determined by the ^-structure Sβ up to algebraic
equivalence and is called a basic polar divisor of 5β. It is known that
there exists a positive integer m0 for f$ such that (V,s/(mX0)) is an J/-
structure satisfying the condition iii) in Proposition 2.1.1 (and hence
satisfying the condition (A)) if m>m0 [5,7].

We consider another condition (P) on a complete non-singular
variety V:

(P) Let V be a variety isomorphic to V and rational over a field
K then any coset of £2f(V) modulo 2a(y) has a representative divisor
which is rational over a separable algebraic extension of K.

PROPOSITION 3.1. A complete non-singular variety V satisfies both
conditions (T) and (P) in either of the following two cases

i) V is a curve,
ii) V is the underlying variety of an abelian variety and the cha-

racteristic p of the universal domain is not equal to two.

The first case i) of our proposition is obvious. Since the triviality
of the torsion subgroup of @(V)/@a(V) is known in the case when V is
the underlying variety of an abelian variety without any condition on the
characteristic (even in the case of characteristic 2) [3,9], it is sufficient
to prove that V satisfies the condition (P) in the second case ii). This
part of our proposition easily follows the following lemma, which comes
from an idea of Mumford [8, p. 121].

LEMMA 3.1.1. Let A and (Ά,D) be an abelian variety and its Picard
variety, both rational over a field k; let λ be a homomorphism of A to
A rational over k. Then there exists an A-divisor X rational over k
such that φx = λ + λo/cA.

We first consider the following three assertions, where we follow

the notations given in §0 without any comment.

Assertion (I). Let B and (B,E) be an abelίan variety and its Picard
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variety let a be a homomorphism of A to B let Y be a B-divisor. Then

we have

Assertion (II). Let At and (Ai9 D^ be an abelίan variety and its Pίcard

variety (i = 1,2); let at be a homomorphism of A to At (ί — 1,2). A

homomorphism a of A to Axχ A2 is defined by a(x) = aλ(x) X a2(x) for

xeA. Then the dual homomorphism ά of a is given by

ά(xx X x2) = άλ{xλ) + ά2(x2) for xx X x2 e A, X A2 .

Assertion (III). Define a divisor D on Ax A by D — —D + A X

D(ff) + £Z)(0) X A. Then a homomorphism φ^ of Ax A to Ax A is

given by

ΨD(X X x) — κA{x) x x for x x xe A x A .

The formula in (I) is well-known [3] and the assertion (II) can easily

be proved by recalling the definition of dual homomorphisms and how

Aι x A2 is identified with a Picard variety of Ax x A2 (see § 0). We shall

prove only the assertion (III).

For x x x e A x A, we have

ψD(x χχ) = ΦϊxA(D£xx - D)

= ΦlxA(D£xx - D£x0 + D£x0 - D)

= ΦIXAΦOX* -D) + Φ1XA(D£X0 - D)

We shall determine the first term Φ^xA(DQXX — D),

ΦΪXΛ(DOXX -D) = ΦiCΦox J(0) - 'Dm X ΦA(DOXM - Dm (see § 0)

where

X 0 = Doxa.(A x 0) = {IMA X (-a?))}oxβ

- {ΦC-aO X (-α;)}ox, - lD{-x) x 0

and

0 X Ax*(0) - Aχβ (0 χA) = {fl.(0χ A)}oxx

= {0χ D(0)}QXX = 0 x D(0)x .

Thus, we have

X ΦΛ(D(0)X -

= —κ(x) X <pDm(x)
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In the same way, we have

ΦΪXA(D£X0 -D) = φtD(0)(x) X (-X)

Combining the above formulas, we get

φΌ(χ XX) = (-ΛU(OO + φtD(0)(x)) X (φDm(x) - £) .

On the other hand, we easily see that

and

Our formula in (III) is just a direct consequence of the above three

formulas.

We are now ready for starting proof of Lemma 3.1.1. Let α b e a

homomorphism of A to A X A defined by a(x) = λ(x) x x for xeA and

D be a divisor on A x A defined in Assertion (III) then a is rational

over k, and Z) can be chosen as a divisor rational over k. Therefore,

we can also choose a~\D) as an A-divisor rational over k (see § 0). Ac-

cording to our three Assertions, we have

= ά © φp(λ(x) X #) (definition of a)

= ά(κA(x) X «»)) (III)

(Π).

This proves that the divisor a~\D) on A is a divisor which we want.

Proof of the last part of Prop. 3.1. Suppose that the underlying
variety V of an abelian variety is rational over k, and it is sufficient to
show that @(y)/@a(V) has a complete set of representatives consisting
of divisors rational over separable algebraic extensions of k. We have
an abelian variety A with underlying variety V, which is rational over
a separable algebraic extension kf of k. Let (A,D) be a Picard variety
of A, rational over k\ First we see that for any divisor Xe@(A), there
exists an A-divisor Y rational over a separable algebraic extension fc"
of k and algebraically equivalent to 2X. In fact, by a Theorem of Chow,
a homomorphism φx of A to A is rational over a separable algebraic
extension k" of k\ Applying Lem. 3.1.1 to our case we have an A-divisor
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Y rational over k" such that φγ = <px + φx o ^ = 2^ z = ^2χ &nd this

equality implies that Y is algebraically equivalent to 2X (see §0.).

For our purpose i.e., the existence of an A-divisor Z rational over

a separable algebraic extension of k and algebraically equivalent to Z,

we may assume that Z is rational over a finite algebraic extension of

k. Under this assumption there is a positive integer r such that prX is

rational over a separable algebraic extension km of k. Since p is not 2,

there are two integers I and m such that 21 + prm = 1 and if we put

XQ = ZY + mprX9 the divisor Z o is algebraically equivalent to Z and

rational over the composite fe0 of k" and fc(3), which is separable algebraic

over k. This complets our proof.

THEOREM 3.2. Let φ = (V,&(X)) be a ^-structure where V satisfies

both (T) and (P). Then there is a field of moduli kψ for 9β and there is

a ^-structure ψ isomorphίc to Sβ and rational over a regular {or a finite

separable algebraic) extension of fep.

Let 21 = (V, sf(X)) be an j/-structure satisfying the condition (A)

such that its underlying variety V is the same as that of 9β and sf(X)

is a subset of ^ ( Z ) . For brevity, such an j/-structure is called a "good

^/-structure included in ψ\ The existence of a good ^/-structure included

in $β is guaranteed in 3.0. Our proof of Th. 3.2 is divided into two

steps: i) the field of moduli k% for SI depends only on Sβ and does not

depend on the choice of Sί as long as 21 is a good ^-structure included

in Sβ, and ii) the field of moduli k% for a good ^-structure 2ί included

in φ is the field of moduli for Sβ.

Let 21 = (V, J/CX)) and % = (V, j/CZi)) be two good ^-structures in-

cluded in Sβ. In order to prove the equality &§r = ^ we may assume

that Z x = mX i.e., SΓX = 2ίm for a positive integer because the general

case can be easily reduced to this special case. Since k% is purely in-

separable extension of k%m (see Prop. 2.3 ii)), we have only a to show

that there exists a separable extension K of k%m> over which an ^/-structure

21' isomorphic to 21 is rational. According to Th. 2.2 there is an sd-

structure 21" = (V", sέ(mX")) isomorphic to 2ίm which is rational over a

separable extension K" of k%m. Since the variety Y" is isomorphic to V

and rational over K"> the condition (P) guarantees that there is a divisor

X' which is algebraically equivalent to X" and rational over a separable

extension Kf of K". The pair (V", ^(A7)) = ( F " , ^ ( Z " ) ) determines an
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^-structure which is isomorphic to 21 and rational over K! where Kf is
a separable extension of k%m. This proves i). We are now going to prove
the second part ii). Let σ be an automorphism of the universal domain
K, φ an isomorphism of V onto V° then φ is an isomorphism of SI to
21" if and only if it is an isomorphism of Sβ to ψ. In fact the "only
if" part is ovbious. Suppose that φ is an isomorphism of Sβ to ψ. Let
Xo be a basic polar divisor of §β and m a positive integer such that mXQ

is algebraically equivalent to X; then Xζ is algebraically equivalent to
φ(XQ) because both Xζ and φ(X0) are basic divisors of ψ and we have

X* = mXζ = mφ(X0) = φ(mX0) = φ(X) (mod 9a(V'))

This implies that φ is an isomorphism of 21 to 21* and proves the "if"
part. This equivalence between two conditions 21 = 21* and Sβ = $σ in-
duces the equality:

G(2I) - {(76 Aut (JΓ) I a* s «} = {σe Aut(J0|*β' s ^} = G(^) .

Thus the field k% satisfies the condition FM1 for Sβ. Next we prove that
the field fea satisfies the condition FM2 for Sβ. Since a field of rationality
for an ^/-structure isomorphic to 21 is a field of rationality for a &-
structure isomorphic to Sβ, we have only to prove that a field of rationality
K for a ^-structure φ' = (7', ̂ (ZO) isomorphic to Sβ is a field of ration-
ality for a good ^/-structure 21' = (V, s/(X")) included in φ. Vf is rational
over K and we may assume that X is a V'-divisor rational over K. There
is a positive integer m such that a pair (V',jtf(mX')) determines a good
^/-structure 2I/ included in φ, rational over K. This proves what we
mentioned above and also proves that k% satisfies the condition FM2 for Sβ.
Thus the proof of our theorem is completed.

3.2.1. From now on, by a curve we always understand a complete
non-singular curve.

If V is a curve, there is one and only one ^-structure Sβ = (V, &(X))
with underlying variety V and §β admits the field of moduli feβ (see Prop.
3.1 and Th. 3.2). On the other hand, the notation of fields of rationality
for a curve V, the transform Fff of F by αe Aut (JO are defined in the
usual way, and "isomorphisms" between two curves mean the usual
birational biregular isomorphisms between them. Under these definitions,
curves V become FM-structures but this new structure V is not different
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from the ^-structure (V,^(X)) at all in essential. Thus the field of
moduli &(F,̂ (X)) f° r (V,έF(X)) is at the same time the field of moduli kv

for the curve V.
Let ^ = (A,^(X)) be a ^-structure where A is an abelian variety;

then the field of moduli fep exists if the characteristic of the universal
domain is not two. On the other hand the pair (A,0>(X)) has another
kind of FM-structure called a ^-structure $β0 (or more customarily a
polarized abelian variety), which is defined just in the same way as J/0-
structure in 2.2.1.

COROLLARY 3.2.2. i) For a curve V the field of moduli kv always
exists, and there is a curve V ίsomorphic to V and rational over a regular
(or a finite separable algebraic) extension of kv.

ii) Assume that the universal domain is not of characteristic two.
For a polarized abelian variety ψ0 = (A,&(X)) the field of moduli kψ0

always exists, and there is a polarized abelian variety % isomorphic to
ψQ and rational over a regular (or a finite separable algebraic) extension
of fejs0. Futhermore if φ is the ^-structure consisting of the same pair
(A,2P(X)) as ψ0, then kψ0 coincides with the field of moduli fep for ?β.

The first assertion i) has already been seen above. The second as-
sertion ii) can be proved in the same way as in Cor. 2.2.2.
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