SURFACES WITH MEAN CURVATURE VECTOR PARALLEL IN THE NORMAL BUNDLE ${ }^{1)}$

BANG-YEN CHEN AND GERALD D. LUDDEN

§ 1. Introduction. Let M be a connected surface immersed in a Euclidean m-space E^{m}. Let \boldsymbol{h} be the second fundamental form of this immersion; it is a certain symmetric bilinear mapping $T_{x} \times T_{x} \rightarrow T_{x}^{\perp}$ for $x \in M$, where T_{x} is the tangent space and T_{x}^{\perp} the normal space of M at x. Let \boldsymbol{H} be the mean curvature vector of M in E^{m}. If there exists a real λ such that $\langle\boldsymbol{h}(\boldsymbol{X}, \boldsymbol{Y}), \boldsymbol{H}\rangle=\lambda\langle\boldsymbol{X}, \boldsymbol{Y}\rangle$ for all tangent vectors $\boldsymbol{X}, \boldsymbol{Y}$ in T_{x}, then M is said to be pseudo-umbilical at x. If M is pseudo-umbilical at each point of M, then M is called a pseudo-umbilical surface. Let D denote the covariant differentiation of E^{m} and η be a normal vector field on M. If we denote by $D^{*} \eta$ the normal component of D_{η}, then D^{*} defines a connection in the normal bundle. A normal vector field η is said to be parallel in the normal bundle if $D^{*} \boldsymbol{\eta}=0$.

Let $h_{i j}^{r} ; i, j=1,2 ; r=3, \cdots, m$, be the coefficients of the second fundamental form h. Then the Gauss curvature K and the normal curvature K_{N} are given respectively by

$$
\begin{gather*}
K=\sum_{r=3}^{m}\left(h_{11}^{r} h_{22}^{r}-h_{12}^{r} h_{12}^{r}\right), \tag{1}\\
K_{N}=\sum_{r, s=3}^{2}\left[\sum_{k=1}^{m}\left(h_{1 k}^{r} h_{2 k}^{s}-h_{2 k}^{r} h_{1 k}^{s}\right)\right]^{2} . \tag{2}
\end{gather*}
$$

The mean curvature vector \boldsymbol{H}, the Gauss curvature K, and the normal curvature K_{N} play the most important rôles, in differential geometry, for surfaces in Euclidean space.

We consider a surface in E^{5} given by

$$
c\left(\frac{y z}{\sqrt{3}}, \frac{x z}{\sqrt{3}}, \frac{x y}{\sqrt{3}}, \frac{x^{2}-y^{2}}{2 \sqrt{3}}, \frac{1}{6}\left(x^{2}+y^{2}-2 z^{2}\right)\right),
$$

[^0]where $x^{2}+y^{2}+z^{2}=3$ and c is a positive constant. This surface is a real projective plane in E^{5} with $D^{*} \boldsymbol{H}=0, K=1 / 3 c^{2}$ and $K_{N}=16 / 9 c^{4}$. It is called the Veronese surface.

The main purpose of this paper is to study the surfaces in E^{m} with the mean curvature vector parallel in the normal bundle and to prove the following theorems.

Theorem 1. The Veronese surface is the only compact surface in Euclidean 5-space with $D^{*} \boldsymbol{H}=0$ and non-zero constant normal curvature K_{N}.

Theorem 2. The minimal surfaces of a hypersphere of E^{m}, the open pieces of the product of two plane circles in E^{4} and the open pieces of a circular cylinder in E^{3} are the only non-minimal surfaces in Euclidean space with $D^{*} \boldsymbol{H}=0$ and constant Gauss curvature.

The results obtained in this paper have been announced in [3].
§2. Lemmas. Let M be a surface immersed in Euclidean m-space E^{m}. We choose a local field of orthonormal frames $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \cdots, \boldsymbol{e}_{m}$ in E^{m} such that, restricted to M, the vectors $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$ are tangent to M (and, consequently, $\boldsymbol{e}_{3}, \cdots, e_{m}$ are normal to M). With respect to the frame field of E^{m} chosen above, let $\omega^{1}, \cdots, \omega^{m}$ be the field of dual frames. Then the structure equations of E^{m} are given by

$$
\begin{align*}
D \boldsymbol{e}_{A} & =\sum \omega_{A}^{B} \otimes \boldsymbol{e}_{B}, \quad \omega_{B}^{A}+\omega_{A}^{B}=0, \tag{3}\\
d \omega^{A} & =-\sum \omega_{B}^{A} \wedge \omega^{B}, \tag{4}\\
d \omega_{B}^{A} & =-\sum \omega_{C}^{A} \wedge \omega_{B}^{C}, \quad A, B, C, \cdots=1,2, \cdots, m . \tag{5}
\end{align*}
$$

We restrict these forms to M. Then

$$
\omega^{r}=0, r, s, t, \cdots=3, \cdots, m
$$

Since $0=d \omega^{r}=-\sum \omega_{i}^{r} \wedge \omega^{i}$, by Cartan's lemma we may write

$$
\begin{equation*}
\omega_{i}^{r}=\sum h_{i j}^{r} \omega^{j}, \quad h_{i j}^{r}=h_{j i}^{r}, \quad i, j, k, \cdots=1,2 \tag{6}
\end{equation*}
$$

From these formulas, we obtain

$$
\begin{align*}
& d \omega^{i}=-\sum \omega_{j}^{i} \wedge \omega^{j}, \quad \omega_{2}^{1}=-\omega_{1}^{2} \tag{7}\\
& d \omega_{2}^{1}=K \omega^{1} \wedge \omega^{2} \tag{8}\\
& d \omega_{i}^{r}=-\sum \omega_{j}^{r} \wedge \omega_{i}^{j}-\sum \omega_{s}^{r} \wedge \omega_{i}^{s} \tag{9}
\end{align*}
$$

$$
\begin{equation*}
d \omega_{s}^{r}=-\sum \omega_{t}^{r} \wedge \omega_{s}^{t}+\sum\left(h_{i 1}^{r} h_{i 2}^{s}-h_{i 2}^{r} h_{i 1}^{s}\right) \omega^{1} \wedge \omega^{2} \tag{10}
\end{equation*}
$$

The second fundamental form is given by $\boldsymbol{h}=\sum h_{i j}^{r} \omega^{i} \omega^{j} \boldsymbol{e}_{r}$ and the mean curvature vector is given by $\boldsymbol{H}=(1 / 2) \sum\left(h_{11}^{r}+h_{22}^{r}\right) \boldsymbol{e}_{r}$.

Lemma 1. Let M be a non-minimal surface in E^{m} with $D^{*} \boldsymbol{H}=0$. Then $M=M_{1} \cup M_{2} \cup M_{3}$ such that (i) M_{1} and M_{2} are open, (ii) $M_{3}=$ $\partial M_{1}=\partial M_{2}$, (iii) M_{1} and M_{3} are pseudo-umbilical in E^{m}, (iv) $K_{N}=0$ on $M_{2} \cup M_{3}$, and (v) M_{2} is nowhere pseudo-umbilical in E^{m}.

Proof. Since M is non-minimal in E^{m} and \boldsymbol{H} is parallel in the normal bundle, the length of \boldsymbol{H} is a nonzero constant. Hence we may choose our frame field in such a way that

$$
\begin{gather*}
\boldsymbol{H}=c \boldsymbol{e}_{3}, \quad c=|\boldsymbol{H}|, \tag{11}\\
h_{12}^{3}=0 \tag{12}
\end{gather*}
$$

Therefore, we have

$$
\begin{gather*}
\omega_{1}^{3}=h_{11}^{3} \omega^{1}, \quad \omega_{2}^{3}=\left(2 c-h_{11}^{3}\right) \omega^{2}, \tag{13}\\
\omega_{r}^{3}=0 . \tag{14}
\end{gather*}
$$

Taking exterior differentiation of (14) and applying (7), (9) and (13), we obtain

$$
\begin{equation*}
h_{12}^{r}\left(c-h_{11}^{3}\right)=0 \quad \text { for } r=4, \cdots, m \tag{15}
\end{equation*}
$$

Put $M_{2}=\left\{p \in M ; h_{11}^{3} \neq h_{22}^{3}\right\}$. Then M_{2} is an open subset of M and

$$
\begin{equation*}
h_{12}^{r}=0 \quad \text { on } \quad M_{2} \quad \text { for } r=4, \cdots, m . \tag{16}
\end{equation*}
$$

Therefore, from (2), (12) and (16) we see that $M-M_{2}$ is pseudo-umbilical in E^{m} and $K_{N}=0$ on M_{2}. Let $M_{1}=\operatorname{Int}\left(M-M_{2}\right)$. Then we obtain Lemma 1.

Lemma 2. Let M be a non-minimal surface in E^{m} with $D^{*} \boldsymbol{H}=0$, $K_{N}=0$ and $K=$ constant, then $K \geqq 0$.

Proof. Choose our frame field in such that a way that (11) and (12) hold. Then we have (13) and (14). Taking exterior differentiation of (13) and applying (7), (9) and (13) we obtain

$$
\begin{equation*}
2\left(c-h_{11}^{3}\right) d \omega^{i}=d h_{11}^{3} \wedge \omega^{i} . \tag{17}
\end{equation*}
$$

Since $K_{N}=0$ and $h_{12}^{3}=0$, we obtain from (2) that

$$
\begin{equation*}
\omega_{1}^{r}=h_{11}^{r} \omega^{1}, \quad \omega_{2}^{r}=-h_{11}^{r} \omega^{2}, \quad \text { for } r>3 \tag{18}
\end{equation*}
$$

Taking exterior differentiation of (18) we see that

$$
\begin{equation*}
d h_{11}^{r} \wedge \omega^{1}+2 h_{11}^{r} d \omega^{1}=\sum_{s=4}^{m} h_{11}^{s} \omega^{1} \wedge \omega_{s}^{r} \tag{19}
\end{equation*}
$$

Multiplying (19) by h_{11}^{r} and summing up on r, we obtain

$$
\sum_{r=4}^{m}\left(h_{11}^{r} d h_{11}^{r}\right) \wedge \omega^{1}+2 \sum_{r=4}^{m}\left(h_{11}^{r} h_{11}^{r}\right) d \omega^{1}=\sum_{r, s=4}^{m}\left(h_{11}^{r} h_{11}^{s}\right) \omega^{1} \wedge \omega_{s}^{r} .
$$

It is easy to see from $\omega_{s}^{r}=-\omega_{r}^{s}$ and above equation that

$$
\begin{equation*}
\sum_{r=4}^{m}\left(h_{11}^{r} d h_{11}^{r}\right) \wedge \omega^{1}+2 \sum_{r=4}^{m}\left(h_{11}^{r} h_{11}^{r}\right) d \omega^{1}=0 . \tag{20}
\end{equation*}
$$

On the other hand, by the assumption $K=$ constant and (18), we see that

$$
\begin{equation*}
\left(c-h_{11}^{3}\right) d h_{11}^{3}=\sum_{r=4}^{m} h_{11}^{r} d h_{11}^{r} . \tag{21}
\end{equation*}
$$

Hence, combining (20) and (21), we obtain

$$
\begin{equation*}
2 \sum_{r=4}^{m}\left(h_{11}^{r} h_{11}^{r}\right) d \omega^{1}=-\left(c-h_{11}^{3}\right) d h_{11}^{3} \wedge \omega^{1} . \tag{22}
\end{equation*}
$$

Substituing (17) into (22) we obtain

$$
\begin{equation*}
\sum_{r=4}^{m}\left(h_{11}^{r} h_{11}^{r}\right) d \omega^{1}=-\left(c-h_{11}^{3}\right)^{2} d \omega^{1} . \tag{23}
\end{equation*}
$$

Similarly, we have

$$
\begin{equation*}
\sum_{r=4}^{m}\left(h_{11}^{r} h_{11}^{r}\right) d \omega^{2}=-\left(c-h_{22}^{3}\right)^{2} d \omega^{2} . \tag{24}
\end{equation*}
$$

Put $V=\left\{p \in M ; d \omega^{1} \neq 0\right.$ or $\left.d \omega^{2} \neq 0\right\}$. Then V is an open subset of M. If $V=\phi$, then $d \omega^{1}=d \omega^{2}=0$ identically on M. Hence, (7) and (8) imply that $K=0$. Now, suppose that $V \neq \phi$, and let V_{1} be a component of V. Then on V_{1}, we have

$$
\begin{gather*}
h_{11}^{r}=0, \quad \text { for } r=4, \cdots, m, \tag{25}\\
c-h_{11}^{3}=0 . \tag{26}
\end{gather*}
$$

These imply that

$$
\begin{gather*}
\omega_{1}^{3}=h_{11}^{3} \omega^{1}, \quad \omega_{2}^{3}=h_{11}^{3} \omega^{2}, \tag{27}\\
\omega_{1}^{r}=\omega_{2}^{r}=0, \quad \text { for } r=4, \cdots, m \tag{28}
\end{gather*}
$$

on V_{1}. From (14) and (28), we can easily find that the normal subspace spanned by e_{4}, \cdots, e_{m} is independent of the base point $p \in M$ and hence V_{1} is contained in a 3 -dimensional linear subspace E^{3} of E^{m}. Moreover, by (27), we see that V_{1} is totally umbilical in E^{3}. Therefore, V_{1} is an open piece of a 2 -sphere in E^{3}. From this we see that the Gauss curvature K is a positive constant on M. This completes the proof of the lemma.

Lemma 3. The Veronese surface is the only compact pseudo-umbilical surface in Euclidean 5-space with nonzero constant normal curvature, and H parallel.

This lemma has been proved in [2], [5].
Lemma 4. If M is a non-minimal surface in E^{m} with $K=$ constant $\geqq 0, K_{N}=0$ and $D^{*} \boldsymbol{H}=0$, then M is an open piece of one of the following surfaces; (i) a sphere in E^{3}, (ii) a circular cylinder in E^{3} or (iii) a product of two plane circles in E^{4}

This lemma has been proved in [4].
§3. Proof of Theorem 1. Suppose that M is a compact surface in Euclidean 5 -space with $D^{*} \boldsymbol{H}=0$, and $K_{N}=$ constant $\neq 0$. Then, by Lemma 1, we see that M is pseudo-umbilical in Euclidean 5 -space with nonzero constant normal curvature K_{N}. Hence, by Lemma 3, we see that M is a Veronese surface. This completes the proof of the theorem.
§ 4. Proof of Theorem 2. Suppose that M is a non-minimal surface in E^{m} with $D^{*} \boldsymbol{H}=0$. Then, by Lemma 1 , we see that $M=M_{1} \cup M_{2} \cup$ M_{3} where $M_{1} \cup M_{3}$ is pseudo-umbilical, $K_{N} \equiv 0$ on $M_{2} \cup M_{3}, M_{1}$ and M_{2} are open, $M_{3}=\partial M_{1}=\partial M_{2}$, and M_{2} is nowhere pseudo-umbilical in E^{m}.

Case (i). If $M_{2}=\phi$, then $M_{3}=\phi$, and M is pseudo-umbilical in E^{m}. Therefore, by the assumption $D^{*} \boldsymbol{H}=0$, we see from Proposition 1 of [1] that M is a minimal surface in a hypersphere of E^{m}, with radius $1 /|\boldsymbol{H}|$.

Case (ii). If $M_{1}=\phi$, then $M_{3}=\phi$ and $K_{N} \equiv 0$ on M. Therefore, by the assumption $K=$ constant and Lemma 2, we see that $K \geqq 0$. Apply-
ing Lemma 4, we see that M is an open piece of one of the surfaces given in Lemma 4. Hence the theorem is true in this case.

Case (iii). If $M_{1} \neq \phi$ and $M_{2} \neq \phi$, then, by Lemma 2, we see that $K \geqq 0$. If $K>0$, then by Lemma 4 , we see that every component of M_{2} is an open piece of a two sphere with radius $1 /|\boldsymbol{H}|$ in a 3 -space. This implies that M_{2} is pseudo-umbilical in E^{m}. This is a contradiction. Therefore, we have $K=0$ identically on M. Since $M_{1} \neq \phi$ and $M_{2} \neq \phi$ and both of M_{1} and M_{2} are open, we see that $M_{3} \neq \phi$. Let $p \in M_{3}$. Then there exists a component U_{1} of M_{1} and a component U_{2} of M_{2} such that $p \in$ closure $\left(U_{1}\right)$ and $p \in \operatorname{closure}\left(U_{2}\right)$. By Case (i) we see that U_{1} is a minimal surface of a hypersphere of radius $1 /|\boldsymbol{H}|$ in E^{m}. Therefore, by a simple, direct computation, we know that the second fundamental form in the direction of $\boldsymbol{H}=|\boldsymbol{H}| \boldsymbol{e}_{3}$ is given by

$$
\left(h_{i j}^{3}\right)=\left[\begin{array}{cc}
|\boldsymbol{H}| & 0 \tag{29}\\
0 & |\boldsymbol{H}|
\end{array}\right] .
$$

Therefore, by the continuity of the second fundamental form \boldsymbol{h}, we see that the second fundamental form at p in the direction of $\boldsymbol{H}=|\boldsymbol{H}| \boldsymbol{e}_{3}$ is also given by (29). On the other hand, by Case (ii), we see that U_{2} is either an open piece of a circular cylinder or an open piece of a product surface of two plane circles with different radius (this follows from " U_{2} is nowhere pseudo-umbilical"). By a direct computation, if we choose \boldsymbol{e}_{1} and \boldsymbol{e}_{2} in the principal directions of \boldsymbol{H}, then we see that the second fundamental form in the direction of $\boldsymbol{H}=|\boldsymbol{H}| \boldsymbol{e}_{3}$, for every point in U_{2} and hence for p, are given by one of the following forms:

$$
\begin{align*}
& {\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right], \quad a \neq b, \quad a, b \text { are constants. }} \tag{30}\\
& {\left[\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right] \text { or }\left[\begin{array}{ll}
d & 0 \\
0 & 0
\end{array}\right], \quad d \text { is constant. }}
\end{align*}
$$

This is a contradiction. Therefore, we prove Theorem 2 completely.
§5. Corollaries. In this section, we give the following
Corollary 1. Let M be a compact surface in Euclidean 5-space with nonzero constant normal curvature. If there exists a unit normal vector field η over M which is parallel in the normal bundle and parallel to the mean curvature vector \boldsymbol{H}, then M is a Veronese surface.

Proof. Set $V=\{p \in M ; \boldsymbol{H} \neq 0$ at $p\}$. Then V is open. We choose our frame field in such a way that $e_{3}=\eta$ and $h_{12}^{3}=0$. Then we can prove, by a similar argument of Lemma 1 , that $h_{11}^{3}=h_{22}^{3}$ and $\omega_{r}^{3}=0$ on V. From this we can easily prove that $d h_{11}^{3}=0$. This implies that V $=M$ and $D^{*} \boldsymbol{H}=0$. Therefore, by Theorem 1, we obtain the corollary.

Corollary 2. Let M be a non-minimal surface in E^{4} with $D^{*} \boldsymbol{H}=0$ and constant Gauss curvature. Then M is an open piece of one of the following surfaces; (i) a 2-sphere in E^{3}, (ii) a circular cylinder in E^{3} or (iii) a product surface of two plane circles.

This corollary follows immediately from Theorem 2 and the fact that the open pieces of a 2 -sphere or a Clifford torus are the only minimal surfaces of a 3 -sphere with constant Gauss curvature.

Corollary 3. Let M be a non-minimal surface in E^{4}. If M has constant negative Gauss curvature, then there exists no open subset U of M such that $D^{*} \boldsymbol{H}=0$ on U.

This corollary follows immediately from Corollary 2.

References

[1] Chen, B.-Y., On the mean curvature of submanifolds of Euclidean space, Bull. Amer. Math. Soc., 77 (1971), 741-743.
[2] -, Pseudo-umbilical submanifolds of a Riemannian manifold of constant curvature, III, J. Differential Geometry (to appear).
[3] - and G. D. Ludden, Rigidity theorems for surfaces in Euclidean space, Bull. Amer. Math. Soc., 78 (1972), 72-73.
[4] Erbacher, J. A., Isometric immersions with constant mean curvature and triviality of the normal bundle, Nagoya Math. J., 45 (1972), 139-165.
[5] Itoh, T., Minimal surfaces in 4-dimensional Riemannian manifolds of constant curvature, (to appear).

Michigan State University
East Lansing, Mich. 48823

[^0]: Received September 21, 1971.

 1) This paper was presented to the 13th Biennial Seminar of the Canadian Mathematical Congress at Halifax by G. D. Ludden on August 25, 1971.
