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OSCILLATION FUNCTION OF A MULTIPARAMETER

GAUSSIAN PROCESS

NARESH C. JAIN* AND G. KALLIANPUR*

1. Introduction. It is our object in this paper to show that the recent
results of K. Ito and M. Nisio [4] on the oscillation function of Gaussian
processes on [0,1] are valid for Gaussian processes with a general multi-
parameter "time" set T. Except in extending Theorem 4 of [4] where
we assume T to be the cZ-dimensional cube, in all other cases we allow T
to be a separable metric space. Despite the generality of the time set,
the proofs are achieved essentially using the method of the above men-
tioned authors. However, in Theorem 1 below we find the use of Lemma 6
of [5] more convenient than the approach via orthogonal expansions and
Kolmogorov's zero-one law as is done in [4].

The extension of Ito and Nisio's results has been undertaken with
a view to considerably enlarging their scope of application. One appli-
cation is Theorem 5 which states that for certain multi-parameter (S, Γ)
stationary Gaussian processes (see Section 5 for the definition) the oscil-
lation function is either identically 0 or identically oo and consequently
that Yu. K. Belyaev's 0-1 law [1] holds for these processes. As a corol-
lary we show that the same conclusion holds for Gaussian stationary
processes (often called homogeneous random fields) given on homogeneous
spaces. The corollary to Theorem 5 has also been obtained by Eaves
[2] using a method which seems to be based on Belyaev's original proof.
Theorems 1-3 of [4] have been extended to the case where T — [0, l]d

(though not to more general parameter sets) by Kawada [6].
Let T be a separable metric space and let Ω be the space of all real-

valued functions T. Let $ϊ denote σ-algebra generated by the cylinder sets.
Let P be a Gaussian probability measure on (β, J ) such that the random
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variables X(t, ω) = ω(t), ω e Ω, are jointly Gaussian, each with mean 0.
We also assume X(t) to be mean-continuous, i.e. for every t e T

(1.1) lim E \X(s) - X(t)\2 = 0 .
s—t

We shall take X(t) to be a separable process such that for each ωe Ω
X(t,ω + m) = X(t9ω) + m(ί) for a continuous function me Ω. To see that
this can be done, we refer to [3, p. 151]. In the notation of [3] the way
a separable version is constructed, either X(t, ω) is left alone or it must
be modified to take an arbitrary value in a certain set A(t, ω) whenever
such modification is necessary we simply pick the supA(£, ώ). The sepa-
rable version chosen in this way satisfies the above property. Such a
choice of a separable version is no restriction because the sample paths
of any two separable versions of a stochastically continuous process almost
surely have the same oscillation functions (Definition 1.1). This can be
seen as follows: let Yt and Zt be separable versions of a stochastically
continuous process {Xt9 teT}. Since every countable dense subset D of
T is a separating set for both Yt and Zt, there exists a null set N1 such
that if ω £ N19 then for any open subset / of T,

sup Yt(ω) = sup Yt(ω)
tei teiΠD

inf Yt(ω) = inf Yt(ω) ,
tei teioD

where the same holds for the Zt version as well. There exists another
null set N2 such that if ω&N2 then Yt(ω) = Zt(ώ) = Xt(ω) for all teD.
Hence if ω£ N1 U N2 then it is clear from Remark 1 (after Definition 1.1)
that Wv(t,ω) = Wz(t,ω) for all t a.s.

Let H(R) denote the reproducing kernel Hubert space associated with
this process, where R = R(s, t) denotes the covariance (necessarily continu-
ous in view of (1.1)), i.e.

(1.2) R(s, t) - E(X(s)X(t)) .

It is well-known that under (1.1) H(R) consists of continuous functions on
T and the separability of T implies that H(R) is a separable Hubert space.
In the following "a Gaussian process" will always mean "a Gaussian
process with mean 0 and continuous covariance."

Before stating the main results we give the definition of the oscil-
lation function.
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DEFINITION 1.1. Let

(1.3) Wx(t,ω) = lim sup \X(u,ω) - X(v,ω)\ ,
eiO U,VβS(t,ε)

where, denoting by p the metric on T,

(1.4) S(t,ε) = {seT:p(s,t) < a} .

We apply the conventions (+oo) — (+oo) = (—oo) — (—oo) = 0. The

separability of the process implies that the supremum in (1.3) need be

taken only for u9v in a countable separating set, hence Wz(t, ω) = W(t, ω)

is measurable in ω for each teT. We shall suppress the subscript on

W whenever only one process is involved and no confusion is possible.

Remark 1. Define

Mz(t9 ω) — M(t, ώ) = lim sup X(s, ω) ,
βio ses(t,e)

mx(t, ώ) = m(t, ω) = lim inf X(s, ω) .
eiO SΘ-S(ί,e)

Then it is easy to check that W(t, ω) = M(t, ω) — m(t9 ω). This fact will

be needed later.

We now state the main results. The underlying probability space

will always be (Ω, &0, P) as explained above <̂ 0 here denotes the P-com-

pletion of 38.

THEOREM 1. Let T be a separable metric space and {X(t),teT} a

separable Gaussian process. Then there exists a function a(t) — ax(t),

teT, which does not depend on ω, such that

(1.5) P{ω: W(t, ω) - α(t) for every ί e Γ} = 1 .

The function a has the following properties:

(1.6) ait) is upper semicontinuous ,

(1.7) {t: a < ait) < oo} is nowhere dense for every a > 0 .

For T a separable metric space and / an extended real-valued function

on Γ, define

lim sup f(s) — lim sup f(s) .
s-*t ε |0 se[«:0</>(w,ί)<e]

lim inf/(s) is defined similarly with sup replaced by inf. / is upper

semi-continuous if for every real a the set [t: f(t) > a] is closed, which
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is equivalent to the condition that lim sup f(s) < fit) for each teT.
s-*t

Remark 2. Our definitions of lim sup a(s) and lim inf a(s) are dif-
s-+t s-*t

ferent from those in [4]. It is asserted in [4], p. 213, that W(t,ω) =
lim sup x(s) — lim inf x(s), which would be true in general only if one

s-*t s-*t

defines lim sup x(s) — lim sup x(s) with a similar modification for
*- ί eiO s€[w:iθ(w,ί)<e]

lim inf. With our modified definitions Theorem 2 is slightly more in-
teresting, because it then tells us that if a(t) > 0, then the discontinuity
at t is a.s. "non-removable". If the time set is linear then one can define
Όne-sided' oscillation functions and it is not hard to conclude that if
ait) > 0 for some t, then the discontinuity at t is a.s. oscillatory.

T H E O R E M 2 . U n d e r t h e c o n d i t i o n s of T h e o r e m 1 , f o r e a c h t e T

(1.8) PJlimsupX(s) = X(t) + —α(t), lim inf X(s) = X(t) - —a(t)\ = 1 .
I s-*t 2 s-*t 2 )

THEOREM 3. Under the conditions of Theorem 1, if, for some con-
stant a, a{t) > a > 0 on a dense subset D of an open set I c T, then

P{lim sup Xis) = + oo, lim inf X(s) = — oo
(1.9) *-t s-»ί

for every t e 1} = 1 .
For the next result we specialize the time set to be the unit cube

in Rd.

THEOREM 4. Let T = [0, l]ώ, the d-dimensional unit cube. Then,
given any function a: T-* [0, oo] satisfying (1.6) and (1.7), there exists
a separable Gaussian process {X(t)9 teT} whose oscillation function is a.

We give the proof of Theorem 1 in section 2. The proofs of Theorems
2 and 3 are essentially the same as given in [4] and we omit them.
Theorem 4 is proved in section 3.

The arguments given in [4] apply without change in certain places
in our more general context; whenever that happens, we simply refer
the reader to [4].

2. Proof of Theorem 1. Let F be a non-empty closed subset of T,
where T is a separable metric space with metric p. For a positive in-
teger n9 let
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(2.1) Fn = \seT:p(s,F)<±\ .

I n)

Following Ito and Nisio [4] we define

(2.2) WX(F, ω) = lim lim sup |X(u, ώ) - X(v, ω) | .
n t °° k t °° U)VQFnP(u,v)<l/k

Again the JVmeasurability of W(F, ω) follows from the assumed separa-

bility of the process.

The proof is based on the following lemmas. Lemmas 2.1 and 2.4

below are simple consequences of the definition of oscillation function.

Their proofs are omitted.

LEMMA 2.1. If F = {t}, then W(F, ω) = W(t, ώ) for each ωeΩ, where

W(t,ω) is given by (1.3) and W(F,ω) by (2.2).

The following lemma is given in [5] as Lemma 6. Although this

lemma is stated there only for a real-valued function g, the same proof

works for extended real-valued functions as well.

LEMMA 2.2. Let {e^j^ be a complete orthonormal system in H(R)

and g a &^-measurable extended real-valued function such that for each

ωeΩ and every rational r

g{ω + reό) = g(ω) , / = 1,2, ,

then

g(ω) = constant a.s. (P) .

LEMMA 2.3. For each closed subset F of T, there exists a constant

a(F) such that

P{W(F,ω) = a(F)} = l.

Proof. As already remarked, W(F, ω) is JVmeasurable. Recall that

our separable process X(t, ώ) has the property that X(t, ω + m) = X{t, ω) +

m(ί) for a continuous function me Ω. Hence if me Ω is a continuous

function, then W(F,ω + m) — W(F,ω) for each ωeΩ. Since H(R) con-

sists of continuous functions, it follows that g = W(F, •) satisfies the

hypotheses of Lemma 2.2, which implies the conclusion of this lemma.

Let S be a countable subset of T which is dense in Γ, and let ̂  consist

of sets S(s, 1/ϊi), s e S, n = 1,2, . ., where S(s, 1/ri) = {teT: p(s, t) < 1/n}.
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Then % is a countable basis for the metric topology of T. If t e T, there
exists a sequence {Vj} of sets in ^ such that Vs D Vj+1 and Π?=i ^ =
{*}, where Vj denotes the closure of Vj. First we observe that it follows
from Lemma 2.3 that

(2.3) P{W(V, ω) = a(V) for V e ^} = 1 .

The following lemma and (2.3) imply (1.5).

LEMMA 2.4. For each teT, there exist Vs eW, j = 1,2, . , swώ
ίfeαί ί e F, /or each j , and lim PF(F/,ω) = W(t,ω) for all ωeΩ.

(1.6) and (1.7) are proved the same way as in [4].

3. Proof of Theorem 4. T = [0,1]* = [0,1] X [0,1] X X [0,1]. ί =
(t1, t2, , £ώ) will denote an element of T. / with or without subscript will
denote a linear subinterval of [0,1] of positive length / with or with-
out subscript will denote a subinterval of Γ, by which we mean a set
of the form {ί e T: tι e I19 , td e Ia}. J° will denote the interior of /,
J the closure of /. On some probability space (Ω,έ$,P) we can define
two independent Gaussian processes B(t),S(t),teT, where

(3.1)

), 0 < t1 < 1, being a stationary Gaussian process with EYit1) = 0, EY\V)
= 1 and a(t, Y) = + oo, the existence of which was proved by Belyaev [1],
Here a(t, Y) denotes the oscillation function (independent of ω) of the Y-
process. We shall use this notation throughout this section. Sit) thus
defined is Gaussian with ES(t) = 0, ES2(t) = 1 for t e T it is mean-
continuous and a(t, S) — +oo. For #(£) we take the Wiener process with
d-dimensional time parameter, defined in [8]. It is a Gaussian process
with continuous paths. 5(0) = 0, EB(t) = 0. E(B(s)B(t)) = Πf-i tain (s% t*)].
It is shown in [8] that the process satisfies the law of the iterated loga-
rithm given in (3.2) below. For t, ue T, by t > u we mean t1 > u1, ,
td > ud. Then B(ί) satisfies

(3.2)

As in [4] we use | |Z||2 = E(X2) for a random variable X. Let L be the
|| ||-closure of finite linear combinations of B(t), teT, and S(t), teT. Given

fP T ^ ^ Z 1 7 ^ Γ T
ϊ 12* π (ί* - M*) loβ log ^π («*-«*)) J
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a(t), teT, satisfying (1.6) and (1.7) we shall construct a Gaussian process

X(t)eL such that a(t,X) = a(t). The lemmas that follow are necessary

modifications of the lemmas in section 6 in [4]. Recall that by a Gaus-

sian process we mean one with mean 0 and continuous covariance.

LEMMA 3.1. Let J be a subinterval of T and ε > 0. Then there

exists a Gaussian process X(t) eL,teT, such that

(a) X(t,ω) = 0 for teT - J\

(b) a ( t , X ) = oo for t e J ,

( c ) | | X ( ί ) | | < ε for t e J .

Proof. Let J = {t: t1 e Ilf , t* e Id}. Take fit) = ftf) / d(F),

where /<(«*) is continuous on [0,1], 0 < /<(«*) < ε on /?, and /<(«*) = 0

elsewhere on [0,1]. Then 0 < fit) < ε on J° and fit) = 0 on Γ - J°. /

is continuous on Γ. Define

(3.3) Jf(ί,ω) = /(t)S(ί,ω) .

(a),(b),(c) are now evident.

LEMMA 3.2. Given 0 < a < oo, ε > 0, and J a subinterval of T, there

exists a Gaussian process Xit) eL,teT, such that

(a) Xit,ω) has continuous paths,

(b) X(jb,ώ) = 0 for teT - J° ,

(c) | |X( t ) | |<e for teT ,

(d) P[|sup Xit) - a\ > ε] < ε .

We denote such a process by Xit; I,α,ε) as in [4].

Proof. In order to construct the process Xit,ω) of the lemma we

proceed as follows. Define Zit,ω) as follows:

Zit, ω) = 0 for t e T - J° ,

— u, ω) , τ0

Π̂ (ί*-tt*)loglog(π (^-t
ΐ = l \i = l

where u — iu\ , ̂ ώ ), uι = lower end point of /< (J = /x X /2 X X / d).

Such ^ will be called the lowest vertex of /. For teJ0

(3.4) £ ( £ 2 ( ί ) ) = - ^ _ _ > 0

2̂  log log Π («*-«'))
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as t[u. Also by (3.2),

(3.5) P [lim sup Z(t) = a] = 1 .
t\u

By (3.4) and (3.5) we can find an interval J1cz J with lowest vertex

u such that for teJlf

(3.6) E(Z2(t)) < ε2 ,

(3.7) ±

(3.8) P [sup Z(t) > α - e ] > l - — .
2

Since Z(£) is continuous on JJ, by (3.8) there exists an interval J2 such

that J 2 c j ; and

(3.9) P [sup Z(ί) > α - e ] > l - — .
teJ2 2

Let / be a continuous function on T which equals 1 on J2, vanishes on

the complement of J\ and lies between 0 and 1 on J\ — J2. Let X(f) =

f(t)Z(t). X(t) satisfies all the requirements of the lemma.

LEMMA 3.3. Suppose a19a2 satisfy (1.6) and the following condition:

(3.10) {t: aiit) > 0} , i — 1,2, is nowhere dense .

Then for any Gaussian process Xλif) with a(tu Zx) = ax(t) and ε > 0, there

exists a Gaussian process X2(t) e L,teT, satisfying:

(a) αα,Z 1 + Z 2 ) - ^ i ω + α2(ί),
(b) | | X 2 ( t ) | | < 6 ,

(c) P [sup \X2(t) I > sup alt)] < e .
ter ter

Proof. The details of the proof are identical with those in [4, Lemma

6.3]. Our notation differs only in the use of X in place of x. The linear

intervals in that proof should be interpreted as intervals in T. The

counter-parts of all the basic facts that are needed there (especially

Theorem 2 and Lemma 3.2) have already been established.

To finish the proof of Theorem 4 we again proceed as in [4], p. 221.

First we assume

(3.11) {ί: a(t) > c} is nowhere dense for c > 0
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which is stronger than (1.7) but weaker than (3.10). A Gaussian process

X(t)eL is then constructed satisfying (1.6) and (3.11) by the same argu-

ment as given on pages 221-222 [4]. The argument for removing the

assumption (3.11) needs a little modification and we now explain this

part. Let T^ = {ί e Γ: a(t) = oo}, and Tc = {ί e T: a(t) > c} for c > 0.

Tc is a closed set and it is the disjoint union of T^ and the nowhere

dense set {teT: c < a{t) < oo}. Hence, if Tc is not a nowhere dense set

for some c > 0, then Γ^ must have non-empty interior and Ti — T°c for

each c > 0.

Define

β(t) = 0 f or t e ΓTO

= a(t) elsewhere .

Then β(t) satisfies (1.6) and for every c > 0, [teT: β(t) > c] is nowhere

dense. Hence there exists a Gaussian process Y(t) eL,teT, such that

a(t, Y) = β(t), teT. There exists a sequence of disjoint closed intervals Jn9

n>l, such that IJ^= 1 Jn = Tm. Let Yn(ί),^ > 1 be Gaussian processes

such that α(ί, Γn) = oo on / n , Yw(ί) = 0 on Γ - J°n and || YΛ(ί)|| < 2~w. Such

processes exist by Lemma 2.1. We define

(3.12) Xtf) = Y(t) + f; Yn(t) .

Then

Z ( 0 - Yn{t) + Y(jt) , teJl, n = 1 ,2 , ..

= Γ(ί) , elsewhere .

Since each Y(t), Yn(t) is continuous in the mean and ||Yn(ί)|| < 2"π, the

continuity in the mean of X(t) follows. It remains to show that a(t, X) =

a(t). X(t) = Y(t) on Γ — (Jn=i «Λ»> which is an open set, hence

a(t9X) - α(ί, Y) - jSC*> = α(ί) , ί € T - U Jn
71 = 1

Also, Z(ί) = Y(ί) + Yn(ί) on J°n,n > 1, Y(ί) is continuous, hence

α(ί, Z) = α(ί, Yn) = oo on ί e J°n .

If ί e U ϊ - i λ — Un=iJOn9 then ί is an accumulation point of {Jζ=1J°n and
so a(t, X) > limsup a(s,X) = oo, which finishes the proof.
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4. Belyaev's alternative

Let S be a separable metric space with metric p and Γ a set of
transformations taking S into S. We assume the following conditions
to be satisfied by S and the elements γ e Γ:

(Γ-1) Each γ e Γ is a one-to-one bicontinuous mapping of S onto S.

(Γ-2) Given s,teS, there exists a / e Γ such that ί = ?-s.

DEFINITION 4.1. Let Γ c S , and let {Zt,£eT} be a separable Gaus-
sian process with mean zero and continuous covariance. We say that
{Xt, teT} is OS, Γ)-stationary if for any tlf , tn in T and γe Γ, γtlt ,
yίn are also in T, then the joint distribution of Xtχ, -,Xtn is the same
as that of Xrtί, , Xr£n.

Theorem 5 below generalizes Belyaev's alternative to (S, D-stationary
Gaussian processes. All topological concepts will be relative to the topolgy
of S. If se S, then S(s9e) = {teS: p(s, t) < e}.

THEOREM 5. Let T c S and let {Xt,teT} be an (S, Dstationary
Gaussian process. Let S, T satisfy the following conditions:

(S-l) S has no isolated points.

(Γ-1) T°, £fee set of interior points of T, is dense in Γ.

Then the oscillation function a{t) of the process {Xt, teT} is either identi-
cally 0 or identically oo on T.

Remark. The assumption (S-ΐ) does not imply any loss of generality
and is made only to exclude an uninteresting situation for which the
conclusion of the theorem holds trivially. For, if S has an isolated
point s (by this we mean that S(s, ε) = {s} for some ε > 0) then it is easy
to verify from (Γ-1) and (Γ-2) that every point of S is isolated. When
this happen Belyaev's result is true trivially for any subset T of S since
then a(t) = 0. Hence we need consider only the case where S has no
isolated points. It should be observed that (S-ΐ) and (T-l) imply that Γ
has no isolated points. This assumption is crucial, because, otherwise,
one could easily give an example to show that the alternative does not
hold. Indeed, let (Xt91 e [0, oo)) be the stationary (under translations)
process of Belyaev [1] for which a(t) = oo. If we restrict the process
to the time set [0,1] U {2} U [3, oo), then it is clear that the process is
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still stationary in our sense, but a for this process equals oo on the set

[0,1] U [3, oo) and a{2) = 0.

Proof of Theorem 5. We will first show that a is constant on the

set T°. Let {rj be a countable dense subset of T which is a separability

set for the separable process {Xt9t e T}. Let s,teT° be arbitrary but fixed.

Let γ e Γ such that t = γs. By (T-l) and the continuity of γ there exists

ε > 0 such that S(s, ε) c T, Sit, e) c T, and r(S(s, e)) c Γ. We have

(4.1) W>, ω) = lim sup \X(u, ω) - Z(v, ω)| ,
n\oo u,veS(s,l/n)Γ){rί}

(4.2) Wit, ω) = Km sup |X(w, ω) - Z(i;, ω) | ,
] S / ) { }

where we can restrict the sup over {rt} by separability of the process.

Since γ is one-to-one bicontinuous, there exist strictly increasing infinite

sequences of positive integers [n'} and {nf/} such that

for all n sufficiently large, and n' —> oo, n" —> oo as «-> oo. Hence we have

(4.3) W(t, ω) = lim sup \X(u, ώ) - X(v, ω)| .
ί ( S ( i / ) ) { }

Since the set {r*}Γ=1 is dense in S(r, l/ri), {̂ }Γ=i is dense in γ(S(s, 1/ή)) by

the continuity of γ. If r< 6 S(s, 1/n), then by the stochastic continuity of

the process there exists a sequence {/TV} tending to r< such that X(7Tfc,)

—> X(r^) a.s., where the null set depends on rt. Since there are only a

countable number of rί9 there exists a null set JV such that if ω <£ N then

(4.4) Wit,ω) = lim sup |Z(w,ω) - Xiv,ω)\ .

Using the stationarity of the process we conclude from (4.1) and (4.4)

that W(s, ω) and Wit, ώ) have the same distribution. On the other hand

W(s,ω) — ais) a.s., W(t,ω) = ait) a.s. by Theorem 1. Hence ais) = ait).

Thus ait) is constant on the set T°.

To finish the proof of the theorem first let ait) = a > 0 for t e Γ°.

By Theorem 3 then α(ί) = ooon Γ°. Since Γ° is dense in Γ, the upper

semi-continuity of a implies that ait) = oo for ί e Γ . Let us now assume
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that ait) = 0 for t e T. Let s e T, s β Γ°. We have to show that α(s) = 0

for such s. We pick a point ί e T°. Then

(4.5) TF(s, ω) = lim sup |ZO, ω) - X(v, ω) \ .
ntco tt,t)eS(ί,l/n)ΠΓn{ri}

(4.6) W(ί, ω) = lim sup |Z(«, α>) - X(v, ω) | ,
ί € 5 ( l / ) n r { }

where £ = γs for some y e Γ by (Γ-2). Since 7s e Γ°, for n sufficiently large

S(γs, 1/n) c T, hence

, α>) = lim sup |Z(^, ώ) - Z(v, ω) | .
Tit 00 w,υ6-S(rs,l/τι)Π{ri}

Since S(γs, 1/n) d T for all sufficiently large ny the continuity of r ίm"

plies /(S(s, 1/w)) c Γ, for all sufficiently large n. The argument that we

gave before applies for Wit,ώ) and (4.4) is valid. Since a is 0 on T° we

have by (4.4) and the fact that ί € Γ°,

0 = T7(ί, ω) = lim sup \Xiu,ω) - Xiv,ω)\
n?oo u,v€r(S(s,l/n))Γi{rri}

> lim sup \Xiu,ω) — Xiv,ω)\
wΐoo w,υ6r(S(s,l/n)nΓ)n{r»*i}

= W'it, ω) , say .

Now using stationarity we conclude from (4.5) that Wis,ώ) and W'it,ώ)

have the same distribution. Since Wit', ω) = 0 independently of ω, we

have α(s) = 0. This establishes the theorem.

An important application of Theorem 5 is the extension of Belyaev's

zero one law to Gaussian homogeneous random fields on homogeneous

spaces. Let T be a (left) homogeneous space under the action of a group

G (see [7], p. 128). A Gaussian process Xt with t e T is a homogeneous

random field on T if it is (Γ, G) stationary in the sense of Definition 5.1.

COROLLARY TO THEOREM 5. Let T be a homogeneous space under

G and assume further that as a topological space T is separable and metrί-

zable. If {Xt} is a separable, zero mean and mean continuous Gaussian

homogeneous random field on T then its oscillation function ait) is either

identically 0 or identically 00 on T. In particular, almost every sample

function of the process is either continuous or unbounded over every

open neighborhood in T.

Proof. The result follows immediately as a consequence of Theorem

5 once we verify assumptions (Γ-l) and (Γ-2). This we do taking Γ =



OSCILLATION FUNCTION OF A MULTIPARAMETER GAUSSIAN PROCESS 27

G and identifying S with T. The very definition of a homogeneous space
yields (Γ-l) and (Γ-2): The latter is the property of "transitivity" of the
group G acting on T. That each map g: S to S in 1-1 and onto is now
obvious. The bicontinuity follows from the fact (again from the defini-
tion of a homogeneous space) that for every g in G the mapping t-+ gt
is a homeomorphism of T ([7], p. 126). We may assume without loss
of generality that T has no isolated points for otherwise, recalling the
remarks following Theorem 5 it follows that every point of T is isolated
and the Belyaev alternative holds trivially in the sense that a(t) = 0.
If T has no isolated points, since T is itself a homogeneous space,
condition (Γ-l) of Theorem 5 is satisfied and the conclusion concerning
a(t) follows. The second assertion of the theorem is now obvious.

We conclude with two examples.

EXAMPLE 1. Let T = Rd and G the group of all proper rigid motions
of Rd. Then (T,G) stationarity is invariance of the joint distribution of
(Xίχ, •• ,Z ί n) with respect to Euclidean displacements. Rd, in this case
is regarded as the homogeneous space G/K, K being the subgroup con-
sisting of proper rotations about 0 (the origin of Rd). The requirements
of metrizability and separability of G/K are obviously satisfied.

EXAMPLE 2. T = Sd~\ the (d - l)-sphere in Rd (d > 1), and G =
SO(d), the group of rotations. (Γ, G) stationarity has the obvious mean-
ing. Sd~1 is viewed here as the homogeneous space G/K where K is the
subgroup of G of rotations which leave fixed an arbitrary point (say the
north pole) of Sd~\
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