# COSIMPLICIAL COHOMOLOGY OF COALGEBRAS 

KEEAN LEE

## Introduction.

The interpretations of simplicial cohomology groups for associative commutative algebras and for Lie algebras were given by Beck [2], Iwai [9] and Shimada and others [15, 16]. On the other hand, Jonah [10] gave a formulation and an interpretation of the second and third cohomology groups of an associative coalgebra after the Hochschild's treatment [5~8].

The purpose of this paper is to deal with cosimplicial cohomology groups of a coassociative (ungraded) coalgebra (over a field), with coefficient in a two sided comodule (§3), and to interpret their first (§6) and second cohomology groups (§5), where the dimension indices in the cosimplicial cohomology are one less than the usual.

We will describe in detail the interpretation of the second cohomology groups, while we sketch the interpretation of the first cohomology groups, since the latter is more simple and analogous to the fromer.

In the first section, generalities on coalgebras over a field and comodules are given, and, in particular, it is proved that the category $\mathscr{C}$ of coalgebras has (finite) products and difference kernels. We characterize abelian cogroup objects in the category $(A, \mathscr{C})$ in the second section. Before interpreting the second cohomology groups, we insert §4, in which some properties of cosimplicial coalgebras are verified.

The main theorem of this paper is that $E x^{2}(M, A) \approx H^{2}(M, A)$, where $E x^{2}(M, A)$ denotes the set of all equivalence classes of two term extensions of a coalgebra $A$ by a two sided $A$-comodule $M$ and $H^{2}(M, A)$ the second cosimplicial cohomology group of $A$ with coefficient in $M$ (Theorem 5.4). It seems that furthermore complicated calculations will be needed to interpret $H^{n}(M, A)(n \geq 3)$.

The auther is indebted to Professor Nobuo Shimada for his kind

[^0]guidance, suggestion to the results in this paper and constant encouragement, to Professor Akira Iwai for his advice particularly on the treatment of abelian cogroup objects and cosimplicial coalgebras. Simultaneously, the auther would like to express thanks to Professor Hideyuki Matsumura for his critical reading and improvement of the manuscript.

## 1. Coalgebras and Comodules

In the sequel we assume that $K$ is a fixed field.
Definition 1.1. A coalgebra over $K$ (or simply a coalgebra) is a $K$-module $A$ together with $K$-module maps

$$
\Delta_{A}: A \longrightarrow A \otimes A, \quad \varepsilon_{A}: A \longrightarrow K
$$

such that the diagrams

are commutative. The first diagram is called the coassociativity of $\Delta_{A}$ (p. 5 of [17]), the map $\Delta_{A}$ is called the comultiplication of $A$ and $\varepsilon_{A}$ is called the counit of $A$ ([14]).

A morphism $f: A \rightarrow B$ of coalgebras (or simply a coalgebra map) is a $K$-module map satisfying the commutative diagrams


If we want to regard a coalgebra map $f$ as $K$-module map, we shall denote this by $U f$.

Suppose $A$ is a coalgebra and $V$ a submodule of $A$ with $\Delta_{A} V \subseteq V \otimes V$. Then $V$ is a coalgebra with its comultiplication $\Delta_{A} \mid V$ and counit $\varepsilon_{A} \mid V$, and is said to be a subcoalgebra of $A$. The following are easily proved ([17]).

Proposition 1.2. (i) The sum of a collection of subcoalgebras is a subcoalgebra.
(ii) The intersection of subcoalgebras is a subcoalgebra.
(iii) The image $U f$ for a coalgebra map $f$ is a subcoalgebra.

Definition 1.3. Let $A$ be a coalgebra. $A$ left $A$-comodule is a $K$ module $M$ together with a $K$-module map $\Delta_{M}^{l}: M \rightarrow A \otimes M$ such that the diagrams

are commutative. Similarly, with a $K$-module map $\Delta_{M}^{r}: M \rightarrow M \otimes A$ we can define a right $A$-comodule. Sometimes $\Delta_{M}^{l}$ and $\Delta_{M}^{r}$ are called the comodule structure maps of $M$. Let $M$ be both a left and a right $A$ comodule. If moreover $\left(\Delta_{M}^{l} \otimes 1\right) \Delta_{M}^{r}=\left(1 \otimes \Delta_{M}^{r}\right) \Delta_{M}^{l}$, then we call $M$ a two sided $A$-comodule. In particular we can regard $A$ as a two sided $A$ comodule with $\Delta_{A}^{l}=\Delta_{A}=\Delta_{A}^{r}$.

If $M$ and $M^{\prime}$ are left $A$-comodules, then a $K$-module map $f: M \rightarrow M^{\prime}$ is called a left $A$-comodule map if it satisfies the commutative diagram


Similarly, we can define a right $A$-comodule map and a two sided $A$ comodule map.

Definition 1.4. Let $A$ be a coalgebra, and let $I$ be a submodule of $A$. We call $I$ a (two-sided) coideal of $A$ if

$$
\text { (i) } \Delta_{A} I \subseteq A \otimes I+I \otimes A, \quad \text { (ii) } \varepsilon_{A} I=0
$$

In this case we have the following which are easily verified (17]).
Proposition 1.5. (i) The sum of a collection of coideals is a coideal.
(ii) The kernel Ker Uf for a coalgebra map is a coideal.
(iii) For two coalgebra maps $f, g: A \rightarrow B, \operatorname{Im}(U f-U g)$ is a coideal of $B$.
(iv) If $A$ is a coalgebra and I a coideal of $A$, then the quotient

A/I as K-module has a natural coalgebra structure induced by the projection $A \rightarrow A / I$.

Let $\mathscr{C}$ be the category consisting of all coalgebras over $K$ and coalgebra maps. The following is trivial.

Proposition 1.6. $\mathscr{C}$ has sums and difference cokernels. Accordingly $\mathscr{C}$ has pushouts.

In consequence $\mathscr{C}$ has direct limits (p. 38 of [19]). We shall describe the definition of cofree coalgebras and its existence following [17].

Definition 1.7. Let $V$ be a vector space over $K$. A pair ( $F V, \eta_{V}$ ) with $F V$ a coalgebra and a $K$-module map $\eta_{V}: F V \rightarrow V$ is called a cofree coalgebra on $V$ if for any coalgebra $A$ and a $K$-module map $f: A \rightarrow V$ there is a unique coalgebra map $h: A \rightarrow F V$ such that the diagram

is commutative. If there exists a cofree coalgebra on $V$ then it is unique up to isomorphism of coalgebras.

For each algebra $X$ over $K$ we define

$$
X^{0}=\left\{x \in X^{*} \mid \operatorname{Ker} x \text { contains a cofinite ideal }\right\},
$$

where $X^{*}$ is the dual of $X$ and a cofinite ideal is an ideal $I$ in $X$ such that $X / I$ is finite dimensional. We can prove that $X^{0}$ is a coalgebra in $X^{*}$ with $\Delta_{X_{0}}: X^{0} \rightarrow X^{0} \otimes X^{0}$ and $\varepsilon_{X_{0}}: X^{0} \rightarrow K$ defined by $\Delta_{x^{0}}=\varphi^{*} \mid X^{0}$ and $\varepsilon_{X 0} x=x(1)$ for $x \in X^{0}$, where $\varphi: X \otimes X \rightarrow X$ is the multiplication of $X$ and $\varphi^{*}$ the dual of $\varphi$.

Given a vector space $V$ over $K$, let $T\left(V^{*}\right)$ be the tensor algebra of $V^{*}$. Since there is the natural inclusion map $i: V^{*} \rightarrow T\left(V^{*}\right)$ we can define a $K$-module map $\eta: T\left(V^{*}\right)^{0} \rightarrow V^{* *}$. In this case $\left(T\left(V^{*}\right)^{0}, \eta\right)$ is the cofree coalgebra on $V^{* *}$ (see p. 126 of [17]). Let $F V=\sum W$ with the sum taken over all subcoalgebras $W$ of $T\left(V^{*}\right)^{0}$ such that $\eta W \subset V$, and put $\eta_{V}=\eta \mid F V$ then $\left(F V, \eta_{V}\right)$ is the cofree coalgebra on $V$. Thus we have the following.

Theorem 1.8. For any vector space $V$ over $K$ there is the cofree coalgebra on it.

This theorem says that there is an adjoint pair ( $U, F$ ) such that

$$
\mathscr{C} \underset{F}{\stackrel{U}{\longleftrightarrow}} \mathscr{M}_{K}
$$

where $U$ is the underlying object functor, $F$ the cofree coalgebra functor, and $\mathscr{M}_{K}$ the category of all vector spaces over $K$. That is, there is a natural isomorphism in $C$ and in $V$

$$
\begin{equation*}
\lambda(C, V): \operatorname{Hom}_{\mu_{K}} \approx \operatorname{Hom}_{\varepsilon}(C, F V) \tag{1.8}
\end{equation*}
$$

as sets for $C \in \mathscr{C}$ and $V \in \mathscr{M}_{K}$. In this situation $U$ is the left adjoint of $F$ ( $F$ the right adjoint of $U$ ), which is denoted by $U \dashv F$ in general. Define natural transformations $\varepsilon$ and $\eta$ by

$$
\begin{array}{ll}
\varepsilon(C)=\lambda\left(1_{U C}\right): C \rightarrow F U C & \text { for } C \in \mathscr{C},  \tag{1.9}\\
\eta(V)=\lambda^{-1}\left(1_{F V}\right): U F V \rightarrow V & \text { for } V \in \mathscr{M}_{K}
\end{array}
$$

with abbreviations $\lambda=\lambda(C, U C)$ and $\lambda=\lambda(F V, V)$, respectively. Then we have:

$$
\begin{gather*}
\lambda(f)=F(f) \cdot \varepsilon(C) \quad \text { for } f \in \operatorname{Hom}_{M_{R}}(U C, V), \\
\lambda^{-1}(\rho)=\eta(V) \cdot U(\rho) \quad \text { for } \rho \in \operatorname{Hom}_{\varepsilon}(C, F V),  \tag{1.10}\\
\eta U \cdot U \varepsilon=1_{U}: U \rightarrow U F U \rightarrow U, \quad F \eta \cdot \varepsilon F=1_{F}: F \rightarrow F U F \rightarrow F .
\end{gather*}
$$

Proposition 1.11. $\mathscr{C}$ has (finite) products and difference kernels. Accordingly $\mathscr{C}$ has pullbacks.

Proof. Let $A$ and $B$ be coalgebras. We have canonical projections $p_{1}: F(U A \oplus U B) \rightarrow F U A$ and $p_{2}: F(U A \oplus U B) \rightarrow F U B$ in $\mathscr{C}$. Define $P=$ $p_{1}^{-1}(\varepsilon A) \cap p_{2}^{-1}(\varepsilon B)$ which is a subcoalgebra of $F(U A \oplus U B)$. The projections $p_{A}: p \rightarrow A$ and $p_{B}: P \rightarrow B$ are defined by $p_{A}=\varepsilon^{-1}\left(p_{1} \mid P\right)$ and $p_{B}=\varepsilon^{-1}\left(p_{2} \mid P\right)$.

Assume $f: L \rightarrow A$ and $g: L \rightarrow B$ are in $\mathscr{C}$. By the universality of $F(U A \oplus U B)$ there exists a unique coalgebra map $h: L \rightarrow F(U A \oplus U B)$ such that

$$
\eta_{U A \oplus U B} \cdot h=U f \oplus U g, \quad p_{1} h=\varepsilon f \quad \text { and } \quad p_{2} h=\varepsilon g .
$$

Therefore $\operatorname{Im} h \subset P, p_{A} h=\varepsilon^{-1} p_{1} h=f$ and $p_{B} h=\varepsilon^{-1} p_{2} h=g$. That is, $P$ is the product of $A$ and $B$.

Assume $f$ and $g: A \rightarrow B$ are coalgebra maps. Put $D_{1}=\operatorname{Ker}(U f-U g)$, and define $D_{2}$ by $D_{2}=\left\{a \in A \mid \Delta_{A} a \subset D_{1} \otimes D_{1}\right\}$. Since for $a \in D_{2}, a=\left(\varepsilon_{A} \otimes 1\right)$ - $\Delta_{A} a \in\left(\varepsilon_{A} \otimes 1\right)\left(D_{1} \otimes D_{1}\right) \subset D_{1}$, we have $D_{2} \subset D_{1}$. Inductively, we define $D_{n}$
by $D_{n}=\left\{a \in A \mid A_{A} a \subset D_{n_{-1}} \otimes D_{n-1}\right\}$, then $D_{n} \subset D_{n-1}$. Put $D=\bigcap_{n=1}^{\infty} D_{n}$, then it follows that $D$ is a subcoalgebra of $A$ and the natural inclusion map $i: D \rightarrow A$ is a coalgebra map.

Suppose there is a coalgebra map $h: L \rightarrow A$ with $f h=g h$. Then $h L$ is a subcoalgebra of $A$ contained in $D$. So there is a unique coalgebra map $l: L \rightarrow D$ with $i l=h$. Thus $D$ is the difference kernel for $f$ and $g$.
q.e.d.
(Note: In our proposition (finite) means that the first part holds even if the word "finite" is omitted.) In consequence $\mathscr{C}$ has inverse limits (p. 38 of [19]).

## 2. Abelian cogroup objects in $(A, \mathscr{C})$

In the sequal we assume that $A$ is a coalgebra.
DEFINITION 2.1. We define a new category ( $A, \mathscr{C}$ ) whose each object is $A \rightarrow B$ in $\mathscr{C}$, and each morphism is a commutative diagram

for any two objects $A \rightarrow B$ and $A \rightarrow C$ in $(A, \mathscr{C})$, where $B \rightarrow C$ is in $\mathscr{C}$. An object $\beta_{B}: A \rightarrow B$ in $(A, \mathscr{C})$ will be denoted by ( $\beta_{B}, B$ ) (or simply by $B$ ), and $\beta_{B}$ is called the structure map of $B$.

An abelian cogroup object in $(A, \mathscr{C})$ is an object $B$ such that for any $C \in(A, \mathscr{C}), \operatorname{Hom}_{(A, \mathscr{C})}(B, C)$ is an abelian group and

$$
\operatorname{Hom}_{(A, \mathscr{\varepsilon})}(B,-):(A, \mathscr{C}) \rightarrow A b
$$

is a covariant functor, where $A b$ is the category of all abelian groups (for abelian group objects see [11]).

Let $B$ be an abelian cogroup object in $(A, \mathscr{C})$. In the commutative diagram

with $\gamma_{0}$ the zero element of the abelian group $\operatorname{Hom}_{(A, \varepsilon)}(B, A)$, we put $M$
$=\operatorname{Ker} U \gamma_{0}$, then $M$ is a coideal (see Proposition 1.5), and $B$ is isomorphic to direct sum $B \cong A \oplus M$ as $K$-modules.

Consider the diagram of the pushout

then it follows that we have a canonical direct decomposition $B \Perp_{A} B \cong$ $A \oplus M \oplus M$ as $K$-modules. We put

$$
\mu=i_{1}+i_{2} \in \operatorname{Hom}_{(A, \wp)}\left(B, B \Perp_{A} B\right) .
$$

Identifying $A$ and $\beta_{B} A$ we have

$$
\begin{aligned}
\mu a=i_{1} a & =i_{2} a=(a, 0,0) & & \text { for } a \in A \\
i_{1} m=(0, m, 0), i_{2} m & =(0,0, m), \mu m=(0, m, m) & & \text { for } m \in M .
\end{aligned}
$$

Proposition 2.2. Under the above situation

$$
\Delta_{B} a=\Delta_{A} a \quad \text { for } a \in A \text { and } \Delta_{B} M \subseteq A \otimes M+M \otimes A .
$$

Proof. Assume $\Delta_{B} m=\sum_{i}\left[a_{i} \otimes m_{i}+m_{i}^{\prime} \otimes a_{i}^{\prime}+m_{i}^{\prime \prime} \otimes m_{i}^{\prime \prime \prime}\right]$ for $m \in M$, where $a_{i}, a_{i}^{\prime} \in A$ and $m_{i}, m_{i}^{\prime}, m_{i}^{\prime \prime}, m_{i}^{\prime \prime \prime} \in M$. Since $(\mu \otimes \mu) \Delta_{B}=\Delta_{B 山_{A} B} \cdot \mu$ we have the following:

$$
\begin{aligned}
\Delta_{B_{\perp A} B} \cdot \mu m= & \Delta_{B_{\Perp A}}\left(i_{1}+i_{2}\right) m=\left(i_{1} \otimes i_{1}\right) \Delta_{B} m+\left(i_{2} \otimes i_{2}\right) \Delta_{B} m \\
= & \sum_{i}\left[\left(a_{i}, 0,0\right) \otimes\left(0, m_{i}, m_{i}\right)+\left(0, m_{i}^{\prime}, m_{i}^{\prime}\right) \otimes\left(a_{i}^{\prime}, 0,0\right)\right. \\
& \left.+\left(0, m_{i}^{\prime \prime}, 0\right) \otimes\left(0, m_{i}^{\prime \prime \prime}, 0\right)+\left(0,0, m_{i}^{\prime \prime}\right) \otimes\left(0,0, m_{i}^{\prime \prime \prime}\right)\right],
\end{aligned}
$$

and on the other hand,

$$
\begin{aligned}
(\mu \otimes \mu) \Delta_{B} m= & \sum_{i}\left[\left(a_{i}, 0,0\right) \otimes\left(0, m_{i}, m_{i}\right)+\left(0, m_{i}^{\prime}, m_{i}^{\prime}\right) \otimes\left(a_{i}^{\prime}, 0,0\right)\right. \\
& +\left(0, m_{i}^{\prime \prime}, 0\right) \otimes\left(0, m_{i}^{\prime \prime}, 0\right)+\left(0,0, m_{i}^{\prime \prime}\right) \otimes\left(0,0, m_{i}^{\prime \prime}\right) \\
& \left.+\left(0, m_{i}^{\prime \prime}, 0\right) \otimes\left(0,0, m_{i}^{\prime \prime \prime}\right)+\left(0,0, m_{i}^{\prime \prime}\right) \otimes\left(0, m_{i}^{\prime \prime}, 0\right)\right]
\end{aligned}
$$

Therefore we have $\sum_{i}\left[\left(0, m_{i}^{\prime \prime}, 0\right) \otimes\left(0,0, m_{i}^{\prime \prime \prime}\right)+\left(0,0, m_{i}^{\prime \prime}\right) \otimes\left(0, m_{i}^{\prime \prime \prime}, 0\right)\right]=0$, which implies that $\sum_{i} m_{i}^{\prime \prime} \otimes m_{i}^{\prime \prime \prime}=0 . \quad \Delta_{B} a=\Delta_{A} a$ is clear. q.e.d.

Corollary 2.3. With the above situation $M$ is a two sided $A$ comodule.

Proof. Since we can put $\Delta_{B} m=\sum_{i}\left[a_{i} \otimes m_{i}+m_{i}^{\prime} \otimes a_{i}^{\prime}\right]$ for $m \in M$
we define $\Delta_{M}^{l}: M \rightarrow A \otimes M$ and $\Delta_{M}^{r}: M \rightarrow M \otimes A$ by $\Delta_{M}^{l} m=\sum_{i} a_{i} \otimes m_{i}$ and $\Delta_{M}^{r} m=\sum_{i} m_{i}^{\prime} \otimes a_{i}^{\prime}$. By the coassociativity of $\Delta_{B}$ we know that $M$ satisfies all conditions (see Definition 1.3) for a two sided $A$-comodule. q.e.d.

Conversely, let $M$ be a two sided $A$-comodule. We define $\Delta_{A \oplus M}: A \oplus M$ $\rightarrow(A \oplus M) \otimes(A \oplus M)$ and $\varepsilon_{A \oplus M}: A \oplus M \rightarrow K$ by

$$
\begin{aligned}
\Delta_{A \oplus M}=\Delta_{A} \text { on } A, & \Delta_{A \oplus B}=\Delta_{M}^{l}+\Delta_{M}^{r} \text { on } M \\
\varepsilon_{A \oplus M}(a, m)=\varepsilon_{A} a & \text { for }(a, m) \in A \oplus M .
\end{aligned}
$$

Then $A \oplus M$ is a coalgebra, and $A \oplus M$ with the natural structure map $A \rightarrow A \oplus M$ is an object in $(A, \mathscr{C})$. The coalgebra $A \oplus B$ is called the coidealization of $M$, and we shall denote this by $A * M$.

For an object $C$ in $(A, \mathscr{C})$ and a two sided $A$-comodule $M$ a coderivation $f: M \rightarrow C$ is defined as a $K$-module map such that

$$
\Delta_{C} f m=\sum_{i}\left[\beta_{c} \alpha_{i} \otimes f m_{i}+f m_{i}^{\prime} \otimes \beta_{C} \alpha_{i}^{\prime}\right] .
$$

where $m \in M$ and $\Delta_{A * M} m=\sum_{i}\left[a_{i} \otimes m_{i}+m_{i}^{\prime} \otimes a_{i}^{\prime}\right]$. The set of all such coderivations $f: M \rightarrow C$ forms an abelian group denoted by $\operatorname{Coder}_{M}(C)$, and it gives the coderivation functor

$$
\begin{equation*}
\operatorname{Coder}_{M}:(A, \mathscr{C}) \rightarrow A b \tag{2.4}
\end{equation*}
$$

As is well known, there is a canonical isomorphism

$$
\begin{equation*}
\operatorname{Coder}_{M}(C) \cong \operatorname{Hom}_{(A, \mathscr{G})}(A * M, C) \tag{2.5}
\end{equation*}
$$

We sometimes put $\operatorname{Coder}_{M}(C)=\operatorname{Coder}_{K}(M, C)$. This shows that a coidealization of a two sided $A$-comodule is an abelian cogroup object in $(A, \mathscr{C})$. Accordingly we have:

THEOREM 2.6. An object $B$ in $(A, \mathscr{C})$ is an abelian cogroup object iff there is a two sided $A$-comodule $M$ such that $A * M \cong B$ as coalgebras.

We shall denote by ${ }_{A} C M_{A}$ the category consisting of all two sided $A$-comodules and two sided $A$-comodule maps. Since $A$ is an ungraded coassociative coalgebra over a field $K$, we can easily check that ${ }_{A} C M_{A}$ is an abelian category.

## 3. Cosimplicial Cohomology

We shall begin with the general theory for right derived functors. Let $\mathscr{A}$ be an arbitrary category. We define the category $\mathscr{A}^{+}$whose
objects are the same as those of $\mathscr{A}$ and whose morphisms are formal sum of morphisms in $\mathscr{A}$, i.e., $\operatorname{Hom}_{\mathscr{A}^{+}}(X, Y)$ is the free abelian group on $\operatorname{Hom}_{\alpha-}(X, Y)$.

Definition 3.1. Let $J$ be a class of objects in $\mathscr{A}$. A $J$-injective resolution for $X \in \mathscr{A}$ is a cochain complex

$$
X \rightarrow X_{0} \rightarrow X_{1} \rightarrow \cdots(*)
$$

in $\mathscr{A}^{+}$satisfying
(i) $X_{n} \in J$ for $n \geq 0$
(ii) for each $Y \in J$ the functor $\operatorname{Hom}_{\alpha^{+}}\left(\_, Y\right)$ transforms (*) into an acyclic complex of abelian groups

$$
0 \leftarrow \operatorname{Hom}_{s^{+}}(X, Y) \leftarrow \operatorname{Hom}_{s^{+}}\left(X_{0}, Y\right) \leftarrow \cdots
$$

A class of injective models for $\mathscr{A}$ is a class $J$ of objects in $\mathscr{A}$ such that each $X \in \mathscr{A}$ has a $J$-injective resolution ([3], [18]).

If a category $\mathscr{A}$ has a class $J$ of injective models, for each covariant functor $T: \mathscr{A} \rightarrow \mathscr{A} b$ from $\mathscr{A}$ to an abelian category $\mathscr{A} b$ right derived functors $R^{n} T: \mathscr{A} \rightarrow \mathscr{A} b(n \geq 0)$ of $T$ with respect to $J$ can be defined as follows. If $X$ is an object in $\mathscr{A}$, then $R^{n} T X$ is the $n$-th cohomology group of

$$
0 \longrightarrow T^{+} X_{0} \xrightarrow{T^{+} d_{1}} T^{+} X_{1} \xrightarrow{T^{+} d_{2}} T^{+} X_{2} \longrightarrow \cdots,
$$

where $0 \rightarrow X \rightarrow X_{0} \xrightarrow{d_{1}} X_{1} \xrightarrow{d_{2}} X_{2} \rightarrow \cdots$ is a $J$-injective resolution of $X$ and $T^{+}: \mathscr{A}^{+} \rightarrow \mathscr{A} b$ is a unique additive functor induced from $T$. Note that $T^{+} X=T X$ for $X \in \mathscr{A}$. The obvious comparison theorem holds for $J$-injective resolutions, and therefore we get a unique functor $R^{n} T: \mathscr{A} \rightarrow$ $\mathscr{A} b$ up to natural equivalence, which is called the right derived functor of $T$. As is well known ([12]),
(i) $X \rightarrow X_{0}$ induces a natural map $T X \rightarrow R^{0} T X$
(ii) for $X \in J, T X \rightarrow R^{0} T X$ is isomorphic and $R^{n} T X=0$ if $n>0$.

It is convenient to use cosimplicial method in studying derived functors.

Definition 3.2. A cosimplicial object $X_{*}$ in a category $\mathscr{A}$ consists of
(i) an object $X_{n} \in \mathscr{A}$ for each $n \geq 0$.
(ii) morphisms $\varepsilon^{i}: X_{n-1} \rightarrow X_{n} \quad(0 \leq i \leq n) \quad$ (coface operators) and $\delta^{i}: X_{n} \rightarrow X_{n-1}(0 \leq i \leq n-1)$ (codegeneracy operators) such that

$$
\begin{aligned}
\varepsilon^{j} \varepsilon^{i} & =\varepsilon^{i} \varepsilon^{j-1} \text { if } i<j, \quad \delta^{j} \delta^{i}=\delta^{i} \delta^{j+1} \text { if } i \leq j, \\
\delta^{j} \varepsilon^{i} & =\varepsilon^{i} \delta^{j-1} \text { if } i<j, \\
\delta^{i} \varepsilon^{i} & =\text { identity }=\delta^{i} \varepsilon^{i+1}, \delta^{j} \varepsilon^{i}=\varepsilon^{i-1} \delta^{j} \text { if } i>j+1 .
\end{aligned}
$$

An augumentation for $X_{*}$ consists of a map $\varepsilon: X_{-1} \rightarrow X_{0} \in \mathscr{A}$ with $\varepsilon^{1} \varepsilon=\varepsilon^{0} \varepsilon: X_{-1} \rightarrow X_{1}$. If $X_{*}$ is an augumented cosimplicial object of $X$ :

$$
X_{*}: 0 \longrightarrow X \xrightarrow{\varepsilon} X_{0} \xrightarrow[\varepsilon^{1}]{\stackrel{\varepsilon^{0}}{\longrightarrow}} X_{1} \cdots \xrightarrow[\varepsilon^{n}]{\stackrel{\varepsilon^{0}}{\vdots}} X_{n} \cdots,
$$

then there is a cochain complex

$$
\mathrm{ch}^{+} X_{*}: 0 \longrightarrow X \xrightarrow{\varepsilon} X_{0} \xrightarrow{d_{1}} X_{1} \xrightarrow{d_{2}} X_{2} \longrightarrow \cdots
$$

in $\mathscr{A}^{+}$, where $d_{n}=\sum_{i=1}^{n}(-1)^{i} \varepsilon^{j}(n \geq 1)$.
We next prove that the category $(A, \mathscr{C})$ has a class of injective models using a triple, and define right derived functors from $(A, \mathscr{C})$ to $A b$. Recall that there is the adjoint pair $U \dashv F$ between categories $\mathscr{C}$ and $\mathscr{M}_{k}$ (§1). There is a triple ( $G, \varepsilon, \delta$ ) ([1]). That is, put

$$
G=F U: \mathscr{C} \rightarrow \mathscr{C}, \quad \varepsilon: 1_{\mathscr{E}} \rightarrow G, \quad \delta: G G \rightarrow G
$$

where $\delta=F \eta U: G G=F(U F) U \rightarrow F U=G$. For

$$
G_{*} A=\left\{G_{n} A \mid G_{n} A=G^{n+1} A, n \geq-1\right\}
$$

we define the following:

$$
\begin{array}{lr}
\left(G_{n-1} A \xrightarrow{\varepsilon^{i}} G_{n} A\right)=\left(G^{n} A \xrightarrow{G^{i} \varepsilon G^{n-i}} G^{n+1} A\right) & (0 \leq i \leq n) \\
\left(G_{n+1} A \xrightarrow{\delta^{i}} G_{n} A\right)=\left(G^{n+2} A \xrightarrow{G^{i} \delta G^{n-i}} G^{n+1} A\right) & (0 \leq i \leq n),
\end{array}
$$

then $\varepsilon^{i}$ and $\delta^{i}$ satisfy the identities in Definition 3.2. Therefore we obtain an augumented cosimplicial object $G_{*} A$ of $A$ with the natural augumentation $\varepsilon: G_{-1} A=A \rightarrow G_{0} A$, i.e.,

$$
G_{*} A: 0 \longrightarrow A \xrightarrow{\varepsilon} G A \xrightarrow[\varepsilon^{1}]{\stackrel{\varepsilon^{0}}{\longrightarrow}} G^{2} A \ldots \xrightarrow[\varepsilon^{n-1}]{\stackrel{\varepsilon^{0}}{\vdots}} G^{n} A \ldots .
$$

This sequence together with codegeneracy operators $\delta^{i}$ is called the augumenetd standard cosimplicial resolution of $A$.

Proposition 3.3. Let $J$ be the class of all $C \in \mathscr{C}$ with $C \cong F V$ for some $V \in \mathscr{M}_{k}$, then $J$ is a class of injective models for $\mathscr{C}$, and $\mathrm{ch}^{+} G_{*} A$ is a J-injective resolution for $A \in \mathscr{C}$.

Proof. Let us construct a contracting homotopy

$$
S=\left\{S_{n} \mid S_{n}: \operatorname{Hom}_{\wp^{+}}\left(G^{n} A, F V\right) \rightarrow \operatorname{Hom}_{\mathscr{\varepsilon}^{+}}\left(G^{n+1} A, F V\right)\right\} \quad(n \geq 0)
$$

where $G^{0} A=A$. For each $f: G^{n} A \rightarrow F V$ in $\mathscr{C}$ we define $S_{n} f=F \eta_{V} \cdot G f$. Setting

$$
\begin{aligned}
& d_{n}^{*}=\operatorname{Hom}_{\varepsilon^{+}}\left(d_{n}, F V\right)(n \geq 1) \quad \text { and } \quad d_{0}^{*}=\varepsilon^{*}=\operatorname{Hom}_{\varepsilon^{+}}(\varepsilon, F V) \\
& \begin{aligned}
& d_{n}^{*} S_{n} f=\sum_{i=0}^{n}(-1)^{i} F \eta_{V} \cdot G f \cdot \varepsilon^{i}=F \eta_{V} \cdot G f \cdot \varepsilon^{0}+\sum_{i=1}^{n}(-1)^{i} F \eta_{V} \cdot G f \cdot \varepsilon^{i} \\
&=F \eta_{V} \cdot \varepsilon F \cdot f+\sum_{i=1}^{n}(-1)^{i} F \eta_{V} \cdot G\left(f \cdot G^{i-1} \varepsilon G^{n-i}\right) \\
&=f+\sum_{i=1}^{n}(-1)^{i} F \eta_{V} \cdot G\left(f \cdot \varepsilon^{i-1}\right)=f-S_{n-1}\left(d_{n-1}^{*} f\right)(n \geq 1), \\
& d_{0}^{*} S_{0} f=F \eta_{V} \cdot G f \cdot \varepsilon=F \eta_{V} \cdot \varepsilon F \cdot f=f .
\end{aligned}
\end{aligned}
$$

(Note: By $(1,10) F \eta_{V} \cdot \varepsilon F=1$.) So we have $d_{n}^{*} \cdot S_{n} f+S_{n-1} \cdot d_{n-1}^{*} f=f$, and therefore $S=\left\{S_{n}\right\}$ is the required contracting homotopy. q.e.d.

Note that each $G^{n} A$ is regarded canonically as an object of $(A, \mathscr{C})$ with a unique structure map $A \rightarrow G^{n} A$ expressed by a composition of coface operators. By the same way as in the proof of the previous proposition we can prove that the category $(A, \mathscr{C})$ has a class $J_{A}=\{A \rightarrow$ $\left.F V \in(A, \mathscr{C}) \mid V \in \mathscr{M}_{k}\right\}$ of injective models. Also, if $A \rightarrow C$ is an object in $(A, \mathscr{C})$ then $\mathrm{ch}^{+} G_{*} C$ is a $J_{A}$-injective resolution for $C$.

Let $B=A * M$, which is the coidealization of a two sided $A$-comodule $M$, be an abelian cogroup object in $(A, \mathscr{C})$. Then there is the covariant functor $T=\operatorname{Hom}_{(A, \mathscr{C}}(B, \ldots):(A, \mathscr{C}) \rightarrow A b$, and therefore we can define the right derived functor of $T$ such that

$$
R^{n} T A=H^{n}\left(\sum_{m=0}^{\infty} \operatorname{Hom}_{(A, \varepsilon)}\left(B, G_{m} A\right)\right) \quad\left(\text { or } H^{n}\left(\operatorname{Hom}_{(A, \varepsilon)}\left(B, G_{*} A\right)\right)\right.
$$

$$
(n>0)
$$

where $H$ is the cohomology functor. By (2.4) and (2.5) we have

$$
\begin{aligned}
& H^{n}\left(\operatorname{Hom}_{(A, \varepsilon)}\left(B, G_{*} A\right)\right) \cong H^{n}\left(\operatorname{Coder}_{k}\left(M, G_{*} A\right)\right) \\
& \quad\left(=H^{n}\left(\sum_{m=0}^{\infty} \operatorname{Coder}_{k}\left(M, G_{m} A\right)\right)\right) \quad(n \geq 0),
\end{aligned}
$$

and put $H^{n}\left(\operatorname{Coder}_{k}\left(M, G_{*} A\right)\right)=H^{n}(M, A) . \quad H^{n}(M, A)$ is called the $n$ dimensional cosimplicial cohomology group with coefficient in a two sided $A$-comodule $M$. Since the functor $\operatorname{Coder}_{k}(M, \ldots)$ is left exact we have

ThEOREM 3.4. $\operatorname{Hom}_{(A, \varepsilon)}(B, A) \cong \operatorname{Coder}_{k}(M, A) \cong H^{0}(M, A)$.
THEOREM 3.5. If $0 \rightarrow M^{\prime} \xrightarrow{i} M \xrightarrow{j} M^{\prime \prime} \rightarrow 0$ is exact in ${ }_{A} C M_{A}$, then there is the long exact sequence of the cohomology groups

$$
\begin{aligned}
0 \longrightarrow H^{0}\left(M^{\prime \prime}, A\right) & \longrightarrow H^{0}(M, A) \\
& \longrightarrow H^{0}\left(M^{\prime}, A\right) \xrightarrow{\Delta_{0}} H^{\prime}\left(M^{\prime \prime}, A\right) \longrightarrow \cdots .
\end{aligned}
$$

Proof. Let $\bar{i}: A * M^{\prime} \rightarrow A * M$ and $\bar{j}: A * M \rightarrow A * M^{\prime \prime}$ be the induced maps of $i$ and $j$, respectively. Assume $F V \in(A, \mathscr{C})$ for some $V \in \mathscr{M}_{K}$. We shall first prove that the sequence

$$
\begin{aligned}
& 0 \longleftarrow \operatorname{Hom}_{(A, \varepsilon)}\left(A * M^{\prime}, F V\right) \stackrel{\bar{i}^{*}}{\leftarrow} \\
& \stackrel{\bar{j}^{*}}{\longleftarrow} \operatorname{Hom}_{(A, \varepsilon)}(A * M, F V) \\
& \operatorname{Hom}_{(A, 8)}\left(A * M^{\prime \prime}, F V\right) \longleftarrow 0
\end{aligned}
$$

is exact, where $\bar{i}^{*}=\operatorname{Hom}_{(A, \varphi)}(\bar{i}, F V)$ and $\bar{j}^{*}=\operatorname{Hom}_{(A, \varphi)}(\bar{j}, F V)$. We can easily check that $\bar{j}^{*}$ is a monomorphism. Take a map $\bar{f} \in \operatorname{Hom}_{(A, \varepsilon)}\left(A * M^{\prime}\right.$, $F V$ ), then by (1.8) there is a unique $K$-module map $\lambda^{-1}(\bar{f})=f: U\left(A * M^{\prime}\right)$ $\rightarrow V$. Since $U(A * M) \cong U\left(A * M^{\prime}\right) \oplus W$ for some $K$-module $W$, we can choose a $K$-module map $g: U\left(A * M^{\prime}\right) \rightarrow V$ such that $g \cdot U \bar{i}=f$. Again, by (1.8)', there exists a unique coalgebra map $\bar{g}: A * M \rightarrow F V$ in $(A, \mathscr{C})$ corresponding to $g$, and therefore, by (1.10) we have $\lambda^{-1}(\bar{g} \cdot \bar{i})=\eta(V) \cdot U \bar{g} \cdot U \bar{i}$ $=g \cdot U \bar{i}=f=\lambda^{-1}(\bar{f})$ and $\bar{g} \cdot \bar{i}=\bar{f}$. Therefore $\bar{i}^{*}$ is an epimorphism. (In fact, $F V$ is an injective object in $\mathscr{C}$ ).

Taking $G^{n} A$ for $F V$, the usual argument in homological algebra gives the cohomology exact sequence, as asserted. q.e.d.

We conclude this section with a proposition which will be used sometimes later on. Recall the standard cosimplicial resolution of $A$. We put

$$
U G_{*} A: 0 \longrightarrow U A \xrightarrow{U \varepsilon} U G A \xrightarrow{U d_{1}} U G^{2} A \xrightarrow{U d_{2}} \cdots,
$$

where $U d_{n}=U \varepsilon^{0}-U \varepsilon^{1}+\cdots+(-1)^{n} U \varepsilon^{n}(n \geq 1)$.
Proposition 3.6. The augumented cochain complex $U G_{*} A$ is acyclic.
Proof. By (1.9) and (1.10) there are $K$-module maps $\eta_{n}=\eta_{U G_{n} A}$ :
$U G_{n+1} A \rightarrow U G_{n} A$ such that $\eta_{n} \cdot \varepsilon^{0}=1, \eta_{n} \cdot \varepsilon^{i}=\varepsilon^{i-1} \eta_{n-1}(0<i \leq n+1)$ and $\eta_{-1} \cdot \varepsilon=1$. (Note: $G_{-1} A=A$.) We can easily check $\eta_{n} d_{n+1}+d_{n} \eta_{n-1}=1$, and therefore $\eta=\left\{\eta_{n} \mid n \geq-1\right\}$ is the required contracting homotopy.
q.e.d.

## 4. Cosimplicial Coalgebras.

A cosimplicial object $\left\{A_{*}=A_{n} \mid n \geq 0\right\}$ in the category $\mathscr{C}$ is called a cosimplicial coalgebra. For an augumented cosimplicial coalgebra of $A$ :

$$
A *: 0 \longrightarrow A \xrightarrow{\varepsilon} A_{0} \underset{\varepsilon^{1}}{\stackrel{\varepsilon^{0}}{\longrightarrow}} A_{1} \ldots \xrightarrow[\varepsilon^{n}]{\stackrel{\varepsilon^{0}}{\vdots}} A_{n} \ldots,
$$

we define $t_{n}: U A_{n} \rightarrow U A_{n}$ and $u_{n}: U A_{n_{+1}} \rightarrow U A_{n}$ by

$$
\begin{gathered}
t_{n}=\left(1-U \varepsilon^{n} \cdot U \delta^{n-1}\right) \cdots\left(1-U \varepsilon^{1} \cdot U \delta^{0}\right)(n \geq 1), \quad t_{0}=1_{A_{0}} \\
u_{n}=U \delta^{0} \cdot t_{0}-U \delta^{1} \cdot t_{1}+\cdots+(-1)^{n-1} U \delta^{n-1} t_{n-1}(n \geq 1), \\
u_{0}=0=u_{-1}
\end{gathered}
$$

For simplicity we shall omit $U$ in $U A, U \varepsilon^{i}$, etc., in the sequel. Then we have the following.

PROPOSITION 4.1. (i) $t_{n} \varepsilon^{0}=d_{n} \cdot t_{n-1}, t_{n} \varepsilon^{i}=0(0<i \leq n)$ and $1-t_{n}$ $=u_{n} d_{n+1}+d_{n} u_{n-1}$.
(ii) $\varepsilon^{1} \cdot t_{n-1}=\left(\varepsilon^{1} \cdot \delta^{0}-\varepsilon^{2} \delta^{1}\right) \varepsilon^{0} \cdot t_{n}, \varepsilon^{i} t_{n-1}=\left(\varepsilon^{i} \delta^{i-1}-\varepsilon^{i-1} \delta^{n-2}\right) \varepsilon^{i} t_{n-2}(2 \leq i \leq n)$.
(iii) $t_{n}=t_{n+1}+\left(\varepsilon^{n+1} \delta^{n}-\varepsilon^{n} \delta^{n-1}\right) t_{n}$, where $d_{n}=\sum_{i=0}^{n}(-1)^{i} U \varepsilon^{i}(n \geq 1)$.

Proof. We can prove (i) by mathematical induction (for detailes see p. 7 of [16]). (ii) and (iii) follow that $\delta^{0} t_{n-1}=\delta^{2} t_{n-2}(2 \leq i \leq n)=$ $\delta^{n-1} t_{n}(n \geq 1)=0, \delta^{1} \varepsilon^{0}=\varepsilon^{0} \delta^{0}$ and $\delta^{i-2} \varepsilon^{i}=\varepsilon^{i-1} \delta^{i-2}$. q.e.d.

Put $\operatorname{Im} t_{n}=\tilde{A}_{n}(n \geq 1)$ and $\tilde{A}_{0}=A_{0}$, then we have the cochain complex of $K$-modules:

$$
\tilde{A}_{*}: 0 \longrightarrow A \xrightarrow{\varepsilon} A_{0} \xrightarrow{d_{1}} \tilde{A}_{1} \longrightarrow \cdots,
$$

which is called the normalized complex of $U A_{*}$ (for notation see Proposition 3.6). (Note: Since $d_{n} t_{n-1}=t_{n} \cdot \varepsilon^{0}$ and $t_{n} \cdot \varepsilon^{i}=0(i>1)$, for $x \in \tilde{A}_{n-1}$ $\left.d_{n} x \in \tilde{A}_{n}.\right)$

Proposition 4.2. $\quad \tilde{A}_{n}=\bigcap_{i=1}^{n-1} \operatorname{Ker} U \delta^{i}$ for $n \geq 1$.
Proof. For each $x \in \tilde{A}_{n} t_{n} x=x$, and conversely $t_{n} x=x$ implies that
$x \in \tilde{A}_{n}$, because of $t_{n} \cdot t_{n} x=t_{n} x=x$. Take $x \in \bigcap_{i=1}^{n-1} \operatorname{Ker} U \delta^{i}$ then $t_{n} x=x$, and so $x \in \tilde{A}_{n}$. Conversely, take $x \in \tilde{A}_{n}$ then $\delta^{i} x=0$, because of $\delta^{i} t_{n} x=0$.
q.e.d.

Corollary 4.3. $\quad \tilde{A}_{1}$ is a coideal of $A_{1}$.
The proof follows that $\tilde{A}_{1}$ is the kernel $U \delta^{0}$ of the coalgebra map $\delta^{0}$ (Proposition 4.2).

Proposition 4.4. Two cochain complexes $U A_{*}$ and $\tilde{A}_{*}$ are cochain equivalent.

Proof. Since 1-t $t_{n}=u_{n} t_{n-1}+d_{n} u_{n-1}$ and $t_{n} \mid \tilde{A}_{n}=1_{\tilde{A}_{n}}$ (i.e., $t_{n}=1_{\tilde{A}_{n}} \cdot t_{n}$ ), two cochain homomorphisms $t_{n}: A_{n} \rightarrow \tilde{A}_{n}$ and $1_{\tilde{A}_{n}}: A_{n} \rightarrow A_{n}$ are cochain homotopic with homotopy $u_{n}$.

Definition 4.5. Let $A_{*}$ be an augumented cosimplicial coalgebra of A. We define

$$
\widetilde{\operatorname{Coder}}_{K}\left(M, A_{n}\right)=\left\{f \in \operatorname{Coder}_{K}\left(M, A_{n}\right) \mid t_{n} f=f\right\}
$$

where $M$ is a two sided $A$-comodule. In this case $f$ is called a normal coderivation.

THEOREM 4.6. $H^{n}\left(\operatorname{Coder}_{K}\left(M, A_{*}\right)\right) \cong H^{n}\left(\operatorname{Coder}_{K}\left(M, A_{*}\right)\right)(n \geq 0)$, where $H$ is the cohomology functor.

Proof. We put $(C D)_{*}=\operatorname{Coder}_{K}\left(M, A_{*}\right)$ and $(\tilde{C} D)_{*}=\operatorname{Coder}_{K}\left(M, A_{*}\right)$. Note that $(\tilde{C} D)_{*}$ is a cochain subcomplex of $(C D)_{*}$. Since $t_{n}$ and $u_{n-1}$ are linear compositions of coalgebra maps, respectively, for $f \in(C D)_{n}$ $t_{n} f \in(\tilde{C} D)_{n}$ and $u_{n-1} f \in(\tilde{C} D)_{n-1}$. By the same reason as in the proof of Proposition $4.4(C D)_{*}$ and $(\tilde{C} D)_{*}$ are cochain equivalent. q.e.d.

Put $H^{n}\left(\widetilde{\operatorname{Coder}}\left(M, G_{*} A\right)\right)=\tilde{H}^{n}(M, A)$. Then we know that $H^{n}(M, A)$ $\cong \tilde{H}^{n}(M, A)$ by the above proposition. We shall conclude this section with description of two properties for cosimplicial coalgebras which are used in the next section.

Proposition 4.7. For an augumented cosimplicial coalgebra $A_{*}$ of $A$ the following hold:

$$
\text { (i) } A_{1}=\varepsilon^{1} A_{0} \oplus \tilde{A}_{1}, \quad \text { (ii) } A_{n}=\left(\varepsilon^{1}\right)^{n} A_{0} \oplus \tilde{A}_{n} \oplus I_{n}(n \geq 2) \text {, }
$$

where $\oplus$ means direct sum as K-modules and $I_{n}=\sum_{i=1}^{n-1}\left(\varepsilon^{i} \delta^{i-1}-\varepsilon^{i+1} \delta^{i}\right) A_{n}$.

Proof. (i) is clear. Put $\left(\varepsilon^{i}\right)^{n} x_{0}+x_{n}+\sum_{i=1}^{n-1}\left(\varepsilon^{i} \delta^{i-1}-\varepsilon^{i+1} \delta^{i}\right) y_{i}=0$ for $x \in A_{0}, x_{n} \in \tilde{A}_{n}$ and $y_{i} \in A_{n}(1 \leq i \leq n-1)$. Apply ( $\left.\delta^{0}\right)^{n}$ from the left on both sides, then $x_{0}=0$, because of $\left(\delta^{0}\right)^{n} t_{n} x_{n}=0=\left(\delta^{0}\right)^{n}\left(\varepsilon^{i} \delta^{i-1}-\varepsilon^{i+1} \delta^{i}\right) y_{i}=0$. Again, apply $t_{n}$ from the left on both sides of the above, then $x_{n}=0$, because of $t_{n}\left(\varepsilon^{1}\right)^{n} x_{0}=0=t_{n}\left(\varepsilon^{i} \delta^{i-1}-\varepsilon^{i+1} \delta^{i}\right) y_{i}$.

We want to prove that $A_{n}$ is spanned by $\left(\varepsilon^{1}\right)^{n} A_{0}, \tilde{A}_{n}$ and $I_{n}$. To do this it suffices to show that there exist $x_{0} \in A_{0}$ and $x_{n} \in \tilde{A}_{n}$ for a given $x \in A_{n}$ such that $x=\left(\varepsilon^{1}\right)^{n} x_{0}+x_{n} \bmod . I_{n}$. Since $x=\varepsilon^{1} \delta^{0} x+t_{1} x$ and $\left(\varepsilon^{1}\right)^{r+1}$ $\cdot\left(\varepsilon^{0}\right)^{r+1}-\left(\varepsilon^{1}\right)^{r}\left(\varepsilon^{0}\right)^{r}=\left(\varepsilon^{r+1} \delta^{r}-\varepsilon^{r} \delta^{r-1}\right)\left(\varepsilon^{1}\right)^{i}\left(\delta^{0}\right)^{r} \in I_{n+1}=\sum_{i=1}^{r}\left(\varepsilon^{i} \delta^{i-1}-\varepsilon^{i+1} \delta^{i}\right) A_{n}$, if we assume that $x \equiv\left(\varepsilon^{1}\right)^{r}\left(\delta^{0}\right)^{r} x+t_{r} x(r \geq 2) \bmod . I_{r}$, then we have $x \equiv$ $\left(\varepsilon^{1}\right)^{r+1}\left(\delta^{0}\right)^{r+1} x+t_{r+1} x \bmod . I_{r+1}$ by Proposition 4.1.

In the above proposition $I_{n}(n \geq 2)$ is a coideal of $A_{n}$ (Proposition 1.5), so we have the quotient coalgebra $\bar{A}_{n}=A_{n} / I_{n}$ (Proposition 1.5). Let $M$ be a two sided $A$-comodule. Then $M$ is a two sided $A_{n-1}$-comodule, and hence we have the coidealization $D_{n-1}=A_{n_{-1}} * M$ of $M$.

Consider two coalgebra maps $\rho_{0}, \rho_{1}: D_{n-1} \rightarrow \bar{A}_{n}$ defined by
$\rho_{0}=$ the composition:

$$
\begin{align*}
D_{n-1} & =A_{n-1} * M \xrightarrow{\text { Projection }} A_{n-1} \xrightarrow{\varepsilon^{0}} A_{n} \xrightarrow{\text { Projection }} \bar{A}_{n},  \tag{4.8}\\
& \rho_{1}=\text { the composition }: \\
D_{n-1} & =A_{n-1} * M \xrightarrow{\left(\delta^{0}\right)^{n-1} \oplus 1_{M}} A_{0} * M \xrightarrow{\left(\left(\varepsilon^{1}\right)^{n} \oplus f\right)} \bar{A}_{n},
\end{align*}
$$

where $f \in \widetilde{\operatorname{Coder}}_{K}\left(M, A_{n}\right)$ with $d_{n_{+1}} f=0$.
PROPOSITION 4.9. $\quad \rho_{0} \mid A_{n-1}=d_{n} \tilde{A}_{n-1}$.
Proof. We have to prove that for each $x \in \tilde{A}_{n-1} \varepsilon^{0} x \equiv d_{n} x \bmod . I_{n}$. By Proposition $4.1 \varepsilon^{i} t_{n-1} x \in I_{n}(1 \leq i \leq n)$, and therefore $\varepsilon^{0} t_{n-1} x \equiv d_{n} t_{n-1} x$ $=d_{n} x \bmod . I_{n}$. q.e.d.

## 5. Interpretation of $\boldsymbol{H}^{2}(\boldsymbol{M}, \boldsymbol{A})$

In this section we assume that $A$ is a coalgebra and $M$ is a two sided $A$-comodule.

DEFINITION 5.1. By a (normal) coderivation 2-cocycle we mean a normal coderivation $f: M \rightarrow \widetilde{G^{3} A}$ such that $d_{3} f=0$. Two such cocycles $f$ and $f^{\prime}$ are cohomologous if there exists a normal coderivation $g: M \rightarrow$ $\widetilde{G^{2} A}$ such that $f-f^{\prime}=d_{2} g$.

Definition 5.2. By a two term extension of $A$ by $M$ we mean an exact sequence (e) of $K$-modules:

$$
(e): 0 \longrightarrow A \xrightarrow{\varphi_{0}} X_{0} \xrightarrow{\varphi_{1}} X_{1} \xrightarrow{\varphi_{2}} M \longrightarrow 0
$$

## satisfying the conditions:

(i) $X_{0}$ is a coalgebra and $\varphi_{0}$ a coalgebra map,
(ii) $X_{1}$ is a two sided $X_{0}$-comodule with $\left(\varphi_{1} \otimes 1\right) \Delta_{X_{1}}^{\tau}=\left(1 \otimes \varphi_{1}\right) \Delta_{X_{1}}^{r}$ and $\phi_{1}$ a two sided $X_{0}$-comodule map,
(iii) $M$ is a two sided $X_{0}$-comodule induced by $\varphi_{0}$ and $\varphi_{2}$ a two sided $X_{0}$-comodule map. That is, the structure of $M$ as a two sided $X_{0^{-}}$ comodule is induced from the commutative diagrams

where $\omega_{M}^{l}$ and $\omega_{M}^{r}$ are the comodule structure maps of $M$ as a two sided $A$-comodule.

Definition 5.3. The totality of all two term extensions of $A$ by $M$ forms a category whose each morphism (e) $\rightarrow\left(\mathrm{e}^{\prime}\right)$ is a commutative diagram

with $\psi_{0}$ a coalgebra map and $\psi_{1}$ a $K$-module map such that $\left(\psi_{0} \otimes \psi_{1}\right) \Delta_{x_{1}}^{l_{1}}$ $\Delta_{x_{1}}^{l} \psi_{1}$ and $\left(\psi_{1} \otimes \psi_{0}\right) \Delta_{X_{1}}^{r}=\Delta_{X_{1}^{\prime}}^{r} \psi_{1}$.

For two term extensions (e) and ( $e^{\prime}$ ) of $A$ by $M$ they are said to be equivalent, written $(e) \sim\left(e^{\prime}\right)$, if they are connected by a sequence of morphisms of both direction, e.g.,

$$
(e)=\left(e_{0}\right) \longleftarrow\left(e_{1}\right) \longrightarrow \cdots \longleftarrow\left(e_{n}\right)=\left(e^{\prime}\right) .
$$

The main theorem of this paper is the following.
ThEOREM 5.4. Let $E x^{2}(M, A)$ be the set of all equivalence classes
of all two term extensions of $A$ by $M$. Then there is a bijection between $E x^{2}(M, A)$ and $H^{2}(M, A)$.

We will prove this theorem in three steps: i) to define $\alpha: \tilde{H}^{2}(M, A)$ $\rightarrow E x^{2}(M, A)$. ii) to define $\beta: E x^{2}(M, A) \rightarrow \tilde{H}^{2}(M, A)$, and iii) to prove that $\beta \alpha=1_{\tilde{H}^{2}(M, A)}$ and $\alpha \beta=1_{E x^{2}(M, A)}\left(H^{2}(M, A) \cong \tilde{H}^{2}(M, A)\right)$.

First Step: Consider the standard cosimplicial resolution of $A$.
Proposition 5.5. $\quad G^{3} A$ is expressed by the direct sum $G^{3} A=\left(\varepsilon^{1}\right)^{2} G \alpha$ $\oplus \widetilde{G^{3} A} \oplus \varepsilon^{2} \widetilde{G^{2} A} \oplus \varepsilon^{2} \widetilde{G^{2} A}$.

Proof of 5.5. At first we prove that $I_{2}=\left(\varepsilon^{1} \delta^{0}-\varepsilon^{2} \delta^{1}\right) G^{3} A=\varepsilon^{1} \widetilde{G^{2} A} \oplus$ $\varepsilon^{2} \widetilde{G^{2} A}$. To do this we have to prove that $\varepsilon^{1} \widetilde{G^{2} A} \subset I_{2} \supset \varepsilon^{2} \widetilde{G^{2} A}$. For $x \in \widetilde{G^{2} A}$

$$
\varepsilon^{1} x=\left(\varepsilon^{1} \delta^{0}-\varepsilon^{2} \delta^{1} \varepsilon^{0} x \in I_{2} \ni \varepsilon^{2} x=\left(\varepsilon^{2} \delta^{1}-\varepsilon^{1} \delta^{0}\right) \varepsilon^{2} x \quad\left(\text { Note }: \delta^{0} x=0\right) .\right.
$$

Conversely, for $x \in G^{3} A$ and ( $\left.\varepsilon^{1} \delta^{0}-\varepsilon^{2} \delta^{1}\right) x \in I_{2}$

$$
\left(\varepsilon^{1} \delta^{0}-\varepsilon^{2} \delta^{1}\right) x=\varepsilon^{1}\left(1-\varepsilon^{1} \delta^{0}\right) \delta^{0} x-\varepsilon^{2}\left(1-\varepsilon^{1} \delta^{0}\right) \delta^{1} x \in \varepsilon^{1} \widetilde{G^{2}} A+\varepsilon^{2} \widetilde{G^{2}} A .
$$

Assume that $\varepsilon^{1} x=\varepsilon^{2} y$ for $x, y \in G^{2} A$. Applying $\delta^{1}$ we have $x=y$. That is, $\varepsilon^{1} x=\varepsilon^{2} y$ implies that $\varepsilon^{1} x=\varepsilon^{2} x$. Applying ( $1-\varepsilon^{1} \delta^{0}$ ) we have $0=\varepsilon^{2} x$, i.e., $x=0$. So $\varepsilon^{1} \widetilde{G^{2} A} \cap \varepsilon^{2} \widetilde{G^{2} A}=\{0\}$.

In order to complete our proof it suffices to verify that $G^{3} A=\left(\varepsilon^{1}\right)^{2} G A$ $\oplus \widetilde{G^{3}} A \oplus I_{2}$. But, this is just the case $n=2$ in Proposition 4.7. q.e.d.

Put $G A=\varepsilon A \oplus C, C=\left(1-\varepsilon \eta_{A}\right) G A=\eta_{G A} d_{1} G A$,

$$
\begin{gathered}
G^{2} A=\varepsilon^{1} G A \oplus \widetilde{G^{2} A}=\varepsilon^{0} \varepsilon A \oplus \varepsilon^{1} C \oplus N \oplus E, \\
N=d_{1} C \text { and } E=\left(1-d_{1} \eta_{G A}\right) \widetilde{G^{2} A} \\
=\eta_{G^{2} A} d_{2} \widetilde{G^{2} A}, \\
G^{3} A=\left(\varepsilon^{0}\right)^{2} \varepsilon A \oplus\left(\varepsilon^{1}\right)^{2} C \oplus \widetilde{G^{3} A} \oplus \varepsilon^{1} \widetilde{G^{2} A \oplus \varepsilon^{2}}{ }^{2} G^{2} A \\
=\left(\varepsilon^{0}\right)^{2} \varepsilon A \oplus\left(\varepsilon^{1}\right)^{2} C \oplus \widetilde{G^{3} A \oplus \varepsilon^{1} N \oplus \varepsilon^{2} N \oplus \varepsilon^{1} E \oplus \varepsilon^{2} E^{2} .}
\end{gathered}
$$

Given a coderivation 2-cocycle $f$ we want to calculate $\Delta_{G 2_{A}} x$ for $x \in E$ with $d_{2} x=f m$, where $m \in M$. Since $G^{2} A$ is a coideal of $\widetilde{G^{2} A}$ (Corollary 4.3)

$$
\begin{aligned}
& \Delta_{G^{2} A} x \subset G^{2} A \otimes \widetilde{G^{2}} A+\widetilde{G^{2}} A \otimes G^{2} A \\
&= \varepsilon^{0} \varepsilon A \otimes \widetilde{G^{2} A}+\widetilde{G^{2} A \otimes \varepsilon^{0} \varepsilon A+\varepsilon^{1} C \otimes \widetilde{G^{2} A}+\widetilde{G^{2} A} \otimes \varepsilon^{1} C} \\
& \quad+N \otimes E+E \otimes N+E \otimes E+N \otimes N
\end{aligned}
$$

So we may put

$$
\begin{aligned}
\Delta_{G 2 A} x= & \sum_{i}\left[\varepsilon^{0} \varepsilon a_{i} \otimes x_{i}+x_{i}^{\prime} \otimes \varepsilon^{0} \varepsilon a_{i}^{\prime}+\varepsilon^{1} c_{i} \otimes y_{i}+y_{i}^{\prime} \otimes \varepsilon^{1} c_{i}^{\prime}\right. \\
& \left.+n_{i} \otimes e_{i}+e_{i}^{\prime} \otimes n_{i}^{\prime}+e_{i}^{\prime \prime} \otimes e_{i}^{\prime \prime \prime}+n_{i}^{\prime \prime} \otimes n_{i}^{\prime \prime \prime}\right],
\end{aligned}
$$

where $a_{i}, a_{i}^{\prime} \in A, x_{i}, x_{i}^{\prime}, y_{i}, y_{i}^{\prime} \in \widetilde{G^{2} A}, c_{i}, c_{i}^{\prime} \in C, n_{i}, n_{i}^{\prime}, n_{i}^{\prime \prime}, n_{i}^{\prime \prime \prime} \in N$ and $e_{i}, e_{i}^{\prime}, e_{i}^{\prime \prime}$, $e_{i}^{\prime \prime \prime} \in E$

For convenience we put $T=\varepsilon^{0} \otimes \varepsilon^{0}-\varepsilon^{1} \otimes \varepsilon^{1}+\varepsilon^{2} \otimes \varepsilon^{2}$. We have the following

$$
\begin{aligned}
& T \Delta_{G^{2} A} x=T \sum_{i}\left(\varepsilon^{0} \varepsilon a_{i} \otimes x_{i}+x_{i}^{\prime} \otimes \varepsilon^{0} \varepsilon a_{i}^{\prime}\right) \\
& +\sum_{i}\left(\left(\varepsilon^{1}\right)^{2} c_{i} \otimes d_{2} y_{i}+\varepsilon^{2} d_{1} c_{i} \otimes \varepsilon^{0} y_{i}\right) \\
& +\sum_{i}\left(d_{2} y_{i}^{\prime} \otimes\left(\varepsilon^{1}\right)^{2} c_{i}^{\prime}+\varepsilon^{0} y_{i}^{\prime} \otimes \varepsilon^{2} d_{1} c_{i}^{\prime}\right) \\
& +T \sum_{i}\left(n_{i} \otimes e_{i}+e_{i}^{\prime} \otimes n_{i}^{\prime}+e_{i}^{\prime \prime} \otimes e_{i}^{\prime \prime \prime}+n_{i}^{\prime \prime} \otimes n_{i}^{\prime \prime \prime}\right) \\
& =\Delta_{G^{3} A} f m \in\left(\varepsilon^{0}\right)^{2} \varepsilon A \otimes \widetilde{G^{3} A}+\widetilde{G^{3} A} \otimes\left(\varepsilon^{0}\right)^{2} \varepsilon A=W_{0}, \\
& T \sum_{i}\left(\varepsilon^{0} \varepsilon a_{i} \otimes x_{i}+x_{i}^{\prime} \otimes \varepsilon^{0} \varepsilon a_{i}^{\prime}\right) \in W_{0}, \\
& \sum_{i}\left(\varepsilon^{1}\right)^{2} c_{i} \otimes d_{2} y_{i} \in\left(\varepsilon^{1}\right)^{2} C \otimes \widetilde{G^{3} A}=W_{1}, \\
& \sum_{i}^{i} \varepsilon^{2} d_{1} c_{i} \otimes \varepsilon^{0} y_{i} \in \varepsilon^{2} N \otimes \widetilde{G^{3}} A+\varepsilon^{2} N \otimes \varepsilon^{1} E+\varepsilon^{2} N \otimes \varepsilon^{2} E+\varepsilon^{2} N \otimes \varepsilon^{1} N \\
& +\varepsilon^{2} N \otimes \varepsilon^{2} N=W_{2}, \\
& \sum_{i} d_{2} y_{i}^{\prime} \otimes\left(\varepsilon^{1}\right)^{2} c_{i}^{\prime} \in \widetilde{G^{3} A} \otimes\left(\varepsilon^{1}\right) c=W_{3}, \\
& \sum_{i} \varepsilon^{0} y_{i}^{\prime} \otimes \varepsilon^{2} d_{1} c_{i}^{\prime} \in \overparen{G^{3}} \ddot{A} \otimes \varepsilon^{2} N+\varepsilon^{1} E \otimes \varepsilon^{2} N+\varepsilon^{2} E \otimes \varepsilon^{2} N+\varepsilon^{1} N \otimes \varepsilon^{2} N \\
& +\varepsilon^{2} N \otimes \varepsilon^{2} N=W_{4}, \\
& T \sum_{i} n_{i} \otimes e_{i} \in \varepsilon^{1} N \otimes \widetilde{G^{3}} A+\varepsilon^{1} N \otimes \varepsilon^{2} E+\varepsilon^{2} N \otimes \widetilde{\epsilon_{1}^{3}} A+\varepsilon^{2} N \otimes \varepsilon^{1} E \\
& +\varepsilon^{2} N \otimes \varepsilon^{2} E=W_{5}, \\
& T \sum_{i} e_{i}^{\prime} \otimes n_{i}^{\prime} \in \widetilde{G^{3} A} \otimes \varepsilon^{1} N+\varepsilon^{2} E \otimes \varepsilon^{1} N+\widetilde{G^{3} A} \otimes \varepsilon^{2} N+\varepsilon^{2} N \otimes \varepsilon^{1} E \\
& +\varepsilon^{2} E \otimes \varepsilon^{2} N=W_{6}, \\
& T \sum_{i}\left(e_{i}^{\prime \prime} \otimes e_{i}^{\prime \prime \prime}\right) \in \widetilde{G^{3} A} \otimes \widetilde{G^{3} A}+\widetilde{G^{3} A} \otimes \varepsilon^{1} E+\widetilde{G^{3} A} \otimes \varepsilon^{2} E+\varepsilon^{1} E \otimes \widetilde{G^{3} A} \\
& +\varepsilon^{2} E \otimes \overparen{G^{3} A}+\varepsilon^{1} E \otimes \varepsilon^{2} E+\varepsilon^{2} E \otimes \varepsilon^{1} E+\varepsilon^{2} E \otimes \varepsilon^{2} E=W_{7}, \\
& T \sum_{i} n_{i}^{\prime \prime} \otimes n_{i}^{\prime \prime \prime} \in \varepsilon^{2} N \otimes \varepsilon^{2} N+\varepsilon^{2} N \otimes \varepsilon^{1} N+\varepsilon^{1} N \otimes \varepsilon^{2} N=W_{8} .
\end{aligned}
$$

In the above we know the following.
(i) Each term in $W_{0}$ does not appear in $W_{1}, \cdots, W_{8}$. This implies that

$$
\begin{aligned}
T \sum_{i}\left(\varepsilon^{1} c_{i} \otimes y_{i}\right. & +y_{i}^{\prime} \otimes \varepsilon^{1} c_{i}^{\prime}+n_{i} \otimes e_{i}+e_{i}^{\prime} \otimes n_{i}^{\prime} \\
& \left.+e_{i}^{\prime \prime} \otimes e_{i}^{\prime \prime \prime}+n_{i}^{\prime \prime} \otimes n_{i}^{\prime \prime \prime}\right)=0 .
\end{aligned}
$$

(ii) The term $\varepsilon^{1} N \otimes \varepsilon^{2} E$ in $W_{5}$ does not appear in $W_{1}, \cdots, W_{4}, W_{6}$, $\cdots, W_{8}$. Since $\varepsilon^{1}$ and $\varepsilon^{2}$ are monomorphisms we have $\sum_{i} n_{i} \otimes e_{i}=0$.
(iii) The term $\varepsilon^{2} E \otimes \varepsilon^{1} N$ in $W_{6}$ does not appear in $W_{1}, \cdots, W_{5}, W_{7}$ and $W_{8}$. By the same reason as above we have $\sum_{i} e_{i}^{\prime} \otimes n_{i}^{\prime}=0$.
(iv.) The term $\varepsilon^{2} E \otimes \varepsilon^{1} E$ in $W_{7}$ does not appear in $W_{1}, \cdots, W_{6}$ and $W_{8}$. This implies that $\sum_{i} e_{i}^{\prime \prime} \otimes e_{i}^{\prime \prime \prime}=0$.
(v) $W_{1}$ does not appear in $W_{2}, W_{3}, W_{4}, \cdots, W_{8}$. This implies that $\sum_{i}\left(\varepsilon^{1}\right)^{2} c_{i} \otimes d_{2} y_{i}=0$. If we take $\left\{c_{i}\right\}$ as a base of $C$ we have $d_{2} y_{i}=0$ for each $i$. So $y_{i} \in N$. Similarly $y_{i}^{\prime} \in N$.

By (i) $\sim(v)$ above we may put

$$
\Delta_{G^{2} A} x=\sum_{i}\left[\varepsilon^{0} \varepsilon a_{i} \otimes x_{i}+x_{i}^{\prime} \otimes \varepsilon^{0} \varepsilon a_{i}^{\prime}+\varepsilon^{1} c_{i} \otimes n_{i}^{\prime} \otimes \varepsilon^{1} c_{i}^{\prime}+n_{i}^{\prime \prime} \otimes n_{i}^{\prime \prime \prime}\right],
$$

where $a_{i}, a_{i}^{\prime} \in A, x_{i}, x_{i}^{\prime} \in \widetilde{G^{2} A}, c_{i}, c_{i}^{\prime} \in C$ and $n_{i}, n_{i}^{\prime}, n_{i}^{\prime \prime}, n_{i}^{\prime \prime \prime} N$. Since

$$
T \sum_{i}\left[\varepsilon^{1} c_{i} \otimes n_{i}+n_{i}^{\prime} \otimes \varepsilon^{1} c_{i}^{\prime}+n_{i}^{\prime \prime} \otimes n_{i}^{\prime \prime \prime}\right] \in W_{8} \cap W_{0}=0,
$$

we have $T \sum_{i}\left[\varepsilon^{1} c_{i} \otimes n_{i}+n_{i}^{\prime} \otimes \varepsilon^{1} c_{i}^{\prime}+n_{i}^{\prime \prime} \otimes n_{i}^{\prime \prime \prime}\right]=0$. It follows that
(i) $\quad \sum_{i} \varepsilon^{2} d_{1} c_{i} \otimes \varepsilon^{1} n_{i}-\sum_{i} \varepsilon^{2} n_{i}^{\prime \prime} \otimes \varepsilon^{1} n_{i}^{\prime \prime}=0 \quad$ (in $\varepsilon^{1} N \otimes \varepsilon^{1} N$ ),
(ii) $\sum_{i} \varepsilon^{2} n_{i}^{\prime} \otimes \varepsilon^{2} d_{1} c_{i}^{\prime}-\sum_{i} \varepsilon^{1} n_{i}^{\prime \prime} \otimes \varepsilon^{2} n_{i}^{\prime \prime \prime}=0 \quad\left(i n \varepsilon^{1} N \otimes \varepsilon^{2} N\right.$ ),
(iii) $2 \sum_{i} \varepsilon^{2} n_{i}^{\prime \prime} \otimes \varepsilon^{2} n_{i}^{\prime \prime \prime}-\sum_{i} \varepsilon^{2} d_{1} c_{i} \otimes \varepsilon^{2} n_{i}-\sum_{i} \varepsilon^{2} n_{i}^{\prime} \otimes \varepsilon^{2} d_{1} c_{i}^{\prime}=0$
(in $\left.\varepsilon^{2} N \otimes \varepsilon^{2} N\right)$.
We take $\left\{c_{i}\right\}$ and $\left\{c_{i}^{\prime}\right\}$ as bases of $C$. Then $\left\{d_{1} c_{i}\right\}$ and $\left\{d_{1} c_{i}^{\prime}\right\}$ are bases of $N$ (Proposition 3.6). Take $n_{i}^{\prime \prime}=d_{1} c_{i}$, then we have $n_{i}=n_{i}^{\prime \prime \prime}$ from (i) above.

Put $n_{i}=n_{i}^{\prime \prime \prime}=d_{1} c_{i}^{\prime \prime}, c_{i}^{\prime \prime}=\sum_{j} \alpha_{i j} c_{j}^{\prime}$, where $\alpha_{i j} \in K$ for each $i$ and $j$. Then, by (ii) above and $n_{i}^{\prime \prime}=d_{1} c_{i}$ we get $n_{j}^{\prime}=\sum_{i} \alpha_{i j} d_{1} c_{i}$. These expressions of $n_{i}, n_{i}^{\prime}, n_{i}^{\prime \prime}$ and $n_{i}^{\prime \prime \prime}$ satisfy (iii) above.

Using

$$
n_{i}^{\prime \prime}=d_{1} c_{i}, n_{i}^{\prime}=\sum_{j} \alpha_{j i} d_{1} c_{j} \quad \text { and } \quad n_{i}=n_{i}^{\prime \prime \prime}=d_{1} c_{i}^{\prime \prime}=d_{1}\left(\sum_{j} \alpha_{i j} c_{j}^{\prime}\right)
$$

we have

$$
\begin{aligned}
\sum_{i} \varepsilon^{1} c_{i} \otimes n_{i} & =\sum_{i} \varepsilon^{1} c_{i} \otimes d_{1} c_{i}^{\prime \prime} \\
\sum_{i} n_{i}^{\prime} \otimes \varepsilon^{1} c_{i}^{\prime} & =\sum_{i}\left(\sum_{j} \alpha_{j i} d_{1} c_{j}\right) \otimes \varepsilon^{1} c_{i}^{\prime} \\
& =\sum_{i} d_{1} c_{i} \otimes \varepsilon^{1}\left(\sum_{j} \alpha_{i j} c_{j}^{\prime}\right)=\sum_{i} d_{1} c_{i} \otimes \varepsilon^{1} c_{i}^{\prime \prime} \\
\sum_{i} n_{i}^{\prime \prime} \otimes n_{i}^{\prime \prime \prime} & =\sum_{i} d_{1} c_{i} \otimes d_{1} c_{i}^{\prime \prime}
\end{aligned}
$$

In consequence, writing newly $c_{i}^{\prime}$ instead of $c_{i}^{\prime \prime}$, for $x \in E$ with $d_{2} x=f m$ ( $m \in M$ ) we have

$$
\begin{aligned}
\Delta_{G^{2} A} x= & \sum\left[\varepsilon^{0} \varepsilon a_{i} \otimes x_{i}+x_{i}^{\prime} \otimes \varepsilon^{0} \varepsilon a_{i}^{\prime}\right. \\
& \left.+\varepsilon^{1} c_{i} \otimes d_{i} c_{i}^{\prime}+d_{1} c_{i} \otimes \varepsilon^{1} c_{i}^{\prime}+d_{1} c_{i} \otimes d_{1} c_{i}^{\prime}\right],
\end{aligned}
$$

where $a_{i}, a_{i}^{\prime} \in A, x_{i}, x_{i}^{\prime} \in \widetilde{G^{2} A}, c_{i}, c_{i}^{\prime} \in C, \Delta_{A * M} m=\sum_{i}\left(a_{i} \otimes m_{i}+m_{i}^{\prime} \otimes a_{i}^{\prime}\right), d_{2} x_{i}$ $=f m_{i}$ and $d_{2} x_{i}^{\prime}=f m_{i}^{\prime}$ for each $i$.

We put $E(f)=\left\{(x, m) \in \widetilde{G^{2} A} \times M \mid d_{2} x=f m\right.$ for some $\left.m \in M\right\}$, and recall the case $n=2$ in (4.8). There exist two coalgebra maps $\rho_{0}, \rho_{1}: D_{1}=$ $G^{2} A * M \rightarrow \overline{G^{3} A}$.

Proposition 5.6. The difference kernel $E_{1}$ for $\rho_{0}$ and $\rho_{1}$ in $\mathscr{C}$ is just $\operatorname{Ker}\left(U \rho_{0}-U \rho_{1}\right)$, i.e., $E_{1}=\varepsilon^{1} G A \oplus E(f)$.

Proof of 5.6. $\operatorname{Ker}\left(U \rho_{0}-U \rho_{1}\right)=\varepsilon^{1} G A \oplus E(f)$ is obvious by the definitions of $\rho_{0}$ and $\rho_{1}$. Using $\Delta_{G^{2} A} x$ and $\Delta_{A * M} m$, for $(x, m) \in E(f)$

$$
\begin{aligned}
\Delta_{D_{1}}(x, m)= & \sum_{i}\left[\left(\varepsilon^{0} \varepsilon a_{i}, 0\right) \otimes\left(x_{i}, m_{i}\right)+\left(x_{i}^{\prime}, m_{i}^{\prime \prime}\right) \otimes\left(\varepsilon^{0} \varepsilon \alpha_{i}^{\prime}, 0\right)\right. \\
& \left.+\varepsilon^{1} c_{i} \otimes\left(d_{1} c_{i}^{\prime}, 0\right)+\left(d_{1} c_{i}, 0\right) \otimes \varepsilon^{1} c_{i}^{\prime}+\left(d_{1} c_{i}, 0\right) \otimes\left(d_{1} c_{i}^{\prime}, 0\right)\right]
\end{aligned}
$$

where $d_{2} x_{i}=f m_{i}, d_{2} x_{i}^{\prime}=f m_{i}^{\prime}$ and $\Delta_{A * M} m=\sum_{i}\left(a_{i} \otimes m_{i}+m_{i}^{\prime} \otimes a_{i}^{\prime}\right)$. This implies that

$$
\Delta_{D_{1}}\left(\varepsilon^{1} G A \oplus E(f) \subseteq\left(\varepsilon^{1} G A \oplus E(f)\right) \otimes\left(\varepsilon^{1} G A \oplus E(f)\right),\right.
$$

and therefore $E_{1}=\varepsilon^{1} G A \oplus E(f)$.
q.e.d.

Put $\Delta_{E_{1}}=\Delta_{D_{1}} \mid \varepsilon^{1} G A \oplus E(f)$, then we have

$$
\begin{aligned}
\Delta_{E_{1}}\left(d_{1} c, 0\right)= & \sum_{i}\left[\varepsilon^{1} y_{i} \otimes\left(d_{1} y_{i}^{\prime}, 0\right)+\left(d_{1} y_{i}, 0\right) \otimes \varepsilon^{1} y_{i}^{\prime}\right. \\
& \left.+\left(d_{1} y_{i}, 0\right) \otimes\left(d_{1} y_{i}^{\prime}, 0\right)\right] \\
\Delta_{E_{1}}(x, m)= & \sum_{i}\left[\left(\varepsilon^{0} \varepsilon a_{i}, 0\right) \otimes\left(x_{i}, m_{i}\right)+\left(x_{i}^{\prime}, m_{i}^{\prime}\right) \otimes\left(\varepsilon^{0} \varepsilon a_{i}, 0\right)\right. \\
& +\varepsilon^{1} c_{i} \otimes\left(d_{1} c_{i}^{\prime}, 0\right)+\left(d_{1} c_{i}, 0\right) \otimes \varepsilon^{1} c_{i}^{\prime} \\
& \left.+\left(d_{1} c_{i}, 0\right) \otimes\left(d_{1} c_{i}^{\prime}, 0\right)\right]
\end{aligned}
$$

where $\Delta_{G A} C=\sum_{i} y_{i} \otimes y_{i}^{\prime}$. Define $\Delta_{E(f)}^{l}: E(f) \rightarrow G A \otimes E(f)$ and $\Delta_{E(f)}^{r}: E(f)$ $\rightarrow E(f) \otimes G A$ by

$$
\begin{aligned}
\Delta_{E(f)}^{l}\left(d_{1} c, 0\right) & =\sum_{i} y_{i} \otimes\left(d_{1} y_{i}^{\prime}, 0\right), \\
\Delta_{E(f)}^{l}(x, m) & =\sum_{i}\left[\varepsilon a_{i} \otimes\left(x_{i}, m_{i}\right)+c_{i} \otimes\left(d_{1} c_{i}^{\prime}, 0\right)\right] \\
\Delta_{E(f)}^{r}\left(d_{1} c, 0\right) & =\sum_{i}\left(d_{1} y_{i}, 0\right) \otimes y_{i}^{\prime}, \\
\Delta_{E(f)}^{r}(x, m) & =\sum_{i}\left[\left(x_{i}^{\prime}, m_{i}^{\prime}\right) \otimes \varepsilon a_{i}^{\prime}+\left(d_{1} c_{i}, 0\right) \otimes c_{i}^{\prime}\right]
\end{aligned}
$$

then $E(f)$ becomes a two sided $G A$-comodule by the coassociativity of $\Delta_{E_{1}}$. In consequence we have an exact sequence of $K$-modules:

$$
\left(e_{f}\right): 0 \longrightarrow A \xrightarrow{\varepsilon} G A \xrightarrow{d_{i}^{\prime}} E(f) \xrightarrow{\varphi} M \longrightarrow 0,
$$

where $d_{i}^{\prime} x=\left(d_{1} x, 0\right)$ and $\varphi(x, m)=m$ for $x \in G A$ and $(x, m) \in E(f)$. This sequence $\left(e_{f}\right)$ satisfies the conditions for a two term extension of $A$ by $M$, which is called a standard two term extension of $A$ by $M$.

Next, consider the commutative diagram
$\left(e_{f}\right):$

where $\psi_{1}(x, m)=x$. By the property of $E(f)$ we know that

$$
\begin{align*}
\Delta_{G^{2} A} \psi_{1} & =\left(\varepsilon^{1} \otimes \psi_{1}\right) \Delta_{E(f)}^{l}+\left(\psi_{1} \otimes \varepsilon^{1}\right) \Delta_{E(f)}^{r}+\left(d_{1} \otimes \psi_{1}\right) \Delta_{E(f)}^{l} \\
& \left(=\left(\varepsilon^{0} \otimes \psi_{1}\right) \Delta_{E(f)}^{l}+\left(\psi_{1} \otimes \varepsilon^{1}\right) \Delta_{E(f)}^{r}\right) . \tag{5.7}
\end{align*}
$$

Proposition 5.8. If two coderivations of 2-cocycles $f$ and $f^{\prime}$ are cohomologous, then $\left(e_{f}\right) \sim\left(e_{f}^{\prime}\right)$.

Proof of 5.8. By our assumption there is a normal coderivation $g: M \rightarrow \widetilde{G^{2} A}$ such that $f-f^{\prime}=d_{2} g$. Define $\psi: E(f) \rightarrow E\left(f^{\prime}\right)$ by $\psi(x, m)$ $=(x-g m, m)$ for $(x, m) \in E(f)$. Since $d_{2}(x-g m)=f^{\prime} m(x-g m, m) \in$ $E\left(f^{\prime}\right)$. So we have the commutative diagram


We want to prove that the diagram is a morphism $\left(e_{f}\right) \rightarrow\left(e_{f^{\prime}}\right)$. Note that $\Delta_{E\left(f^{\prime}\right)}^{l} \psi=\Delta_{E\left(f^{\prime}\right)}^{l}\left(\psi_{1}-g \varphi, \varphi\right)$, which is defined by $\Delta_{G^{2} A} \psi_{1}-\Delta_{G^{2} A} g \varphi$ and $\Delta_{G A * M} \varphi$, where $\psi_{1}: E(f) \rightarrow G^{2} A$ such that $\psi_{1}(x, m)=x$ for $(x, m) \in E(f)$. By (5.7), $\Delta_{G{ }^{2} A} g \varphi=\left(\varepsilon^{1} \otimes g \varphi\right) \Delta_{E(f)}^{l}+\left(g \varphi \otimes \varepsilon^{1}\right) \Delta_{E(f)}^{r}$ and $\Delta_{G A * M} \varphi=(1 \otimes \varphi) \Delta_{E(f)}^{l}$ $+(\varphi \otimes 1) \Delta_{E(f)}^{r}$ we have

$$
\Delta_{E\left(f^{\prime}\right)}^{l} \psi=\Delta_{E\left(f^{\prime}\right)}^{l}\left(\psi_{1}-g \varphi, \varphi\right)=\left(1 \otimes\left(\psi_{1}-g \varphi, \varphi\right)\right) \Delta_{E(f)}^{r}=(1 \otimes \psi) \Delta_{E(f)}^{l} .
$$

Similarly we have $\Delta_{E\left(f^{\prime}\right)}^{r} \psi=(\psi \otimes 1) \Delta_{E(f)}^{r}$. q.e.d.

Summarizing the above we get a map $\alpha: \tilde{H}^{2}(M, A) \rightarrow E x^{2}(M, A)$ such that $\alpha[f]=\left[\left(e_{f}\right)\right]$, where $[f]$ means the cohomology class containing $f$, and $[(e)]$ the equivalence class of $(e)$.

Second step: For a two term extension (e) of $A$ by $M$ we consider the diagram:
(e) :

where $\xi_{0}, \xi_{1}$ and $\xi_{2}$ are $K$-module maps such that $\xi_{0} \varphi_{0}=1_{A}, \varphi_{0} \xi_{0}+\xi_{1} \varphi_{1}=1_{x_{0}}$, $\varphi_{1} \xi_{1}+\xi_{2} \varphi_{2}=1_{x_{1}}$ and $\varphi_{2} \xi_{2}=1_{M}$. Since $\xi_{0} \in \operatorname{Hom}\left(U X_{0}, U A\right)$ there is a unique coalgebra map $\psi_{0}: X_{0} \rightarrow G A$ such that $\eta_{A} \psi_{0}$ (see (1.7)). Since $\eta_{A} \varepsilon=\eta_{A} \psi_{0} \varphi_{0}$ $=1_{A}$ we have $\varepsilon=\psi_{0} \varphi_{0}$ (see (1.7)).

Let $X_{0}+X_{1}$ be the direct sum of $X_{0}$ and $X_{1}$ as $K$-modules. We give $X_{0}+X_{1}$ the structure of a coalgebra as follows. Define $\Delta_{X_{0}+X_{1}}$ by

$$
\Delta_{X_{0}+X_{1}}=\Delta_{X_{0}} \text { on } X_{0}, \quad \Delta_{X_{0}+X_{1}}=\Delta_{X_{1}}^{l}+\Delta_{X_{1}}^{r}+\left(\varphi_{1} \otimes 1\right) \Delta_{X_{1}}^{l} \text { on } X_{1}
$$

Then we can easily check the coassociativity of $\Delta_{X_{0}+X_{1}}$ by the coassociativity of $\Delta_{X_{0}}$, the properties of $X_{1}$ and $\varphi_{1}$. If we define $\varepsilon_{X_{0}+X_{1}}(x+y)$ $\varepsilon_{X_{0}} x$ for $x+y \in X_{0}+X_{1}$ then $X_{0}+X_{1}$ is a coalgebra.
Take $\rho^{\prime} \in \operatorname{Hom}\left(U\left(X_{0}+X_{1}\right), U G A\right)$ such that $\rho^{\prime}(x+y)=\psi_{0} \varphi_{0} \xi_{1} x+\psi_{0} \xi_{1} y$ $=\varepsilon \eta_{A} \psi_{0} x+\psi_{0} \xi_{1} y$. (Note: $\psi_{0} \varphi_{0} \xi_{0}=\varepsilon \xi_{0}=\varepsilon \eta_{A} \psi_{0}$.) Then there is a unique coalgebra map $\rho: X_{0}+X_{1} \rightarrow G^{2} A$ such that $\rho^{\prime}=\eta_{G A} \cdot \rho$ (see (1.7)).

Proposition 5.9. The coalgebra map $\rho$ is denoted by $\rho(x+y)=\varepsilon^{1} \psi_{0} x$ $+\psi_{1} y$, where $x+y \in X_{0}+X_{1}$ and $\bar{\psi}_{1}: X_{1} \rightarrow G^{2} A$ is a K-module map satisfying $d_{1} \psi_{0}=\psi_{1} \varphi_{1}$ and $\Delta_{G^{2} A} \bar{\psi}_{1}=\left(\varepsilon^{1} \psi_{0} \otimes \bar{\psi}_{1}\right) \Delta_{X_{1}}^{l}+\left(\bar{\psi}_{1} \otimes \varepsilon^{1} \psi_{0}\right) \Delta_{X_{1}}^{r}+\left(d_{1} \psi_{0} \otimes \bar{\psi}_{1}\right) \Delta_{X_{1}}^{l}$.

Proof of 5.9. Define $\theta^{0}$ and $\theta^{1}: X_{0} \rightarrow X_{0}+X_{1}$ by $\theta^{0} x=x+\varphi_{1} x$ and $\theta^{1} x=x$ for $x \in X_{0}$. From the definition of $X_{0}+X_{1}$ and the property of $\varphi_{1}$ we can prove that $\theta^{0}$ and $\theta^{1}$ are coalgebra maps. Since $G^{2} A$ is the cofree coalgebra on $U G A$

$$
\begin{aligned}
\eta_{G A} \cdot \rho \theta^{0} x & =\eta_{G A} \rho\left(x+\varphi_{1} x\right)=\rho^{\prime}\left(x+\varphi_{1} x\right)=\varepsilon \eta_{A} \psi_{0} x+\psi_{0} \xi_{1} \varphi_{1} x \\
& =\varepsilon \eta_{A} \psi_{0} x+\psi_{0}\left(1-\varphi_{0} \xi_{0}\right) x=\psi_{0} x=\eta_{G A} \cdot \varepsilon^{0} \psi_{0} x
\end{aligned}
$$

By the universal property of $G^{2} A \rho \theta^{0}=\varepsilon^{0} \psi_{0}$. Similarly we get $\rho \theta^{\prime}=\varepsilon^{1} \psi_{0}$. Thus

$$
\rho\left(x+\varphi_{1} x\right)=\varepsilon^{1} \psi_{0} x+\left(\varepsilon^{0}-\varepsilon^{1}\right) \psi_{0} x=\varepsilon^{1} \psi_{0} x+\bar{\psi}_{1} \varphi_{1} x,
$$

which implies that $\bar{\psi}_{1} \varphi_{1}=d_{1} \psi_{0}$. Since $\rho$ is coalgebra map

$$
\begin{aligned}
\Delta_{G^{2}} \bar{\psi}_{1}= & (\rho \otimes \rho)\left(\Delta_{X_{0}+X_{1}} \mid X_{1}\right)=\left(\varepsilon^{1} \psi_{0} \otimes \bar{\psi}_{1}\right) \Delta_{X_{1}}^{\tau} \\
& +\left(\bar{\psi}_{1} \otimes \varepsilon^{1} \psi_{0}\right) \Delta_{X_{1}}^{r}+\left(d_{1} \psi_{0} \otimes \bar{\psi}_{1}\right) \Delta_{X_{1}}^{l} .
\end{aligned}
$$

q.e.d.

By (ii) of Definition 5.2 we know that for $y \in X_{1}$

$$
\begin{align*}
& \Delta_{x_{1}}^{l} y=\sum_{i}\left(\varphi_{0} a_{i} \otimes y_{i}+z_{i} \otimes \varphi_{1} z_{i}^{\prime}\right), \\
& \Delta_{x_{1}}^{r} y=\sum_{i}\left(y_{i}^{\prime} \otimes \varphi_{0} a_{i}^{\prime}+\varphi_{1} z_{i} \otimes z_{i}^{\prime}\right) \tag{5.10}
\end{align*}
$$

where $a_{i}, a_{i}^{\prime} \in A, y_{i}, y_{i}^{\prime} \in X_{1}$ and $z_{i}, z_{i}^{\prime} \in Z=\left(1-\phi_{0} \xi_{0}\right) X_{0}$. This implies that

$$
\begin{aligned}
\Delta_{G^{2} A} t_{1} \bar{\psi}_{1} & =\Delta_{G^{2} A} \bar{\psi}_{1}-\left(\varepsilon^{1} \delta^{0} \otimes \varepsilon^{1} \delta^{0}\right) \Delta_{G^{2} A} \bar{\psi}_{1} \\
& =\left(\varepsilon^{1} \psi_{0} \otimes t_{1} \bar{\psi}_{1}\right) \Delta_{X_{1}}^{l}+\left(t_{1} \bar{\psi}_{1} \otimes \varepsilon^{1} \psi_{0}\right) \Delta_{X_{1}}^{r}+\left(d_{1} \psi_{0} \otimes t_{1} \bar{\psi}_{1}\right) \Delta_{X_{1}}^{l}
\end{aligned}
$$

where $t_{1}=1-\varepsilon^{1} \delta^{0}: G^{2} A \rightarrow G^{2} A$. Put $\psi_{1}=t_{1} \bar{\psi}_{1}$, then it follows that $\psi_{1} \varphi_{2}$ $=d_{1} \psi_{0}$ and

$$
\begin{align*}
\Delta_{G^{2} A} \psi_{1} & =\left(\varepsilon^{1} \psi_{0} \otimes \psi_{1}\right) \Delta_{X_{1}}^{l}+\left(\psi_{1} \otimes \varepsilon^{1} \psi_{0}\right) \Delta_{X_{1}}^{r}+\left(d_{1} \psi_{0} \otimes \psi_{1}\right) \Delta_{X_{1}}^{l} \\
& =\left(\varepsilon^{0} \psi_{0} \otimes \psi_{1}\right) \Delta_{X_{1}}^{l}+\left(\psi_{1} \otimes \varepsilon^{1} \psi_{0}\right) \Delta_{X_{1}}^{r} . \tag{5.11}
\end{align*}
$$

PROPOSITION 5.12. $\left(1 \otimes d_{2} \psi_{1}\right) d_{X_{1}}^{l} \xi_{2}=\left(\varphi_{0} \otimes d_{2} \psi_{1} \xi_{2}\right) \omega_{M}^{l}$ and $\left(d_{2} \psi_{1} \otimes 1\right) \Delta_{X_{1}}^{r} \xi_{2}$ $=\left(d_{2} \psi_{1} \xi_{2} \otimes \varphi_{0}\right) \omega_{M}^{r}$, where $\omega_{M}^{l}: M \rightarrow A \otimes M$ and $\omega_{M}^{r}: M \rightarrow M \otimes A$ are the comodule structure maps of $M$ as a two sided $A$-comodule.

Proof of 5.12. Recall that $1_{X_{1}}=\varphi_{1} \xi_{1}+\xi_{2} \varphi_{2}$ and $\varphi_{2} \xi_{2}=1_{M}$ (see the above diagram). Assume $m \in M$ and $\Delta_{M}^{l} m=\sum_{i} \varphi_{0} a_{i} \otimes m_{i}$. We put $y=$ $\xi_{2} m$ (see (5.10)), then

$$
\begin{aligned}
\Delta_{x_{1}}^{2} \xi_{2} m=\Delta_{x_{1}}^{2} y & =\sum_{i}\left(\varphi_{0} a_{i} \otimes y_{i}+z_{i} \otimes \varphi_{1} z_{i}^{\prime}\right) \\
& =\sum_{i} \varphi_{0} a_{i} \otimes \xi_{2} m_{i}+\sum_{i}\left(\varphi_{0} a_{i} \otimes \varphi_{1} x_{i}+z_{i} \otimes \varphi_{1} z_{i}^{\prime}\right),
\end{aligned}
$$

where $y_{i}=\xi_{2} m_{i}+\varphi_{1} x_{i}$ for some $x_{i} \in X_{0}$. Since $\psi_{1} \varphi_{1}=d_{1} \psi_{0}$ we have

$$
\left(1 \otimes d_{2} \psi_{1}\right) d_{x_{1}}^{l} \xi_{2}=\left(1 \otimes d_{2} \psi_{1}\right)\left(\varphi_{0} \otimes \xi_{2}\right) \omega_{M}^{l}=\left(\varphi_{0} \otimes d_{2} \psi_{1} \xi_{2}\right) \omega_{M}^{l} .
$$

Similarly, we get $\left(d_{2} \psi_{1} \otimes 1\right) \Delta_{x_{1}}^{r} \xi_{2}=\left(d_{2} \psi_{1} \xi_{2} \otimes \varphi_{0}\right) \omega_{M}^{r}$. q.e.d.

Proposition 5.13. Let us put $f=d_{2} \psi_{1} \xi_{2}$, then $f$ is a coderivation 2-cocycle.

Proof of 5.13. It is obvious that $f: M \rightarrow \widetilde{G^{3} A}$. Put $T=\varepsilon^{0} \otimes \varepsilon^{0}-$ $\varepsilon^{1} \otimes \varepsilon^{1}+\varepsilon^{2} \otimes \varepsilon^{2} . \quad$ Using (5.11)

$$
\begin{aligned}
T \Delta_{G^{2} A} \psi_{1}= & \left(\varepsilon^{0} \varepsilon^{0} \psi_{0} \otimes d_{2} \psi_{1}\right) \Delta_{X_{1}}^{l}+\left(d_{2} \psi_{1} \otimes \varepsilon^{1} \varepsilon^{1} \psi_{0}\right) \Delta_{X_{1}}^{r} \\
& +\left(\varepsilon^{0} \psi_{1} \otimes \varepsilon^{2} \psi_{1}\right)\left(\left(1 \otimes \varphi_{1}\right) \Delta_{X_{1}}^{r}-\left(\varphi_{1} \otimes 1\right) \Delta_{X_{1}}^{l}\right) .
\end{aligned}
$$

Since $\left(1 \otimes \varphi_{1}\right) \Delta_{X_{1}}^{r}=\left(\varphi_{1} \otimes 1\right) \Delta_{X_{1}}^{r}$ we have

$$
T \Delta_{G^{2} A} \psi_{1}=\left(\varepsilon^{0} \varepsilon^{0} \psi_{0} \otimes d_{2} \psi_{1}\right) \Delta_{X_{1}}^{l}+\left(d_{2} \psi_{1} \otimes \varepsilon^{1} \varepsilon^{1} \psi_{0}\right) \Delta_{X_{1}}^{r}
$$

By Proposition 5.12 we have

$$
\begin{aligned}
\Delta_{G^{3} A} f & =T \Delta_{G^{2} A} \psi_{1} \xi_{2}=\left(\varepsilon^{0} \varepsilon^{0} \psi_{0} \otimes d_{2} \psi_{1}\right) \Delta_{X_{1}}^{l} \xi_{2}+\left(d_{2} \psi_{1} \otimes \varepsilon^{1} \varepsilon^{1} \psi_{0}\right) \Delta_{X_{1}}^{r} \xi_{2} \\
& =\left(\varepsilon^{0} \varepsilon^{0} \varepsilon d_{2} \psi_{1} \xi_{2}\right) \omega_{M}^{l}+\left(d_{2} \psi_{1} \xi_{2} \otimes \varepsilon^{0} \varepsilon^{0} \varepsilon\right) \omega_{M}^{r},
\end{aligned}
$$

i.e., $f$ is a coderivation with $d_{3} f=0$.
q.e.d.

In consequence we get a map $\beta^{\prime}$ from the set of all two term extensions of $A$ by $M$ to the set of all coderivations of 2 -cocycles. By the definitions of $\beta^{\prime}$ and $\left(e_{f}\right)$ we have $\beta^{\prime}:\left(e_{f}\right) \mapsto f$.

Proposition 5.14. Assume $\beta^{\prime}:(e) \mapsto f$, then $(e) \sim\left(e_{f}\right)$.
Proof of 5.14 . By our assumption there is the commutative diagram
(e) :


Define $\omega: X_{1} \rightarrow E(f)$ by $\omega x=\left(\psi_{1} x, \varphi_{2} x\right)$ for $x \in X_{1}$. Since $d_{2} \psi_{1} x=f \varphi_{2} x$ $\omega x \in E(f)$. So we have the commutative diagram
(e):


By the definition of $\Delta_{E(f)}^{l}$, (5.11) and $\Delta_{M}^{l} \varphi_{2}=\left(1 \otimes \varphi_{2}\right) \Delta_{X_{1}}^{l}$ we have $\Delta_{E(f)}^{l} \omega=$ $\left(\psi_{0} \otimes \omega\right) \Delta_{x_{1}}^{l} . \quad$ Similarly we get $\Delta_{E(f)}^{r} \omega=\left(\omega \otimes \psi_{0}\right) \Delta_{x_{1}}^{r} . \quad$ So $(e) \sim\left(e_{f}\right) . \quad$ q.e.d.

Proposition 5.15. If $\left(e_{f}\right) \sim\left(e_{f^{\prime}}\right)$ then $f$ and $f^{\prime}$ are cohomologous.


Proof of 5.15. Let us prove that if $\left(e_{f}\right) \leftarrow(e) \mapsto\left(e_{f^{\prime}}\right)$ then $f$ and $f^{\prime}$ are cohomologous. With this fact and (5.14) all cases in our proposition can be proved. Under our hypothesis is the commutative diagram where $\xi_{0}, \xi_{1}, \xi_{2}$ are $K$-module maps such that $\varphi_{0} \xi_{0}+\xi_{1} \varphi_{1}=1_{X_{0}}, \xi_{0} \varphi_{0}=1_{A}=$ $\eta_{A} \varepsilon$ and $\varphi_{2} \xi_{2}=1_{M}$. Define the coalgebra $X_{0}+X_{1}$ by the same way as in the upper part of Proposition 5.9 and $\rho^{\prime}: U\left(X_{0}+X_{1}\right) \rightarrow U A$ by $\rho^{\prime}(x+y)$ $=\eta_{A} \tau x+\eta_{A} \tau^{\prime} \xi_{1} y$ for $x+y \in X_{0}+X_{1}$, then there is a unique coalgebra map $\rho: X_{0}+X_{1} \rightarrow G A$ such that $\eta_{A} \cdot \rho=\rho^{\prime}$. By the same way as in the proof of Proposition 5.9 we can prove that $\rho(x+y)=\tau x+g y$ for $x+$ $y \in X_{0}+X$, where $g: X_{1} \rightarrow G A$ is a $K$-module map satisfying $g \phi_{1}=\tau^{\prime}-\tau$ and $\Delta_{G A} g=(\tau \otimes g) \Delta_{X_{1}}^{l}+(g \otimes \tau) \Delta_{x_{1}}^{r}+\left(\left(\tau^{\prime}-\tau\right) \otimes g\right) \Delta_{x_{1}}^{l}=\left(\tau^{\prime} \otimes g\right) \Delta_{X_{1}}^{l}+(g \otimes \tau) \Delta_{X_{1}}^{r}$. Put $\chi=\psi_{1}^{\prime} \omega^{\prime}-\psi_{1} \omega-d_{1} g: X_{1} \rightarrow \widetilde{G^{2} A}$, then $\chi \varphi_{1}=0$. In this case, by a straightforward calculation we have

$$
\begin{aligned}
\Delta_{G^{2 A}} \chi= & \Delta_{G^{2} A} \psi_{1}^{\prime} \omega^{\prime}-\Delta_{G^{2} A} \psi_{1} \omega-\left(\varepsilon^{0} \otimes \varepsilon^{0}-\varepsilon^{1} \otimes \varepsilon^{1}\right) \Delta_{G A} g \\
= & {\left[\varepsilon^{0} \tau^{\prime} \otimes\left(\psi_{1}^{\prime} \omega^{\prime}-\psi_{1} \omega-d_{1} g\right)\right] \Delta_{X_{1}}^{l}+\left[\left(\psi_{1}^{\prime} \omega-\psi_{1} \omega-d_{1} g\right) \otimes \varepsilon^{1} \tau\right] \Delta_{X_{1}}^{r} } \\
& +\left[\varepsilon^{0}\left(\tau^{\prime}-\tau\right) \otimes \psi_{1} \omega-d_{1} \tau^{\prime} \otimes \varepsilon^{1} g\right] \Delta_{X_{1}}^{l} \\
& +\left[\psi_{1}^{\prime} \omega^{\prime} \otimes \varepsilon^{1}\left(\tau^{\prime}-\tau\right)-\varepsilon^{0} g \otimes d_{1} \tau\right] \Delta_{X_{1}}^{r} .
\end{aligned}
$$

Since $\quad\left(\varepsilon^{0}\left(\tau^{\prime}-\tau\right) \otimes \psi_{1} \omega\right) \Delta_{X_{1}}^{l}=\left(\varepsilon^{0} g \otimes d_{1} \tau\right) \Delta_{X_{1}}^{r} \quad$ and $\quad\left(\psi_{1}^{\prime} \omega^{\prime} \otimes \varepsilon^{\prime}\left(\tau^{\prime}-\tau\right)\right) \Delta_{X_{1}}^{r}=$ $\left(d_{1} \tau^{\prime} \otimes \varepsilon^{1} g\right) \Delta_{X_{1}}^{l}$ (refer 5.10) we have $\Delta_{G^{2} A} \chi=\left(\varepsilon^{0} \tau^{\prime} \otimes \chi\right) \Delta_{X_{1}}^{l}+\left(\chi \otimes \varepsilon^{1} \tau\right) \Delta_{X_{1}}^{r}$. Using
$\chi \varphi_{1}=0$ we can prove that $(1 \otimes \chi) \Delta_{x_{1}}^{l} \xi_{2}=\left(\varphi_{0} \otimes \chi \xi_{2}\right) \omega_{M}^{l}$ and $(\chi \otimes 1) \Delta_{x_{1}}^{r} \xi_{2}=$ $\left(\chi \xi_{2} \otimes \varphi_{0}\right) \omega_{M}^{r}$ (refer Proposition 5.12). $\quad \Delta_{G^{2} A} \chi \xi=\left(\varepsilon^{0} \varepsilon \otimes \chi \xi_{2}\right) \omega_{M}^{l}+\left(\chi \xi_{2} \otimes \varepsilon^{0} \varepsilon\right) \omega_{M}^{r}$, which implies that $\chi \xi_{2}$ is a normal coderivation. Since $d_{2} \chi \xi_{2}=f^{\prime}-f, f$ and $f^{\prime}$ are cohomologous.

With Propositions 5.14 and 5.15 we can define $\beta: E x^{2}(M, A) \rightarrow \tilde{H}^{2}(m, A)$ by $\beta[(e)]\left[=\left[\beta^{\prime}(e)\right] . \quad\right.$ In this case $\beta\left[\left(e_{f}\right)\right]=[f]$.

Third step: By the definitions of $\alpha$ and $\beta$ we have

$$
\begin{aligned}
& \beta \alpha[f]=\beta\left[\left(e_{f}\right)\right]=[f], \quad \text { i.e., } \beta \alpha=1_{\tilde{H}^{2}(M, A)}, \\
& \alpha \beta[(e)]=\alpha\left[\beta^{\prime}(e)=f\right]=\alpha[f]=\left[\left(e_{f}\right)\right]=[(e)] \\
& \quad \text { (see Proposition 5.14), }
\end{aligned}
$$

i.e., $\alpha \beta=1_{E x^{2}(M, A)}$, and therefore we complete the proof of Theorem 5.4. (Note that $H^{2}(M, A) \cong \tilde{H}^{2}(M, A)$ (see 4.6).)

## 6. Interpretation of $\boldsymbol{H}^{1}(\boldsymbol{M}, \boldsymbol{A})$.

The arguments in this section are analogous to those in the preceding section. The detailed description will be omitted. In this section we assume that $A$ is a coalgebra and $M$ a two sided $A$-comodule.

DEFINITION 6.1. By a (normal) coderivation 1-cocycle we mean a normal coderivation $f: M \rightarrow \widetilde{G^{2} A}$ such that $d_{2} f=0$. Two such cocycles $f$ and $f^{\prime}$ are cohomologous if there exists a coderivation $g: M \rightarrow G A$ such that $f-f^{\prime}=d_{1} g$.

Assume $f$ is a coderivation 1-cocycle. Since $\overline{G^{2} A}=G^{2} A=\varepsilon^{1} G A \oplus \widetilde{G^{2} A}$ coalgebra maps $\rho_{0}$ and $\rho_{1}: G A * M \rightarrow \overline{G^{2} A}$ are defined by $\rho_{0}=$ the composition $G A * M \xrightarrow{\text { Projection }} G A \xrightarrow{\varepsilon^{0}} G^{2} A$ and $\rho_{1}=\left(\varepsilon^{1}, f\right)$ (see (4.8)). Put

$$
\begin{aligned}
E(f) & =\operatorname{Ker}\left(U \rho_{0}-U \rho_{1}\right) \\
& =\left\{(x, m) \in G A * M \mid d_{1} x=f m \text { for some } m \in M\right\}
\end{aligned}
$$

Using the direct sum decompositions $G A=\varepsilon A \oplus C\left(C=\left(1-\varepsilon \eta_{A}\right) G A\right), G^{2} A$ $=\varepsilon^{0} \varepsilon A \oplus \varepsilon^{1} C \oplus \widetilde{G^{2} A}$ and the monomorphism $d_{1} \mid C$ (Proposition 3.5) we have

$$
\Delta_{G A * M}(x, m)=\sum_{i}\left[\left(\varepsilon \alpha_{i}, 0\right) \otimes\left(x_{i}, m_{i}\right)+\left(x_{i}^{\prime}, m_{i}^{\prime}\right) \otimes\left(\varepsilon \alpha_{i}^{\prime}, 0\right)\right]
$$

for $(x, m) \in E(f)$, where $x_{i}, x_{i}^{\prime} \in G A, \Delta_{A * M} m=\sum_{i}\left(a_{i} \otimes m_{i}+m_{i}^{\prime} \otimes a_{i}^{\prime}\right), d_{1} x_{i}=$ $m_{i}$ and $d_{1} x_{i}^{\prime}=m_{i}^{\prime}$. This just indicates that $E(f)$ is a subcoalgebra of $G A * M$. So we obtain an exact sequence of $K$-modules

$$
\left(e_{f}\right): \quad 0 \longrightarrow A \xrightarrow{\varepsilon^{\prime}} E(f) \xrightarrow{\varphi} M \longrightarrow 0,
$$

where $\varepsilon^{\prime} a=(\varepsilon a, 0)$ and $\varphi(x, M)=m$ for $a \in A,(x, m) \in E(f)$.
Definition 6.2. By an extension of $A$ by $M$ we mean an exact sequence of $K$-modules:

$$
(e): 0 \longrightarrow A \xrightarrow{\varphi_{0}} X \xrightarrow{\varphi_{1}} M \longrightarrow 0
$$

satisfying the conditions:
(i) $X$ is a coalgebra and $\varphi_{0}$ a coalgebra map,
(ii) $M$ is a two sided $X$-comodule induced by $\varphi_{0}$, and $\varphi_{1}$ a two sided $X$-comodule map. That is,

$$
\Delta_{M}^{l}=\left(\varphi_{0} \otimes 1\right) \omega_{M}^{l}, \quad \Delta_{M}^{r}=\left(1 \otimes \varphi_{0}\right) \omega_{M}^{r}
$$

where $\omega_{M}^{l}: N \rightarrow A \otimes M$ and $\omega_{M}^{r}: M \rightarrow M \otimes A$ are the comodule structure maps of $M$ as a two sided $A$-comodule.

The above sequence $\left(e_{f}\right)$ is an extension of $A$ by $M$, which is called a standard extension of $A$ by $M$.

Definition 6.3. For two extensions (e) and ( $e^{\prime}$ ) of $A$ by $M$, if there is an isomorphism $\psi: X \rightarrow X^{\prime}$ of coalgebras satisfying the commutative diagram

then we say that $(e)$ is isomorphic to $\left(e^{\prime}\right)$, written $(e) \approx\left(e^{\prime}\right)$.
Given an extension ( $e$ ) of $A$ by $M$ there is a coderivational 1-cocycle $f$ such that $(e) \approx\left(e_{f}\right)$, where the standard extension $\left(e_{f}\right)$ corresponds to $f$. In particular, for two standard extensions $\left(e_{f}\right)$ and $\left(e_{f}^{\prime}\right)$ if $f$ and $f^{\prime}$ are cohomologous then $\left(e_{f}\right) \approx\left(e_{f}^{\prime}\right)$, and conversely if $\left(e_{f}\right) \approx\left(e_{f}^{\prime}\right)$ then $f$ and $f^{\prime}$ are cohomologous.

Let us denote the set of all isomorphism classes of extensions of $A$ by $M$ by $E x^{1}(M, A)$. Summarizing the above we have:

THEOREM 6.4. There is an one-to-one correspondence between $H^{1}(M, A)$ and $E x^{1}(M, A)$.

## References

[ 1] M. Barr and J. Beck, Acyclic models and triples, Proceeding of La Jolla conference on Categorical Algebra, Springer (1966), pp. 336-343.
[2] J. Beck, Triples, Algebras and cohomology, Doctoral dissertation, Columbia University (1967).
[3] A. K. Bousfield, Nice Homology Coalgebra, mimeographed, Brandeis University (1968).
[ 4 ] S. Eilenberg and J. C. Moore, Adjoint functors and Triples, Ill. J. Math., 9 (1965), pp. 381-399.
[5] G. Hochschild, On the cohomology group of an associative algebra, Ann. of Math., 46 (1945), pp. 58-67.
[6] -, On the cohomology theory for associative algebra, Ann. of Math., 47 (1946), pp. 568-579.
[ 7 ] --, Relative homological algebra, Trans. A. M. S., 82 (1956), pp. 246-269.
[ 8 ] - Cohomology and representations of associative algebra, Duke Math. J., 14 (1947), pp. 921-948.
[9] A. Iwai, Simplicial cohomology and $n$-term extensions of algebras, J. Math. Kyoto Univ., 9, No. 3 (1969), pp. 449-470.
[10] D. W. Jonah, Cohomology of coalgebras, Memoirs of A. M. S., No. 82 (1968).
[11] K. Lee, Relative cohomology and group objects, The annual report of Hanyan Univ. (1969), pp. 203-219.
[12] S. MacLane, Homology, Springer and Academic Press (1963).
[13] J. P. May, Simplicial objects in algebraic Topology, D. Van Nostrand Company (1969).
[14] J. W. Milnor nad J. C. Moore, The structure of Hopf algebras, Ann. of Math., (2) 81 (1965), pp. 221-264.
[15] N. Shimada, H. Uehara, F. Brenneman and A. Iwai, Triple cohomology of algebras and two term extensions, Puble. RIMS Kyoto Univ., Vol. 5 (1969), pp. 267-285.
[16] N. Shimada and A. Iwai, Triple cohomology, mimeographed, Fourth seminar on Homological algebra at Takarazuka, Japan, 1969 (Japanese).
[17] M. E. Sweedler, Hopf algebras, W. A. Benjamin, Inc. (1969).
[18] M. Tierney and W. Vogel, Simplicial derived functors, Category theory, Homology theory and their applications I, Lecture Notes in Math., 86 (1969), pp. 167-180.
[19] R. Vogt, Boardman's stable homotopy category, Lecture Notes series, 21 (1970), Aarhus Univ.

Hanyang University, Seoul, Korea<br>Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan


[^0]:    Received December 28, 1971.
    Revised February 4, 1972.

