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BOUNDARY CONDITIONS FOR THE HEAT EQUATION

IN A SEVERAL-DIMENSIONAL REGION*

G. GALLAVOTTI AND H. P. McKEAN

Abstract. The heat equation dp/dt = Jp/2 is to be solved in a several-
dimensional region D with dp = kp + jJp/2 on the boundary B of D.
The elementary solution (Green's function) is interpreted as the transition
density of an associated Brownian motion. The latter is built up pathwise
from the free Brownian motion by simple geometric and probabilistic
transformations.

1. Introduction. The heat equation dpjdt = Δpj2 is to be solved in
a several-dimensional region D with dp — kp + jΔpj2 on the boundary B
of D. The letter 3 stands for differentiation in the inward-pointing
direction perpendicular to B, and k and j are non-negative functions of
class C(B). The elementary solution (Green's function) of this problem
is interpreted as the transition density of an associated Brownian motion.
The latter is built up pathwise from the free Brownian motion by simple
geometric and probabilistic transformations. The "reflecting" Brownian
motion (k = j = 0) is constructed by means of a covering surface (method
of images) in section 3 after the necessary facts about the 1-dimensional
Brownian motion have been explained in section 2. The "elastic"
Brownian motion (j = 0) is constructed in articles 4.1-3, the "sticky"
Brownian motion (k = 0) in article 4.4, and the Brownian motion for
general k and j article 4.5. The presentation is a bit skimpy in places,
the purpose being to explain the idea in a (hopefully) self-contained way
without getting bogged down in technical details: for this reason, the
proofs deal only with polygonal regions D bounded by a finite number
of flat faces of codimension 1, such as, in 3 dimensions, triangles, half-
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planes, pentagons, and the like. An exhaustive account of the possible

Brownian motions on a half-line may be found in [3], The connection

with the appropriate quadratic forms

D[f] + B[f] = ί |grad/| 2 + a quadratic form on B

will be the subject of a second paper; see also [2] for such explanations

in a more general setting.

2. Simple Brownian Motions.

2.1. One-Dimensional Free Brownian Motion. The free 1-dimen-

sional Brownian motion £° starting at x e R1 is defined by extending the

probabilities

P[(Ί iβi < S°«<) < bi)] = Γ P
i<.n Jαi Ja V 2τr(t2 - tλ)

p- (Xn~ #n-l)2/2(ί»- tn — i)

• dnx
\2π(tn — tn_^

from "cylinder sets" Γ\(at < ι°(t^ < bt) to the natural class of Borel sets

of the space of continuous paths £°: [0, oo) -»R ι see for example [3:

12-22]. The basic ingredient of this construction is the Gauss kernel

P°(t, x, y) = (2πt)'ι/2 exp [-(x - y)2/2t]

in its dual role as a) the free Brownian transition density and b) the

elementary solution (Green function) of dp/dt = (l/2)d2p/dx2. The chief

feature of the motion is that the Brownian traveller has no memory.

To express this fact in a precise way, let T be a constant time or even a

passage time such as T = min {t: £°(t) — 1). Then, conditional on the past

£°(s): s < T, the future £+(i) = £°(ί + T): t > 0 is a free Brownian motion

starting at y = £°(T). This may be stated more informally by saying that

the free Brownian motion begins afresh at such times T. A simple proof

may be found in [6: 10-11].

2.2 Brownian Differentials and Integrals. The free Brownian

motion £° has associated with it a nice differential and integral calculus.

The differential of a smooth function / composed with £°(£) begins

with ff(^o)dι°9 as you would expect, but you have to keep the second
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term (l/2)/"(s°)(<Zs°)2 of the power series and interpret (dj°)2 as dt. This
rule stems from the fact that

The differential formula is meant to signify that

/ίS°(t)] -

For the integral formula to be correct, the differentials in
the Brownian integral must stick out into the future, as in

This has the additional advantage that EΊJ/'eZs0) = 0 A complete ac-

count of Brownian differentials and integrals may be found in [6].

2.3 Brownian Local Time. An important ingredient of the ex-
planations below is the "local time" of P. Levy [5]:

t°(t) = lim(2ε)-1 measure (s <t: |$°(s)| < ε) .

To make it plausible that such an object exists, let / be the product of
(2e)-1 and the indicator function of \x\ < ε, and let / be the integral

/:/—> /. By the Brownian differential recipe of article 2.2,
J -oo

(2ε)~1 measure (s < t: |s°(s)| < e)

= Γf(s°)d8 = [(Pf)"(£°)d8 = 2Pfφβ - 2Γ//(5

o)d5o ,
Jo Jo Jo

and as ε \ 0, it is pretty easy to see that this approaches

2 max [s°(t), 0] - 2 max [s°(0), 0] - 2Γl(5

o)eZso ,
Jo

in which 1 stands for the indicator function of the half-line x > 0. This
proves that t° exists.

2.4 Reflecting Brownian Motion. The next thing you need is
the "reflecting" Brownian motion j + = |s°|. £+ has no memory, as can
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be seen from the fact that — g° is also a free Brownian motion, and it
is easy to check that the associated transition density

p+(t,x,y) = {2πtyι/2[e-{χ-y)VU + e-
{x+vWt]

is the Green function of dp/dt = (l/2)d2p/dx2 for x > 0, subject to dp = 0
at x = 0. P. Levy [5] discovered a second way of constructing the reflect-
ing Brownian motion. The existence of the local time of article 2.3 will
be confirmed thereby at no extra cost. Bring in the maximum function

_ JO if t < T = min (β: s°(s) - 0)

(max£°(s) if ί > T
T£s<,t

for free Brownian paths starting in [0, oo). Then

if t < T
1 It" - s° if t > T

is a reflecting Brownίan motion (that is to say, it is identical in law to
£+), and t~ is its local time:

t~(t) = Km (2s)"1 measure (s < t: £~(s) < ε) .

The nice thing is that the statement can be turned around: the customary
reflecting Brownίan motion £+ = |j°| has a local time

as

t+(t) = Km (2s)"1 measure (s < t: £+(s) < ε) ,

1° if t < T

•1° if t > T

is a free Brownian motion, so also is £+ — t+, that is to say, £+ = t+ + a
free Brownian motion.

Warning: The free Brownian motion £+ — t+ is not pathwise the
same as the free Brownian motion £° figuring in £+ = |g° |. The statement
is merely that they have the same statistics. The actual relationship
between them is very complicated but fortunately it is not necessary to
know it.
The proofs of the above can be found in [4: 40-42].



BOUNDARY FUNCTIONS FOR THE HEAT EQUATION 5

2.5 Reflecting Brownian Motion on an Interval. The reflecting
motion on an interval (0 < x < 1, say) corresponding to dp/dt =
(l/2)d2p/dx2 with dp = 0 at both ends may be constructed from the
free Brownian motion by a simple folding recipe (method of images),
elaborating the single fold x—>\x\. To do this, think of the line as
hinged at each integral point and fold it up into a unit interval as in
Figure 1. This projection maps the free Brownian motion £° into the
reflecting Brownian motion on 0 < x < 1. The corresponding transition
density is

4-4

v

+3

-1

0 -
Fig. 1

P+(t,x,V) =

The reader is invited to check (by pure thought) that the folded motion
has no memory and that p+ really is the Green function of the stated
problem.

2.6 Free Brownian Motion in Several Dimensions. The free
eZ-dimensional Brownian motion %° is just the joint motion of d inde-
pendent free 1-dimensional Brownian particles. The transition density
is now

ί, x, V) = exp [-\x - y\2/2t]
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which is likewise the Green function of dp/dt = Jp/2. The lack of
memory is as before, and the differential and integral calculus of article
2.2 is easily adapted. The only new point is that the old rule (dι°)2 = dt
is supplemented by d$ϊd$j — 0 if iψj.

3 Reflecting Brownian Motion in a Polygonal Region. The purpose of

this section is to construct the reflecting Brownian motion in a several-
dimensional polygonal region D by a "folding recipe" similar to that of
article 2.5. The adjective "polygonal" means that the boundary B of D
is the sum of a finite number of flat pieces of codimension 1. D may
bounded or not, and the dimension d can be anything, but for simplicity
and ease of illustration d = 2 is fixed from now on. B is now the sum
open edges plus a finite number of corners, designated by C.

3.1 The Half-Plane. The simplest case is that of a half-plane
D — (#! > 0, — oo < x2 < oo), say. The corresponding reflecting Brownian
motion is £+ = (sί,&o) in which £ί = |g°| is a 1-dimensional reflecting
Brownian motion and £2° is an independent free 1-dimensional Brownian
motion. To put the matter more geometrically, £+ is made from the
free 2-dimensional Brownian motion E° = (ϊio,ϊ2

o) by folding the plane
along the line B:(x1 = 0). A second description £+ = £° + t is obtained
by expressing j£ as 5° + it with a new free 1-dimensional Brownian
motion 5°. The new plane motion £° = (&0, ja°) is a free 2-dimensional
Brownian motion, and the (directed) local time t is the product of tί and
the inward-pointing unit direction perpendicular to B. The fact that D
is a special half-plane is of no account: any rigid motion (rotation or
translation) of the free Brownian motion ι° is likewise a free Brownian
motion, so the above applies to any half-plane you like.

3.2 A Covering Surface. The folding recipe of article 3.1 may
be adapted to any polygonal region D by means of a simple covering
surface closely related to Kelvin's "method of images"; see also [7: 79-
82]. Think, for simplicity, of a triangle D with sides 123 and label it
with a 0 as in Figure 2. The covering is obtained by repeated reflection
of D across its sides: each new reflection produces a copy of the "funda-
mental domain" D labelled by a string of integers listing (from left to
right) the successive sides employed for reflection, and these images are
declared to be all different, so that you get an infinite-sheeted covering
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Fig. 2

K of D with one sheet to each possible string of reflections, as in the
figure. The situation may be clarified by thinking of the case of an
equilateral triangle. K is not the conventional universal covering depicted
in Figure 3: for example, the image 23232 is identified with the image
3 in the universal cover, but they are distinguished in K. The covering
K is provided with a self-evident projection onto D + B and the "folded"
motion g+ on D + B — C is simply the projection of a free Brownian
motion j° on the open manifold M = K — (images of corners) as explained
in the next article. The reader will compare this recipe with that of
article 2.5.

3.3 Free Brownian Motion on M. The free Brownian motion
S° on M can be pictured as follows. Pick a point of M, start a free
2-dimensional Brownian motion there, and let it run. The images of
corners are countable, so the path will never hit one instead, it will cross
from one copy of D into another via images of the open edges of B, and
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so continue forever. M carries a self-evident area element, also Δ makes
sense, and it is easy to see that the transition density p° = p°(t,x,y) of the
above free Brownian motion is of class C°°[(0, oo) x M2] and is the Green
function of dp/dt = dp/2 on M. To prove this, let / be a compact func-
tion of class C°°[(0, oo) x M] and compute the differential of f[t, £°(ί)]
according to the rules laid down in articles 2.2 and 2.6:

(t)l = 4r
ot

Now integrate back from 0 to oo and take the expectation of both sides
for paths starting at a fixed point xeM. This gives

0 =
dt

dt 2

in which dy is the element of area on M and p°(t,x,y) is the (formal)
transition density for £°. But now a celebrated lemma of H. Weyl states
that such a formal density is actually of class C°°[(0, oo) x M] so that
you may integrate by parts to obtain dp/dt = Δp/2 in the customary
sense; see for example [1] or [6: 85-90]. The fact that p° is smooth on
(0, oo) x M2 now follows from its self-evident symmetry in x and y.

3.4 Identification of £+ as Reflecting Brownian Motion. To say
that £+ is the reflecting Brownian motion on D + B — C means that
its transition density p+ = p+(t, x, y) is the Green function with pole
at x = y of dp/dt = Δp/2 subject to dp = 0 on B — C. Pick # and t/
from D + B - C. Then

P+(t χ-y) = Σ P ° ( * » ^ » 0

in which p° is the free Brownian transition density and y' runs through
the images of y on the covering surface K. Because p° solves dp/dt =
Jp/2 on I , a simple application of WeyPs lemma proves that p+ is of
class C°°[(0, oo)χ(O + β - C)2] and solves dp/dt = Jp/2 in Z); in fact, it
shows that p+ is smooth across B — C, and since the sum for p+ is even
across B — C, you see that dp+ = 0 on B — C The fact that the pole
is located at x = y is self-evident, and the only moot point is whether
p+ is the only such function.
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3.5 Local Times. To settle this point, it is advantageous to ex-

press £+ as the sum g° + i of a (new) free 2-dimensional Brownian motion

£° and a (directed) local time t, as for the half-plane of article 3.1. The

differential dϊ vanishes unless £+ e B, in which case it points in the in-

ward direction perpendicular to the side of B on which £+ finds itself.

The (absolute) local time spent on B is declared to be

\ϊ\{t) = Γ|dt| = lim(2ε)"1 measure (s < t: j+(s) at distance <ε from B).
J θ eiO

3.6 Uniqueness. The fact that p+ is the only Green function of

dp/dt = Ap/2 with dp = 0 on B — C is now proved by checking that

P+fdy is the only bounded solution ofj.
a) ue C~[(0, oo) x φ + B - Q]

b) du/dt = zta/2 in (0, oo) x D

c) du = 0 on (0, oo) x CB - O

d) tt(0 + , 0 = / in D + B - C .

Evidently, it is enough to check that if / = 0 in d), then u — 0. Fix

0 < T. By a), b), c), and the rules for Brownian differentials,

du[T - t,ι+(t)] = —If 4Ifdt + gradm^ + dt
ot 2

= (—— + ήλudt + gradual + dttd\t\
\ ot 2 /

= grad udι° ,

so by d) with / = 0,

-u[T,z+(0)] = ΓgrsidulT - ί,s+(ί)Ws° .
Jo

But also, for fixed ^+(0) eD + B - C,

EΪT\gradu\2dt = lim EΓ\gr ad u\2dt
J θ R]T J o

R

grad ^dj
0

= lim W T - i?,$+(β)] - u[T,ι+(0)]\2 <
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and this makes E\ grad^d$° = 0 [6: 25], i.e., u = 0, as advertised.
Jo

4 General Barriers. Now you are in a position to understand the
"barrier" dp = kp + jAp/2 for general k and j . The "elastic" barrier
(j — 0) is treated in articles 4.1-3, the "sticky" barrier (k = 0) in article
4.4, and the general barrier in article 4.5.

4.1 Elastic Barriers. The idea is that the elastic Brownian mo-
tion corresponding to dp = kp on B — C is just the reflecting Brownian
motion £+=£° + t killed at rate proportional to the amount time the latter
spends on JS. Because measure (t: j + e B) = 0, you cannot reckon this by
the standard clock ί. As a substitute, the (absolute) local time |t | suggests
itself, and it can be argued that the chance of getting killed in time dt
having survived up to time t should be something like fc(s+)d|t|. The
change of not getting killed before time t would then be the product of
1 - k($+)d\t\ for s <t, alias e~f with ϊ = Γfc(s+)d|t|, so the final form

Jo
of the proposal would be that if

l+ if t < T

oo if t > T ,

and if the "killing time" Γ is distributed according to the conditional
law P(T > 11 £+) = e~!, then the associated transition density p°° will be
the Green function of dp/dt = Δpj2 in D, subject to dp — kp on B — C.

4.2 The Half-Line. To begin with the simplest case, let D + B
be the half-line [0, oo). Then k is just a constant, and you have to check
that the transition density p°° defined by the rule

P"(ί, x9 V)dy = E[e~ki\ $+(t) e dy] = P[S

+(ί) edy,T> t]

= P[5-(ί) € dy]

is the elementary solution of dp/dt = (l/2)d2p/dx2 with dp = fep at a? = 0.
This is easily verified by a direct computation. If Γo is the free Brownian
passage time min(£: g°(ί) = 0), then

P[Γ0 e ett] =

for paths starting at x > 0, while for paths starting at x = 0,
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fO if a > b
Pfc ίί) β da, t-(t) e e»] = ( ( 2 / ί 3 ) - 1 / 2 ( 2 & a)e-^vudadb i f α < b .

Therefore, by the recipe t" — 50 for the reflecting Brownian motion
of article 2.4,

t, a, y) = -A_P[s°(ί) <V,T0> t]
dy

^ < ί,β-fct-»),t-(ί) _ s° ( t)

= (2πt)-1/2[e~(χ-y)yu - e-{x+v)*/2t]

+ P(2πsz)-1/2e~χ2/2sds
Jo

. Γe-"(2/ττ(ί - s)3)1/2(6 + y)
Jo

= (2πt)-ι/2[e-(χ-y)VU - e-
ix+y)2/2t]

e-
kb(2/πtψ2be-byudb ,

y

and now it is easy to check by hand that p°° does everything it should.

4.3 Polygonal Regions. The identification of p°° for polygonal
regions D is not so cheap. Pick a compact function / of class C°°[(0, oo)
X (D + B — OL compute the differential

+ (d -

and integrate back as in article 3.3 to obtain

0 = Ee

for fixed x = 5°°(0) = j+(0) eD + S - C . The expectation in line 3 is
easily converted into
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while with a little extra effort the expectation in line 4 is seen to be the

same as

E Γ θ - fc)/(t, S-)cZ|t| = -ί Γdt f p-0 - k)f .
Jθ 2 Jθ JB

Therefore,

o = Γdt f p-(A + A)/ + 1 Γdί f p-(9 - fc)/,
Jo Jz> \ dt 2/ 2 Jo J B

and a formal application of Green's formula to the first integral produces

the (formula) identity

IΓώίf p°°(d-k)f
2 Jo JB

Jo J z > \ dt 2 / 2 J o J

By a small extension of WeyΓs lemma, this formal identity implies that

p°° is actually of class C°°[(0, oo) x (D + B - Q] and solves dp/dt = dp/2

in Z>, subject to dp = kp on B — C, in the conventional sense. To finish the

proof, you notice that p°° is symmetric in x and y. This is because p+ is

symmetric in as and y9 as you can see from the sum p+ = 2 P° of article

3.4, and this feature is inherited by p°°, as you can see from the formula

P 0 8 ^ * ^ - P[Γ > ί|£

+(0) = x,s+(t) = ?/]
t, a?,

The point is that the "xy" process with sample paths $+(s): s < t and

probabilities conditioned by £+(0) = x and %+(t) = y is the same as the

"τ/#" process run backwards and ϊ(t) is unchanged by the substitution

£+(s) —> ι+(t — s) for s < t. This symmetry permits you to conclude that

p~ is of class C°°[(0, oo) x (D + B-C)2]. The fact that it is the only

Green's function of the stated kind is now proved much as in article 3.6.

4.4 Sticky Barrier. The sticky Brownian motion associated

with dp = jJp/2 is just as easy to describe. The sample paths may be

expressed as j = $+(i"1) in which the "clock" j " 1 is the function inverse
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to i(ί) = t + fV(£+)d|t|. The proof is similar to that of article 4.3. The
Jo

only substantial change is that now

= Eί[ ίt

The meaning of the adjective "sticky" is clarified if you notice that the
clock \~ι runs slower than the standard clock t while j is on B, so that
S* spends too much time on B, appearing to hesitate a moment before it
rebounds: in fact,

measure (s < ί: s#(β) eB) = [l V(s+)<*|t| ,
Jo

as the reader will easily check. The reader may also wish to check out
the case D + B = [0, oo) by hand in the style of article 4.2.

4.5 General Barries. The Brownian motion £* associated with
dp = kp + jAp/2 is now made by running the elastic Brownian motion
$°° with the clock j - 1 :

jSCί"1) if t < T*
6 (oo if t > T*

the killing time T* = j(T) being distributed according to the conditional
law P[Γ* > ί|s+] = exp[—Ki"1)]. The identification proceeds much as
before.
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