ISOMETRIC IMMERSIONS OF CONSTANT MEAN GURVATURE AND TRIVIALITY OF THE NORMAL CONNECTION*

Joseph Erbacher

0. Introduction. In a recent paper [2] Nomizu and Smyth have determined the hypersurfaces M^{n} of non-negative sectional curvature isometrically immersed in the Euclidean space \boldsymbol{R}^{n+1} or the sphere S^{n+1} with constant mean curvature under the additional assumption that the scalar curvature of M^{n} is constant. This additional assumption is automatically satisfied if M^{n} is compact. In this paper we extend these results to codimension p isometric immersions. We determine the n-dimensional submanifolds M^{n} of non-negative sectional curvature isometrically immersed in the Euclidean Space \boldsymbol{R}^{n+p} or the sphere \boldsymbol{S}^{n+p} with constant mean curvature under the additional assumptions that M^{n} has constant scalar curvature and the curvature tensor of the connection in the normal bundle is zero. By constant mean curvature we mean that the mean curvature normal is parallel with respect to the connection in the normal bundle. The assumption that M^{n} has constant scalar curvature is automatically satisfied if M^{n} is compact. The assumption on the normal connection is automatically satisfied if $p=2$ and the mean curvature normal is not zero.

We then investigate isometric immersions of space forms into space forms and obtain conditions that imply the vanishing of the curvature tensor of the connection in the normal bundle. We make some applications of these results and in particular determine the local nature of an isometric immersion of the sphere S^{n} into the Euclidean space \boldsymbol{R}^{n+2} for $n \geq 4$.

1. Notation and some formulas of Riemannian geometry.

Let $\psi: M^{n} \rightarrow \tilde{M}^{n+p}(\tilde{\boldsymbol{c}})$ be an isometric immersion of an n-dimensional Riemannian manifold M^{n} into an ($n+p$)-dimensional Riemannian manifold

[^0]$\tilde{M}^{n+p}(\tilde{\boldsymbol{c}})$ of constant sectional curvature \tilde{c}. For all local formulas and computations we may consider ψ as an imbedding and thus identify $x \in M^{n}$ with $\psi(x) \in \tilde{M}^{n+p}$. The tangent space $T_{x}\left(M^{n}\right)$ is identified with a subspace of $T_{x}\left(\tilde{M}^{n+p}\right)$. The normal space T_{x}^{\perp} is the subspace of $T_{x}\left(\tilde{M}^{n+p}\right)$ consisting of all $X \in T_{x}\left(\tilde{M}^{n+p}\right)$ which are orthogonal to $T_{x}\left(M^{n}\right)$ with respect to the Riemannian metric g. Let ∇ (respectively $\tilde{\nabla}$) denote the covariant differentiation in M^{n} (respectively \tilde{M}^{n+p}) and let D denote the covariant differentiation in the normal bundle. We will refer to V as the tangential connection and to D as the normal connection.

To each $\xi \in T_{x}^{\perp}$ is associated a linear transformation of $T_{x}\left(M^{n}\right)$ in the following way. Extend ξ to a normal vector field defined in a neighborhood of x and define $-A_{\xi} X$ to be the tangential component of $\tilde{V}_{X} \xi$ for $X \in T_{x}\left(M^{n}\right)$. $\quad A_{\xi} X$ depends only on ξ at x and X. Given an orthonormal basis ξ_{1}, \cdots, ξ_{p} of T_{x}^{\perp}, we write $A_{\alpha}=A_{\xi_{\alpha}}$ and call the $A_{\alpha}{ }^{\prime} s$ the second fundamental forms associated with ξ_{1}, \cdots, ξ_{p}. If ξ_{1}, \cdots, ξ_{p} are now orthonormal normal vector fields in a neighborhood of x, they determine normal connection forms $s_{\alpha \beta}$, in a neighborhood of x, by

$$
D_{X} \xi_{\alpha}=\sum_{\beta} s_{\alpha \beta}(X)_{\xi_{\beta}}
$$

for X tangent to M^{n}.
Let R, \tilde{R}, and R^{N} be the curvature tensors for ∇, \tilde{V}, and D, respectively, and S the Ricci tensor (of type 1-1) for M^{n} as defined in [1]. If $X, Y \in T_{x}\left(M^{n}\right)$ we let $X \wedge Y$ denote the skew symmetric endomorphism:

$$
(X \wedge Y) Z=g(Y, Z) X-g(X, Z) Y
$$

Let X and Y be tangent to M^{n} and ξ_{1}, \cdots, ξ_{p} orthonormal normal vector fields. We then have the following relationships (in this paper Greek indices run form 1 to p and Latin indices run from 1 to n, except when noted) :
(1) $\tilde{\nabla}_{X} Y=\nabla_{X} Y+\sum_{\alpha} g\left(A_{\alpha} X, Y\right) \xi_{\alpha}$
(2) $g\left(A_{\alpha} X, Y\right)=g\left(X, A_{\alpha} Y\right)$
(3) $\tilde{\nabla}_{X} \xi_{\alpha}=-A_{\alpha} X+D_{X} \xi_{\alpha}=-A_{\alpha} X+\sum_{\beta} s_{\alpha \beta}(X) \xi_{\beta}$
(4) $s_{\alpha \beta}+s_{\beta \alpha}=0$
(5) $\quad R(X, Y)=\tilde{c}(X \wedge Y)+\sum_{\alpha} A_{\alpha} X \wedge A_{\alpha} Y$-Gauss equation
(6) $\quad\left(\nabla_{X} A_{\alpha}\right) Y-\sum_{\beta} s_{\alpha \beta}(X) A_{\beta} Y=\left(\nabla_{Y} A_{\alpha}\right) X-\sum_{\beta} s_{\alpha \beta}(Y) A_{\beta} X$
——Codazzi's equation
(7) $\quad\left(V_{X} s_{\alpha \beta}\right) Y-\left(\nabla_{Y} s_{\alpha \beta}\right) X=2\left(d s_{\alpha \beta}\right)(X, Y)$
$=X \cdot s_{\alpha \beta}(Y)-Y \cdot s_{\alpha \beta}(X)-s_{\alpha \beta}([X, Y])$
$\left.=g\left(\left[A_{\alpha}, A_{\beta}\right]\right) X, Y\right)+\sum_{r}\left\{s_{\alpha r}(X) s_{r \beta}(Y)-s_{\alpha r}(Y) s_{r \beta}(X)\right\}$ - Ricci equation
(8) $R^{N}(X, Y) \xi_{\alpha}=\sum_{\beta} g\left(\left[A_{\alpha}, A_{r}\right] X, Y\right) \xi_{\beta}$
$=\sum_{\beta}\left\{2\left(d s_{\alpha \beta}\right)(X, Y)+\sum_{r}\left\{s_{a r}(Y) s_{r \beta}(X)-s_{a r}(X) s_{r \beta}(Y)\right\}\right\} \xi_{\beta}$
(9) $S=(n-1) \tilde{c} I+\sum_{\alpha}\left(\operatorname{tr} A_{\alpha}\right) A_{\alpha}-\sum_{\alpha} A_{\alpha}^{2}$
($\operatorname{tr} A_{\alpha}=\operatorname{trace} A_{\alpha}=\sum_{i} g\left(A_{\alpha} E_{i}, E_{i}\right),\left\{E_{i}\right\}$ an orthonormal basis of $T_{x}\left(M^{n}\right) ; I=$ the identity transformation)
(10) $\operatorname{tr} S=n(n-1) \tilde{c}+\sum_{\alpha}\left(\operatorname{tr} A_{\alpha}\right) r^{2}-\sum_{\alpha} \operatorname{tr} A_{\alpha}^{2}$,
where $\operatorname{tr} S$ is the scalar curvature.
The mean curvature normal η is defined by

$$
\eta=\sum_{\alpha}\left(\operatorname{tr} A_{\alpha}\right) \xi_{\alpha}
$$

where the RHS (right hand side) is independent of our choice of orthonormal basis of T_{x}^{\perp}. Note that (10) may be written as

$$
\operatorname{tr} S=n(n-1) \tilde{c}+g(\eta, \eta)-\sum_{\alpha} \operatorname{tr} A_{\alpha}^{2}
$$

Let V^{*} denote the sum of the tangential and the normal connections. ∇^{*} is the connection in the Whitney sum of the tangent bundle of M^{n} and the normal bundle of M^{n} induced by V and D; see proposition 6.3, pg. 82, of Volume I of [1]. Then, letting $\nabla_{X}^{*} A_{\alpha}$ denote $\left(\nabla_{X}^{*} A\right)_{\xi_{\alpha}}$, we have
$\nabla_{X}^{*} A_{\alpha}=\nabla_{X} A_{\alpha}-\sum_{\beta} s_{\alpha \beta}(X) A_{\beta}$
and Codazzi's equation may be written as
(6') $\quad\left(\nabla_{X}^{*} A_{\alpha}\right) Y=\left(\nabla_{Y}^{*} A_{\alpha}\right) X$.
We note that (8) implies that $R^{N}=0$ at x if and only if $A_{\alpha} A_{\beta}=A_{\beta} A_{\alpha}$ at x for all α, β; or, equivalently, the $A_{\alpha}^{\prime} s$ are simultaneously diagonalizable at x. Also, $R^{N}=0$ everywhere if and only if for each $x \in M^{n}$ there exists
orthonormal normal vector fields ξ_{1}, \cdots, ξ_{p} defined in a neighborhood U of x such that $D \xi_{\alpha}=0$ in U, i.e., $s_{\alpha \beta}=0$ in U. If $R^{N}=0$ at $x \in M^{n}$ we will say that the normal connection is trivial at x; if $R^{N}=0$ for all $x \in M^{N}$ we will say that the normal connection is trivial.

Note that (10^{\prime}) implies that $\sum_{\alpha} \operatorname{tr} A_{\alpha}^{2}$ is independent of our choice of orthonormal basis of T_{x}^{\perp}.

For X, Y tangent to $M^{n}, K(X \wedge Y)$ will denote the sectional curvature in M^{n} of the plane spanned by X and $Y .\|T\|^{2}=g(T, T)$ for any tensor T. Let \boldsymbol{R}^{k} denote k-dimensional Euclidean space and $S^{k}(\tilde{\boldsymbol{c}}), \tilde{c}>0$, will denote the sphere in \boldsymbol{R}^{k+1} of curvature \tilde{c}.

All manifolds, immersions, vector fields, and functions are assumed C^{∞} unless otherwise stated.

2. Isometric immersions of constant mean curvature.

Let $\psi: M^{n} \rightarrow \tilde{M}^{n+p}(\tilde{c})$ be as in Section 1. Let $f=\sum_{\alpha} \operatorname{tr} A_{\alpha}^{2}$.
Simons [3] has established a formula for the Laplacian of the second fundamental form of a submanifold in a Riemannian manifold and has made some applications to minimal hypersurfaces of spheres by means of the Laplacian of the function f above. Nomizu and Smyth [2] have obtained the same type of formula for the Laplacian of f for a hypersurface M^{n} immersed with constant mean curvature in a space of constant sectional curvature by a more direct route than Simons', and derived a new formula for the Laplacian of f involving the sectional curvatures of M^{n}. In Lemmas 1 and 2 below we extend the formulas of Nomizu and Smyth to codimension p.

Lemma 1. If $D \eta=0$, then

$$
\begin{align*}
& \frac{1}{2} \Delta f=\tilde{c} n f-\tilde{c} \sum_{\alpha}\left(\operatorname{tr} A_{\alpha}\right)^{2}+\sum_{\alpha, \beta} \operatorname{tr}\left[A_{\alpha}, A_{\beta}\right]^{2} \tag{12}\\
& +\sum_{\alpha, \beta}\left(\operatorname{tr} A_{\alpha}\right)\left(\operatorname{tr} A_{\alpha} A_{\beta}^{2}\right)-\sum_{\alpha, \beta}\left(\operatorname{tr} A_{\alpha} A_{\beta}\right)^{2}+\sum_{\alpha}\left\|\nabla^{*} A_{\alpha}\right\|^{2}
\end{align*}
$$

where Δ is the Laplacian.

Lemma 2. If in addition the normal connection is trivial and we let $\lambda_{i \alpha}$, $1 \leq i \leq n, 1 \leq \alpha \leq p$, be the eigenvalues of A_{α} corresponding to eigenvectors E_{i} (recall $R^{N}=0$ implies the A_{α} 's are simultaneously diagonalizable), then

$$
\begin{equation*}
\frac{1}{2} \Delta f=\sum_{\alpha} \sum_{i<j}\left(\lambda_{i \alpha}-\lambda_{j \alpha}\right)^{2}\left(\tilde{c}+\lambda_{i 1} \lambda_{j 1}+\cdots+\lambda_{i p} \lambda_{j p}\right)+\sum_{\alpha}\left\|\nabla^{*} A_{\alpha}\right\|^{2} \tag{13}
\end{equation*}
$$

where $\tilde{c}+\lambda_{i 1} \lambda_{j 1}+\cdots+\lambda_{i p} \lambda_{j p}=K\left(E_{i} \wedge E_{j}\right)$.
Proof of Lemma 1. Note that for X tangent to M^{n}

$$
\begin{aligned}
D_{X} \eta & =\sum_{\alpha}\left(X\left(\operatorname{tr} A_{\alpha}\right)\right) \xi_{\alpha}+\sum_{\alpha}\left(\operatorname{tr} A_{\alpha}\right) D_{X} \xi_{\alpha} \\
& =\sum_{\alpha}\left(X\left(\operatorname{tr} A_{\alpha}\right)\right) \xi_{\alpha}-\sum_{\alpha}\left(\sum_{\beta} s_{\alpha \beta}(X) \operatorname{tr} A_{\beta}\right) \xi_{\alpha} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
D \eta=0 \text { if and only if } X\left(\operatorname{tr} A_{\alpha}\right)-\sum_{\beta} s_{\alpha \beta}(X) \operatorname{tr} A_{\beta}=0 \tag{14}
\end{equation*}
$$

for each α. Remark: $\tilde{\nabla}_{X} \eta=0$ for all $X \in T_{x}\left(M^{n}\right)$ if and only if $\eta=0$. Let $f_{\alpha}=\operatorname{tr} A_{\alpha}^{2}$, then $\Delta f=\sum_{\alpha} \Delta f_{\alpha}$. If B is any tensor of type 1-1 on M^{n}, then for $F=\operatorname{tr} B^{2}$ we have

$$
\begin{equation*}
\frac{1}{2} \Delta F=\operatorname{tr}\left(\left(\Delta^{\prime} B\right) B\right)+\|\nabla B\|^{2}, \tag{15}
\end{equation*}
$$

where

$$
\left(\Delta^{\prime} B\right)(x)=\sum_{i} \nabla^{2} B\left(; E_{i} ; E_{i}\right),
$$

$\left\{E_{2}\right\}$ an orthonormal basis of $T_{x}\left(M^{n}\right)$ and

$$
\nabla^{2} B(; Y ; X)=\nabla_{X}\left(\nabla_{Y} B\right)-\nabla_{\nabla_{X} Y} B .
$$

Let $K_{\alpha}(X, Y)=\left(\nabla^{2} A_{\alpha}\right)(; Y ; X)$. Then

$$
\begin{equation*}
K_{\alpha}(X, Y)=K_{\alpha}(Y, X)+\left[R(X, Y), A_{\alpha}\right] . \tag{16}
\end{equation*}
$$

For $X, Y \in T_{x}\left(M^{n}\right)$ and an orthonormal basis $\left\{E_{i}\right\}$ of $T_{x}\left(M^{n}\right)$ extend X, Y, E_{i} to vector fields in a normal neighborhood of x by parallel translation along geodesics with respect to the connection in M^{n}. Let ξ_{1}, \cdots, ξ_{p} be orthonormal normal vector fields defined in a neighborhood of x. Then

$$
\begin{equation*}
\nabla X=\nabla Y=\nabla E_{i}=0 \quad \text { at } \quad x . \tag{17}
\end{equation*}
$$

Because of (17) we have at x

$$
K_{\alpha}(Y, X)=\nabla_{Y}\left(\nabla_{X} A_{\alpha}\right)-\nabla_{r_{Y} X} A_{\alpha}=\nabla_{Y}\left(\nabla_{X} A_{\alpha}\right) .
$$

Similarly, at x we have

$$
\begin{align*}
& K_{\alpha}(Y, X) Y=\nabla_{Y}\left(\left(\nabla_{X} A_{\alpha}\right) Y\right) \tag{18}\\
& =\nabla_{Y}\left(\left(\nabla_{Y} A_{\alpha}\right) X\right)+\nabla_{Y}\left(\sum_{\beta}\left(s_{\alpha \beta}(X) A_{\beta} Y-s_{\alpha \beta}(Y) A_{\beta} X\right)\right)
\end{align*}
$$

where the last line is obtained by using Codazzi's equation. Similarly, at x we have

$$
\begin{aligned}
& K_{\alpha}(Y, Y) X=\nabla_{Y}\left(\left(\nabla_{Y} A_{\alpha}\right) X\right) \\
& =K_{\alpha}(X, Y) Y-\left[R(X, Y), A_{\alpha}\right] Y \\
& -\nabla_{Y}\left(\sum_{\beta}\left(s_{\alpha \beta}(X) A_{\beta} Y-s_{\alpha \beta}(Y) A_{\beta} X\right)\right)
\end{aligned}
$$

where we have used (16) and (18) to get the last line. Thus, at x, we have

$$
\begin{align*}
\sum_{i} K_{a}\left(E_{i}, E_{i}\right) X & =\sum_{i} K_{\alpha}\left(X, E_{i}\right) E_{i}+\sum_{i}\left[R\left(E_{i}, X\right), A_{\alpha}\right] E_{i} \tag{19}\\
& -\sum_{i} \nabla_{E_{i}}\left(\sum_{\beta}\left(s_{\alpha \beta}(X) A_{\beta} E_{i}-s_{\alpha \beta}\left(E_{i}\right) A_{\beta} X\right)\right)
\end{align*}
$$

We compute the second term on the $R H S$ of (19):

$$
\begin{aligned}
& \sum_{i} R\left(E_{i}, X\right) A_{\alpha} E_{i}=\sum_{i} \tilde{c} g\left(A_{\alpha} E_{i}, X\right) E_{i}-\sum_{i} \tilde{c} g\left(A_{\alpha} E_{i}, E_{i}\right) X \\
& +\sum_{i, \beta} g\left(A_{\alpha} E_{i}, A_{\beta} X\right) A_{\beta} E_{i}-\sum_{i, \beta} g\left(A_{\alpha} E_{\imath}, A_{\beta} E_{i}\right) A_{\beta} X \\
& =\sum_{i} \tilde{c} g\left(E_{i}, A_{\alpha} X\right) E_{i}-\sum_{i} \tilde{c} g\left(A_{\alpha} E_{i}, E_{\imath}\right) X \\
& +\sum_{i, \beta} A_{\beta} g\left(E_{i}, A_{\alpha} A_{\beta} X\right) E_{i}-\sum_{i, \beta} g\left(A_{\beta} A_{\alpha} E_{i}, E_{i}\right) A_{\beta} X \\
& =\tilde{c} A_{\alpha} X-\tilde{c}\left(\operatorname{tr} A_{\alpha}\right) X+\sum_{\beta} A_{\beta} A_{\alpha} A_{\beta} X-\sum_{\beta}\left(\operatorname{tr} A_{\beta} A_{\alpha}\right) A_{\beta} X .
\end{aligned}
$$

Similarly we can compute $\sum_{i} A_{\alpha} R\left(E_{\imath}, X\right) E_{i}$. We find

$$
\begin{align*}
& \sum_{i}\left[R\left(E_{i}, X\right), A_{\alpha}\right] E_{i}=n \tilde{c} A_{\alpha} X-\tilde{c}\left(\operatorname{tr} A_{\alpha}\right) X \tag{20}\\
& +\sum_{\beta}\left[A_{\beta}, A_{\alpha} A_{\beta}\right] X+\sum_{\beta}\left(\operatorname{tr} A_{\beta}\right) A_{\alpha} A_{\beta} X-\sum_{\beta}\left(\operatorname{tr} A_{\beta} A_{\alpha}\right) A_{\beta} X .
\end{align*}
$$

To compute the first term on the RHS of (19),

$$
\sum_{i} K_{\alpha}\left(X, E_{i}\right) E_{i}=\sum_{i} \nabla_{X}\left(\left(\nabla_{E_{t}} A_{\alpha}\right) E_{i}\right),
$$

note that A_{α} symmetric implies that $\nabla_{X} A_{\alpha}$ is also symmetric. Thus for an arbitrary vector field Z on M^{n}, we have in a neighborhood of x

$$
\begin{aligned}
& \sum_{i} g\left(\left(\nabla_{E_{i}} A_{\alpha}\right) E_{i}, Z\right)=\sum_{i} g\left(E_{i},\left(\nabla_{E_{i}} A_{\alpha}\right) Z\right) \\
& =\sum_{i} g\left(E_{i},\left(\nabla_{Z} A_{\alpha}\right) E_{i}\right)-\sum_{i, \beta} g\left(E_{i}, s_{\alpha \beta}(Z) A_{\beta} E_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{i, \beta} g\left(E_{i}, s_{\alpha \beta}\left(E_{i}\right) A_{\beta} Z\right) \quad \text { (by Codazzi's equation) } \\
& =Z \cdot \operatorname{tr} A_{\alpha}-\sum_{\beta} s_{\alpha \beta}(Z) \operatorname{tr} A_{\beta}+\sum_{i, \beta} g\left(s_{\alpha \beta}\left(E_{i}\right) A_{\beta} E_{i}, Z\right) \\
& =\sum_{i, \beta} g\left(s_{\alpha \beta}\left(E_{i}\right) A_{\beta} E_{i}, Z\right)
\end{aligned}
$$

by using (14) - here, and the use of (21) in (22) to get (23), are the only places in the calculation where we use $D r_{r}=0$. Thus

$$
\begin{equation*}
\sum_{i}\left(\nabla_{E_{i}} A_{\alpha}\right) E_{i}=\sum_{i, \beta} s_{\alpha \beta}\left(E_{i}\right) A_{\beta} E_{i} . \tag{21}
\end{equation*}
$$

Thus the sum of the first and third terms on the $R H S$ of (19) is

$$
\sum_{i, \beta} \nabla_{X}\left(s_{\alpha \beta}\left(E_{i}\right) A_{\beta} E_{i}\right)-\sum_{i, \beta} \nabla_{E_{i}}\left(s_{\alpha \beta}(X) A_{\beta} E_{i}-s_{\alpha \beta}\left(E_{i}\right) A_{\beta} X\right)
$$

which again by (17), is

$$
\begin{align*}
& \sum_{i, \beta}\left\{\left(\nabla_{X} s_{\alpha \beta}\right)\left(E_{i}\right) A_{\beta} E_{i}-\left(\nabla_{E_{i}} s_{\alpha \beta}\right)(X) A_{\beta} E_{i}\right. \tag{22}\\
& +\left(\nabla_{E_{i}} s_{\alpha \beta}\right)\left(F_{i}\right) A_{\beta} X+s_{\alpha \beta}\left(E_{i}\right)\left(\nabla_{X} A_{\beta}\right) E_{i} \\
& \left.+s_{\alpha \beta}\left(E_{\imath}\right)\left(\nabla_{E_{t}} A_{\beta}\right) X-s_{\alpha \beta}(X)\left(\nabla_{E_{i}} A_{\beta}\right) E_{i}\right\} .
\end{align*}
$$

If we now use the Ricci equation for the first two terms of (22) and Codazzi's equation for $\left(\nabla_{E_{t}} A_{\beta}\right) X$ in the fourth term and (21) for the last term we find that (22) equals

$$
\begin{align*}
& \sum_{i, \beta} g\left(\left[A_{\alpha}, A_{\beta}\right] X, E_{i}\right) A_{\beta} E_{i} \tag{23}\\
& +\sum_{i, \beta}\left(\nabla_{E_{i}} \alpha_{\alpha \beta}\right)\left(E_{i}\right) A_{\beta} X \\
& +2 \sum_{i, \beta} s_{\alpha \beta}\left(E_{i}\right)\left(\nabla_{E_{i}} A_{\beta}\right) X \\
& -\sum_{i, \beta, \gamma} s_{\alpha \beta}\left(E_{i}\right) s_{\beta r}\left(E_{i}\right) A_{\gamma} X
\end{align*}
$$

Note: the first term in (23) is $\sum_{\beta} A_{\beta}\left[A_{\alpha}, A_{\beta}\right] X$. Thus

$$
\begin{align*}
\Delta^{\prime} A_{\alpha} & =n \tilde{c} A_{\alpha}-\tilde{c}\left(\operatorname{tr} A_{\alpha}\right) I+\sum_{\beta}\left(\operatorname{tr} A_{\beta}\right) A_{\alpha} A_{\beta} \tag{24}\\
& -\sum_{\beta}\left(\operatorname{tr} A_{\beta} A_{\alpha}\right) A_{\beta}+\sum_{\beta}\left[A_{\beta}, A_{\alpha} A_{\beta}\right] \\
& +\sum_{\beta} A_{\beta}\left[A_{\alpha}, A_{\beta}\right]+\sum_{i, \beta}\left(\nabla_{E_{i}} s_{\alpha \beta}\right)\left(E_{i}\right) A_{\beta} \\
& +2 \sum_{i, \beta} s_{\alpha \beta}\left(E_{i}\right) \nabla_{E_{i}} A_{\beta}-\sum_{i, \beta, r} s_{\alpha \beta}\left(E_{i}\right) s_{\beta r}\left(E_{i}\right) A_{r}
\end{align*}
$$

and

$$
\begin{align*}
\frac{1}{2} \Delta f & =\sum_{\alpha} \operatorname{tr}\left(\left(\Delta^{\prime} A_{\alpha}\right) A_{\alpha}\right)+\sum_{\alpha}\left\|\nabla A_{\alpha}\right\|^{2} \tag{25}\\
& =n \tilde{c} \sum_{\alpha} \operatorname{tr} A_{\alpha}^{2}-\tilde{c} \sum_{\alpha}\left(\operatorname{tr} A_{\alpha}\right)^{2}+\sum_{\alpha, \beta}\left(\operatorname{tr} A_{\beta}\right)\left(\operatorname{tr} A_{\alpha} A_{\beta} A_{\alpha}\right) \\
& -\sum_{\alpha, \beta}\left(\operatorname{tr} A_{\beta} A_{\alpha}\right)^{2}+\sum_{\alpha, \beta} \operatorname{tr}\left[A_{\beta}, A_{\alpha} A_{\beta}\right] A_{\alpha} \\
& +\sum_{\alpha, \beta} \operatorname{tr} A_{\beta}\left[A_{\alpha}, A_{\beta}\right] A_{\alpha}+\sum_{i, \alpha, \beta}\left(\nabla_{E_{i}} s_{\alpha \beta}\right)\left(E_{i}\right) \operatorname{tr} A_{\beta} A_{\alpha} \\
& +2 \sum_{i, \alpha, \beta} s_{\alpha \beta}\left(E_{i}\right) \operatorname{tr}\left(\nabla_{E_{i}} A_{\beta}\right) A_{\alpha} \\
& -\sum_{i, \alpha, \beta, \gamma} s_{\alpha \beta}\left(E_{i}\right) s_{\beta r}\left(E_{i}\right) \operatorname{tr} A_{r} A_{\alpha}+\sum_{\alpha}\left\|\nabla A_{\alpha}\right\|^{2} .
\end{align*}
$$

By properties of the trace the first six terms of the RHS of (25) reduce to the first five terms of the RHS of (12). Since $s_{\alpha \beta}+s_{\beta \alpha}=0$, the seventh term of the RHS of (25) is zero. And the sum of the last three terms of the RHS of (25) is $\sum_{\alpha}\left\|\nabla^{*} A_{\alpha}\right\|^{2}$ as is easily seen from (11) and

$$
\left\|\nabla^{*} A_{\alpha}\right\|^{2}=\sum_{i} \operatorname{tr}\left(\nabla_{E_{t}}^{*} A_{\alpha}\right)\left(\nabla_{E_{t}}^{*} A_{\alpha}\right) .
$$

Proof of Lemma 2. Nomizu and Smyth [2] have shown that for any $n \times n$ symmetric matrix A with eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$ that

$$
\begin{aligned}
& \tilde{c} n t r A^{2}-\tilde{c}(t r A)^{2}-\left(\operatorname{tr} A^{2}\right)^{2}+\operatorname{tr} A \operatorname{tr} A^{3} \\
& =\sum_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}\left(\tilde{c}+\lambda_{i} \lambda_{j}\right)
\end{aligned}
$$

To prove Lemma 2 it suffices to show that for any $n \times n$ commuting symmetric matrices A and B with eigenvalues λ_{i} and μ_{i} respectively that

$$
\begin{align*}
& \operatorname{tr} A \operatorname{tr} B^{2} A+\operatorname{tr} B \operatorname{tr} A^{2} B-(\operatorname{tr} A B)^{2}-(\operatorname{tr} B A)^{2} \tag{26}\\
& =\sum_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2} \mu_{i} \mu_{j}+\sum_{i<j}\left(\mu_{i}-\mu_{j}\right)^{2} \lambda_{i} \lambda_{j}
\end{align*}
$$

Equation (26) is proved by simultaneously diagonalizing A and B and calculating the LHS (left hand side).

Lemma 3. Suppose M^{n} has non-negative sectional curvatures, $D \eta=0$, and the normal connection is trivial. If M^{n} has constant scalar curvature or M^{n} is compact, then $\Delta f=0$ and $\left\|\nabla^{*} A_{\alpha}\right\|^{2}=0$. If M^{n} is compact then M^{n} has constant scalar curvature.

Proof. If M^{n} has constant scalar curvature, then since $g(\eta, \eta)$ is constant $\left(10^{\prime}\right)$ implies that f is constant; hence $\Delta f=0$. Lemma 2 implies that $\Delta f \geq 0$.

Hence, if M^{n} is compact, then $\Delta f=0$ (cf. page 338, volume $I I$ of [1]) and f is constant. Since $g(r, \eta)$ is constant, (10^{\prime}) implies that M^{n} has constant scalar curvature. Since all the terms on the RHS of (13) are non-negative and $\Delta f=0$ we conclude that $\left\|\nabla^{*} A_{\alpha}\right\|^{2}=0$.

Lemma 4. If the assumption of Lemma 3 are satisfied and $\tilde{M}^{n+p}=\boldsymbol{R}^{n+p}$, then for each $x \in M^{n}$ there exist orthonormal normal vector fields ξ_{1}, \cdots, ξ_{p} defined in a neighborhood U of x such that
(a) $D \xi_{\alpha}=0$ in U, i.e., $s_{\alpha \beta}=0$ in U
(b)

$$
A_{\alpha}=\left(\begin{array}{c|c|c}
0 & 0 & 0 \\
\hline 0 & \lambda_{\alpha} I_{m_{\alpha}} & 0 \\
\hline 0 & 0 & 0
\end{array}\right)
$$

where $I_{m_{\alpha}}$ is the $m_{\alpha} \times m_{\alpha}$ identity matrix and the zero matrix in the upper left hand corner is of degree $m_{1}+\cdots+m_{\alpha-1}$ and the $A_{\alpha}{ }^{\prime}$ s are expressed with respect to their common orthonormal eigenvectors E_{1}, \cdots, E_{n}. Note that $A_{\alpha}=0$ if $m_{1}+\cdots+m_{\alpha-1}=n$ and we may assume that $A_{\alpha}=0$ implies that $A_{\beta}=0$ for $\beta>\alpha$
(c) Each λ_{α} is constant in U.

Proof. Since the normal connection is trivial there exist orthonormal normal vector fields ξ_{1}, \cdots, ξ_{p} defined in a neighborhood U of x such that $D \xi_{\alpha}=0$ in U. With such a choice of ξ_{1}, \cdots, ξ_{p} we have $\nabla_{X}^{*} A_{\alpha}=\nabla_{X} A_{\alpha}$ for X tangent to M^{n}. By Lemma 3, $\left\|\boldsymbol{\nabla}^{*} A_{\alpha}\right\|=0$ and thus $\left\|\boldsymbol{\nabla} A_{\alpha}\right\|=0$. Hence the eigenvalues of A_{α} are constant. If $\xi_{\beta}^{\prime}=\sum_{\alpha} O_{\alpha \beta} \xi_{\alpha}$, $\left[O_{\alpha \beta}\right]$ an orthogonal matrix with constant entries, then $D \xi_{\beta}^{\prime}=0$ in U and $A_{\beta}^{\prime}=\sum O_{\alpha \beta} A_{\alpha}$. In what follows we will begin with any ξ_{1}, \cdots, ξ_{p} such that $D \xi_{\alpha}=0$ in U and show that there exists an orthogonal matrix $\left[O_{\alpha \beta}\right]$ with constant entries such that the second fundamental forms A_{β}^{\prime} with respect to $\xi_{\beta}^{\prime}=\sum_{\alpha} O_{\alpha \beta} \xi_{\alpha}$ have the desired property (b). The claim is clearly true if all the $A_{\alpha}^{\prime} s=0$ at x (and therefore by constancy of the eigenvalues $A_{\alpha}=0$ in a neighborhood of x). If this is not the case we distinguish three cases:
(i) all sectional curvatures of $M^{n}>0$ at x,
(ii) all sectional curvatures of $M^{n}=0$ at x,
(iii) at least one non-zero sectional curvature at x and at least one sectional curvature that is zero at x.

Suppose ξ_{1}, \cdots, ξ_{p} and U have been chosen such that (a) is satisfied; thus each A_{α} has constant eigenvalues in U.

Case (i): Lemmas 2 and 3 imply that $A_{\alpha}=\lambda_{\alpha} I$. We may assume $\lambda_{1} \neq 0$. Let

$$
\xi_{1}^{\prime}=\left(\sum_{\alpha} \lambda_{\alpha} \xi_{\alpha}\right) /\left(\sum_{\alpha} \lambda_{\alpha}^{2}\right)^{1 / 2}
$$

and

$$
\bar{\xi}_{\beta}=\left(\lambda_{1} \xi_{\beta}-\lambda_{\beta} \xi_{1}\right) /\left(\lambda_{1}^{2}+\lambda_{\beta}^{2}\right)^{1 / 2}
$$

for $\beta>1$. Then $A_{1}^{\prime}=\lambda I, \lambda \neq 0$, and $\bar{A}_{\beta}=0$ for $\beta>1, \bar{\xi}_{\beta} \perp \xi_{1}^{\prime}$. Use the Gram-Schmidt orthogonalization process on $\bar{\xi}_{2}, \cdots, \bar{\xi}_{p}$ to obtain $\bar{\xi}_{2}^{\prime}, \cdots, \bar{\xi}_{p}^{\prime}$. Then $A_{\beta}^{\prime}=0$ for $\beta>1$.

Case (ii): Let $A_{\alpha}=\left(\begin{array}{llll}\lambda_{1 \alpha} & & \\ & & \\ & & \\ & & \lambda_{n \alpha}\end{array}\right)$
when expressed with respect to the common eigenvectors E_{1}, \cdots, E_{n} of the A_{α} 's. We may assume $\lambda_{11} \neq 0$. Let

$$
\begin{aligned}
& \xi_{1}^{\prime}=\left(\sum_{\alpha} \lambda_{1 \alpha} \xi_{\alpha}\right) /\left(\sum_{\alpha} \lambda_{1 \alpha}^{2}\right)^{1 / 2} \\
& \bar{\xi}_{\alpha}=\left(\lambda_{11} \xi_{\alpha}-\lambda_{1 \alpha} \xi_{1}\right) /\left(\lambda_{1 \alpha}^{2}+\lambda_{11}^{2}\right)^{1 / 2} \text { for } \alpha>1 .
\end{aligned}
$$

Again, $\bar{\xi}_{\alpha} \perp \bar{\xi}_{1}^{\prime}$. Use the Gram-Schmidt orthogonalization process on $\bar{\xi}_{2}, \cdots, \bar{\xi}_{p}$ to obtain $\xi_{2}^{\prime}, \cdots, \xi_{p}^{\prime}$. Then, for $\alpha \geq 2$,

$$
A_{\alpha}^{\prime}=\left(\begin{array}{c|ccc}
0 & 0 & \cdot & \cdot \\
\hline 0 & * & & \\
\vdots & \cdot & & \\
\cdot & & & \\
0 & & & *
\end{array}\right)
$$

and $\lambda_{11}^{\prime} \neq 0$. Thus we may assume that $\lambda_{1 \alpha}=0$ for $\alpha>1, \lambda_{11} \neq 0$. Since $0=K\left(E_{1} \wedge E_{j}\right)=\sum_{\alpha} \lambda_{1 \alpha} \lambda_{j \alpha}=\lambda_{11} \lambda_{j 1}$ for $j>1$, we have $\lambda_{j 1}=0$ for $j>1$. If one of the $A_{\alpha}^{\prime} s$, for $\alpha \geq 2$, is not zero we may assume that it is A_{2} and apply the above argument to ξ_{2}, \cdots, ξ_{p} and A_{2}, \cdots, A_{p} restricted to the span $\left\{E_{2}, \cdots, E_{n}\right\}$. We obtain $\lambda_{j 2}=0$ for $j>2$ and $\lambda_{2 \alpha}=0$ for $\alpha>2$. It is now clear that an induction argument will work.

Case (iii): Order E_{1}, \cdots, E_{n} so that $K\left(E_{1} \wedge E_{l}\right)>0$ for $2 \leq l \leq m_{1}$, and $K\left(E_{1} \wedge E_{l}\right)=0$ for $l>m_{1}$. Then Lemmas 2 and 3 imply that $\lambda_{1 \alpha}=\lambda_{l \alpha}$ for $1 \leq l \leq m_{1}$. Define ξ_{α}^{\prime} as in case (ii). We see that we may assume that $\lambda_{l \alpha}=0$ for $1 \leq l \leq m_{1}, 2 \leq \alpha \leq p$. Then $K\left(E_{1} \wedge E_{l}\right)=\lambda_{11} \lambda_{l_{1}}=0$ for $l>m_{1}$ and thus $\lambda_{l 1}=0$ for $l>m_{1}$. If $K\left(E_{i} \wedge E_{j}\right) \neq 0$ for some $i, j>m_{1}$ we repeat the above argument applied to ξ_{2}, \cdots, ξ_{p} and A_{2}, \cdots, A_{p} restricted to the span $\left\{E_{m_{1}+1}, \cdots, E_{n}\right\}$. If $K\left(E_{i} \wedge E_{j}\right)=0$ for all $i, j>m_{1}$ we apply the argument of case (ii) to ξ_{2}, \cdots, ξ_{p} and A_{2}, \cdots, A_{p} restricted to the span $\left\{E_{m_{1}+1}, \cdots, E_{n}\right\}$. In either case we obtain the desired form for A_{1} and A_{2}. It is clear that an induction argument will work.

Lemma 5. Let M^{n} be isometrically immersed in S^{n+p} such that
(a) $f=\sum_{\alpha} \operatorname{tr} A_{\alpha}^{2}$ is constant on M^{n}
(b) $D \eta=0$, and
(c) the normal connection is trivial.

Then, if we consider S^{n+p} as isometrically immersed in \boldsymbol{R}^{n+p+1}, conditions (a), (b), and (c) are also satisfied. (Of course f, η, and the normal connection are now taken with respect to M^{n} immersed in \boldsymbol{R}^{n+p+1}).

Proof. Let ξ be the inward normal on S^{n+p} and let ξ_{1}, \cdots, ξ_{p} be orthonormal normal vectors to M^{n} but tangent to S^{n+p}. Let A_{α} be the corresponding second fundamental forms for M^{n} immersed in S^{n+p}. Let A^{\prime} and A_{α}^{\prime} be the second fundamental forms for ξ and ξ_{α} for M^{n} considered as immersed in \boldsymbol{R}^{n+p+1}. Let D (respectively D^{\prime}) be the covariant differentiation in the normal bundle for M^{n} immersed in S^{n+p} (respectively \boldsymbol{R}^{n+p+1}) Then it is easy to show that $A_{\alpha}^{\prime}=A_{\alpha}, A^{\prime}=I, D \xi_{\alpha}=D^{\prime} \xi_{\alpha}$, and $D^{\prime} \xi=0$, from which the conclusion readily follows.

Consider the following example. Let $M^{n_{i}}=S^{n_{i}}\left(\frac{1}{r_{i}{ }^{2}}\right)$ be isometrically immersed in $\boldsymbol{R}^{n_{i}+1}$ by ϕ_{i} for $i=1, \cdots, l-1$. For $n_{i}=1$ we assume $\phi_{i}\left(S^{1}\right)$ is a circle; for $n_{i} \geq 2, \phi_{i}$ is unique up to an isometry of $\boldsymbol{R}^{n_{i}+1}$. Let ξ_{i} be the inward normal to $M^{n_{i}}$. Let $M^{n_{\iota}}=\boldsymbol{R}^{n_{l}}$ and let $\boldsymbol{R}^{n_{\iota}}$ be isometrically immersed in $\boldsymbol{R}^{n_{t}+p+1-l}$ such that the image is of the form $S^{1}\left(\frac{1}{r_{1}{ }^{2}}\right) \times \cdots \times$ $S^{1}\left(\frac{1}{r_{t}^{2}}\right) \times \boldsymbol{R}^{n_{t}-t}$, where each $S^{1}\left(\frac{1}{r_{k}^{2}}\right)$ is a circle of radius r_{k} in some Euclidean plane $N_{k}, N_{k} \perp N_{m}$ for $k \neq m$, and $N_{k} \perp \boldsymbol{R}^{n^{2}}{ }^{-t}$. Let ξ_{l+k-1} be the
inward normal to $S^{1}\left(\frac{1}{r_{k}^{2}}\right)$ in N_{k} and let $\xi_{l+t}, \cdots, \xi_{p}$ be normal to $\boldsymbol{R}^{n_{\imath}-t}$ and N_{k} and constant. Let $M^{n}=M^{n_{1}} \times \cdots \times M^{n_{\imath}}$ and let ϕ be the product immersion. We may consider ξ_{α} as normal to M^{n} immersed in \boldsymbol{R}^{n+p}. Let A_{α} be the corresponding second fundamental forms. Then the normal connection is trivial, $D \eta=0, f=$ constant, all sectional curvatures of $M^{n} \geq 0$, $D \xi_{\alpha}=0$ on M^{n}, and the $A_{\alpha}{ }^{\prime} s$ have the form of (b) in Lemma 4.

Let ψ be as in Lemma 4. We will show that M^{n} is locally a product of spheres and possibly a Euclidean space, in the manner of the example above.

Let ξ_{1}, \cdots, ξ_{p} be chosen as in Lemma 4. We may assume $\lambda_{\alpha} \neq 0$ for $1 \leq \alpha \leq l-1, \lambda_{\alpha}=0$ for $\alpha \geq l$ (if all $\lambda_{\alpha}=0$ then the immersion is totally geodesic). Define distributions $T_{1}, T_{2}, \cdots, T_{l}$ by

$$
\begin{aligned}
& T_{\alpha}(y)=\left\{X \in T_{y}\left(M^{n}\right) \mid A_{\alpha} X=\lambda_{\alpha} X\right\} \text { for } \alpha \leq l-1 \\
& T_{l}(y)=\left\{X \in T_{y}\left(M^{n}\right) \mid A_{\alpha} X=0, \quad 1 \leq \alpha \leq p\right\}
\end{aligned}
$$

Let $n_{\alpha}=\operatorname{dim} T_{\alpha}\left(n_{l}\right.$ may be 0$)$. Assume M^{n} is connected, simply connected, and complete. Then each T_{α} is globally defined (for $\xi \in T_{x}^{\perp}$ parallel translation of ξ with respect to the normal connection is independent of path if $R^{N}=0$ everywhere and M^{n} is simply connected). Each T_{α} has constant dimension and is differentiable (the eigenspaces of the A_{α} have constant dimension and thus we may find differentiable orthonormal eigenvector fields). The T_{α} 's are orthogonal to each other and

$$
\begin{equation*}
T_{x}\left(M^{n}\right)=T_{1}(x)+\cdots+T_{l}(x) \quad \text { (orthogonal direct sum) } \tag{27}
\end{equation*}
$$

Lemma 6. Each T_{α} is involutive, totally geodesic $\left(X, Y \in T_{\alpha}\right.$ implies that $\left.\nabla_{X} Y \in T_{\alpha}\right)$, and parallel $\left(Y \in T_{\alpha}, X\right.$ tangent to M^{n} implies that $\left.\nabla_{X} Y \in T_{\alpha}\right)$.

Proof. $0=\left(\nabla_{X} A_{\alpha}\right) Y=\nabla_{X}\left(A_{\alpha} Y\right)-A_{\alpha}\left(\nabla_{X} Y\right)$ for X, Y tangent to M^{n} since $\nabla A_{\alpha}=0$. If Y is an eigenvector field of A_{α} belonging to the eigenvalue λ_{α} (a constant) we have

$$
\lambda_{\alpha} \nabla_{X} Y-A_{\alpha}\left(\nabla_{X} Y\right)=0
$$

Thus $\nabla_{X} Y$ is an eigenvector field of A_{α} with eigenvalue λ_{α}. Thus each T_{α} is totally geodesic and therefore, because of (27), each T_{α} is parallel.

Let $x \in M^{n}$ and let $M^{n_{\alpha}}$ be the maximal integral submanifold of T_{α} through x. From Lemma 6 we conclude that

$$
M^{n}=M^{n_{1}} \times \cdots \times M^{n_{\imath}} \quad(\text { Riemannian product })
$$

If $n_{\alpha}=1$, then $M^{n_{\alpha}}=\boldsymbol{R}$ (we are assuming M^{n} is simply connected, complete). If $n_{\alpha} \geq 2$, then the curvature tensor of $M^{n_{\alpha}}$ is the restriction of the curvature tensor of M^{n} since $M^{n_{\alpha}}$ is totally geodesic in M^{n}. Therefore the sectional curvature of $M^{n_{\alpha}}$ is constant and equals λ_{α}^{2}. Also, $M^{n_{t}}=\boldsymbol{R}^{n^{n}}$. Thus M^{n} is a product of spheres and possibly a Euclidean space. Clearly, the corresponding local result is true if we do not assume completeness since we only used completeness to obtain $M^{n_{\alpha}}$ as the entire sphere or Euclidean space.

The second fundamental forms and the normal connection forms of our isometric immersion ψ with respect to ξ_{1}, \cdots, ξ_{p}, chosen as in Lemma 4, are the same as those of our example ϕ. Thus by the classical rigidity theorem (see [1], volume 2, page 45, for the case $p=1$) $\psi=\tau \circ \phi$ where τ is an isometry of \boldsymbol{R}^{n+p}. If M^{n} is complete and connected but not simply connected, let \bar{M}^{n} be its simply connected Riemannian covering manifold and let π be the covering map. Define $\bar{\psi}$ by $\bar{\psi}=\psi \circ \pi$. Then $\bar{\psi}$ satisfies the assumptions of Lemma 4 and by the above there exists an isometry τ of \boldsymbol{R}^{n+p} such that $\bar{\psi}=\tau \circ \phi$. If ϕ is $1-1$, so is $\bar{\psi}$. If $\bar{\psi}$ is $1-1$, then π and ϕ are 1-1. Also, ϕ is 1-1 except possibly when $\phi\left(M^{n}\right)$ contains an S^{1} as one of its products.

If $\tilde{M}^{n+p}=S^{n+p}$ and the hypothesis of Lemma 3 are satisfied then consider M^{n} as immersed in \boldsymbol{R}^{n+p+1}. Lemma 5 implies $\psi\left(M^{n}\right)$ is of the form $\phi\left(M^{n}\right)$ and hence a product of spheres, assuming M^{n} is complete.

We summarize our results as follows.
Theorem 1. Let ψ be an isometric immersion of an n-dimensional, connected, complete Riemannian manifold M^{n} of non-negative sectional curvatures into \boldsymbol{R}^{n+p} or S^{n+p}. Suppose that the mean curvature normal is parallel with respect to the normal connection and that the curvature tensor of the normal connection is zero. If either M^{n} is compact or has constant scalar curvature, then

$$
\psi\left(M^{n}\right)=M^{n_{1}} \times \cdots \times M^{n_{l}}
$$

where each $M^{n_{t}}$ is an n_{\imath}-dimensional sphere of some radius contained in some Euclidean space $N^{n_{i}+1}$ of dimension $n_{i}+1, N^{n_{i}+1} \perp N^{n_{j}+1}$ for $i \neq j$; except possibly one of the $M^{n_{t}}$ is a Euclidean space $=N^{n_{t}}$ (this can only occur if $\tilde{M}^{n+p}=\boldsymbol{R}^{n+p}$). Furthermore, the immersion is an imbedding except possibly when some $M^{n_{t}}=S^{1}\left(\frac{1}{r^{2}}\right)$, a circle of radius r in some Euclidean plane. The corresponding local result is true with the assumption of constant scalar curvature.

We also have:

Theorem 1'. The assumption on the normal connection in Theorem 1 is not necessary in the following cases:
(a) $p=2$ and $\eta \neq 0$,
(b) M^{n} has constant sectional curvature $\tilde{c}, p=2, \eta=0$, and $\tilde{M}^{n+2}(\tilde{c})=S^{n+2}(\tilde{c})$.

Proof. The proof will follow from Lemmas 7 and 8 below.
Lemma 7. Let $\psi: M^{n} \rightarrow \tilde{M}^{n+2}(\tilde{c})$. If $D \eta=0$ and $\eta \neq 0$, then the normal connection is trivial.

Proof. Let ξ_{1} and ξ_{2} be orthonormal normal vector fields defined in a neighborhood U of x such that $\xi_{1}=\frac{\eta}{\|\eta\|}$. Now $D \eta=0$ implies $D \xi_{1}=0$ and hence $s_{12}=0$ in U. This implies the normal connection is trivial, as remarked in Section 1.

Note that if M^{n} is compact and $\tilde{M}^{n+p}=\boldsymbol{R}^{n+p}$, then $\eta \neq 0$.
Lemma 8. Let M^{n} have constant sectional curvature \tilde{c} and isometrically immersed as a minimal submanifold of $\tilde{M}^{n+2}(\tilde{\boldsymbol{c}})$, then the immersion is totally geodesic.

Proof. The relative nullity is $\geq n-2$ (see [1]). Thus, if

$$
A_{1}=\left(\begin{array}{ccccc}
\lambda & & & & \\
& -\lambda & & & \\
& & 0 & & \\
& & & \cdot & \\
& & & \cdot & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{cc|c}
a & b & \\
b & -a & 0 \\
\hline & & \\
\hline
\end{array}\right.
$$

when represented with respect to the eigenvectors E_{1}, \cdots, E_{n} of A_{1} we have

$$
K\left(E_{1} \wedge E_{2}\right)=\tilde{c}-\lambda^{2}-a^{2}-b^{2}=\tilde{c} .
$$

Thus $\lambda=a=b=0$ and the immersion is totally geodesic.
Our results clearly imply the following Corollary to Theorem 1.
Corollary. Let $\psi: M^{n} \rightarrow \tilde{M}^{n+p}(\tilde{c})$ be as in Theorem 1. Further assume that the sectional curvatures of M^{n} are strictly greater than zero. Then M^{n} has constant sectional curvature and is isometric to a sphere, and $\psi\left(M^{n}\right)$ is the usual sphere in some \boldsymbol{R}^{n+1}.

3. Isometric immersions of space forms into space forms.

Let $\psi: M^{n}(c) \rightarrow \tilde{M}^{n+p}(\tilde{c})$ be an isometric immersion of a Riemannian manifold $M^{n}(c)$ of constant sectional curvature c into a Riemannian manifold $\tilde{M}^{n+p}(\tilde{c})$ of constant sectional curvature \tilde{c}.

Theorem 2. Let $p=2, n \geq 3$.
(a) If $c \neq \tilde{c}$, then the curvature tensor of the normal connection is zero.
(b) If $c=\tilde{c}$, then for each $x \in M^{n}$ the curvature tensor of the normal connection is zero at x or the relatively nullity (see [1]) at x is $n-2$.

Theorem 3. If $p=3, n \geq 4, D \eta=0, \eta \neq 0$, then we have (a) and (b) of Theorem 2.

To prove Theorems 2 and 3 we will show that the second fundamental forms A_{α} commute. The proof is quite algebraic.

Lemma 9. Let B be a symmetric linear transformation defined on an inner product space V of dimension n. Let E_{1}, \cdots, E_{n} be an orthonormal basis of V and [$\left.B_{i j}\right]$ the matrix representing V with respect to this basis. If $B E_{i} \wedge B E_{j}=\sigma_{i j} E_{i} \wedge E_{j}$ then

$$
\begin{equation*}
B_{k i} B_{l j}-B_{l i} B_{k j}=0 \text { for }(k, l) \neq(i, j), \quad k<l, \quad i<j \tag{28}
\end{equation*}
$$

Proof.

$$
\begin{gathered}
\sigma_{i j} E_{i} \wedge E_{\jmath}=B E_{i} \wedge B E_{j}=\sum_{k, l} B_{k i} B_{l j} E_{k} \wedge E_{l} \\
=\sum_{k<l}\left(B_{k i} B_{l j}-B_{l i} B_{k j}\right) E_{k} \wedge E_{l} .
\end{gathered}
$$

But $\left\{E_{k} \wedge E_{l}: k<l\right\}$ are linearly independent in the space of skew symmetric endomorphisms of V, from which the lemma follows.

Lemma 10. Let B be as in Lemma 9. Then for even n,
Det $B=(-1)^{\sigma} \prod_{k=1}^{\frac{n}{2}}\left(B_{\sigma(2 k-1) \sigma(2 k-1)} B_{\sigma(2 k) \sigma(2 k)}-B^{2}{ }_{\sigma(2 k-1) \sigma(2 k)}\right)$
where σ is any permutation of $1, \cdots, n$, and $(-1)^{\sigma}$ denotes the sign of σ.
For odd n,

$$
\begin{equation*}
\text { Det } B=(-1)^{\sigma}\left[\prod_{k=1}^{\frac{n-1}{2}}\left(B_{\sigma(2 k-1) \sigma(2 k-1)} B_{\sigma(2 k)} B_{\sigma(2 k)}-B_{\left.\sigma(2 k-1)^{\prime}(2 k)\right)}^{2}\right] B_{\sigma(n) \sigma(n)}\right. \tag{29b}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
& B E_{o(1)} \wedge B E_{o(2)} \wedge \cdots \wedge B E_{o(n)} \\
= & (-1)^{\sigma}(\operatorname{Det} B) E_{i} \wedge E_{2} \wedge \cdots \wedge E_{n} .
\end{aligned}
$$

But by Lemma 9

$$
B E_{i} \wedge B E_{j}=\left(B_{i i} B_{j j}-B_{i j}^{2}\right)\left(E_{i} \wedge E_{j}\right) .
$$

Lemma 11. Let $n \geq 3$. Let B be as in Lemmas 9 and 10. If B^{2} is diagonal when expressed with respect to E_{1}, \cdots, E_{n} and the rank of B is n, then B is diagonal when expressed with respect to E_{1}, \cdots, E_{n}.

Proof. Let μ_{1}, \cdots, μ_{n} be the eigenvalues of B and $\left(B^{2}\right)_{i j}=\mu_{i}^{2} \delta_{i j}$ where $\delta_{i j}=0$ for $i \neq j$, and $\delta_{i i}=1$. Suppose n is even. Then, since Det $B=\prod_{i=1}^{n} \mu_{i}$ and by Lemma 10,

$$
\begin{equation*}
0 \neq \prod_{i=1}^{n} \mu_{i}^{2}=\prod_{k=1}^{\frac{n}{2}}\left(B_{o(2 k-1) \sigma(2 k-1)} B_{\sigma(2 k) \sigma(2 k)}-B_{\sigma(2 k-1) o(2 k))^{2}}^{2}\right. \tag{30}
\end{equation*}
$$

And

$$
\begin{equation*}
\sum_{k} B_{i k}^{2}=\mu_{i}^{2} \tag{31}
\end{equation*}
$$

$$
\begin{align*}
& \prod_{1}^{n} \mu_{i}^{2}=\prod_{j=1}^{n}\left(\sum_{k} B_{j k}^{2}\right) \tag{32}\\
& \mu_{r}^{2} \mu_{s}^{2}=\left(\sum_{k} B_{r k}^{2}\right)\left(\sum_{l} B_{s l}^{2}\right) \geq\left(B_{r r}^{2}+B_{r s}^{2}\right)\left(B_{s s}^{2}+B_{r s}^{2}\right) \tag{33}\\
&= B_{r r}^{2} B_{s s}^{2}+\left(B_{r r}^{2}+B_{s s}^{2}\right) B_{r s}^{2}+B_{r s}^{4} \\
& \geq B_{r r}^{2} B_{s s}^{2}-2 B_{r r} B_{s s} B_{r s}^{2}+B_{r s}^{4}=\left(B_{r r} B_{s s}-B_{r s}^{2}\right)^{2} \text { for } r \neq s
\end{align*}
$$

Comparing (30) and (32) we see that all the inequalities in (33) are equalities and hence

$$
\begin{gather*}
\mu_{r}^{2} \mu_{s}^{2}=B_{r r} B_{s s}-B_{r s}^{2} \text { for } r \neq s \tag{34}\\
B_{r k} B_{s l}=0 \text { for } k \neq r \text { or } s, l \neq r \text { or } s . \tag{35}
\end{gather*}
$$

Thus if $n \geq 3$ we conclude that $B_{i j}=0$ for $i \neq j$. For odd n a similar argument holds.

Proof of Theorem 2, Choose orthonormal normal vectors ξ_{1} and ξ_{2} at $x \in M^{n}$ such that $\operatorname{tr} A_{2}=0$ (If $\eta=0$, any ξ_{1} and ξ_{2} will do; if $\eta \neq 0$, let
$\left.\xi_{1}=\frac{\eta}{\|\eta\|}\right)$. Let $A_{1}=A$ and $A_{2}=B$. Diagonalize A with respect to its eigenvectors E_{1}, \cdots, E_{n} with eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$ respectively and express B with respect to E_{1}, \cdots, E_{n}. Then the Gauss equation and the Ricci tensor imply that

$$
B E_{i} \wedge B E_{j}=\left(B_{i i} B_{j j}-B_{i j}^{2}\right) E_{i} \wedge E_{j}
$$

for $i<j$ and B^{2} is diagonal. If rank $B=n$ then we may conclude that B is diagonal and hence $A B=B A$. If rank $B<n$, then one of its eigenvalues is zero, say $\mu_{1}=0$. But $\mu_{1}^{2}=\sum_{k} B_{1 k}^{2}$. Thus $B_{1 k}=0$ for all k. Since

$$
K\left(E_{1} \wedge E_{j}\right)=\tilde{c}+\lambda_{1} \lambda_{j}=c
$$

we get $\lambda_{1} \lambda_{j}=c-\tilde{c}$ for $j>1$. If $c \neq \tilde{c}$ then $\lambda_{j}=\frac{c-\tilde{c}}{\lambda_{1}}$ for $j \geq 2$. Hence $A B=B A$, proving (a). If $c=\tilde{c}$ we can obtain (b) by noting that the relative nullity $\geq n-2$, and therefore both A and B have rank ≤ 2. Recall that $\mu_{i}^{2}=\sum_{k} B_{i k}^{2}$. Thus if rank $B=1$, then B is diagonal. If rank $A=1$ and rank $B=2$, say $\mu_{1}=\mu=-\mu_{2} \neq 0$, then

$$
\tilde{c}=K\left(E_{1} \wedge E_{2}\right)=\tilde{c}-\mu^{2} .
$$

Thus $\mu=0$, contradicting rank $B=2$. If rank $A=\operatorname{rank} B=2$ we may suppose $\mu_{1}=\mu=-\mu_{2} \neq 0$. Then

$$
K\left(E_{1} \wedge E_{2}\right)=\tilde{c}+\lambda_{1} \lambda_{2}-\mu^{2}=\tilde{c}
$$

\dot{W} e conclude that $\lambda_{1} \neq 0, \lambda_{2} \neq 0$. Thus A and B have the same null space. We may also prove (b) without appealing to the above fact on the relative nullity by a somewhat longer algebraic argument.

Proof of Theorem 3. Choose orthonormal normal vector fields $\hat{\xi}_{1}, \xi_{2}$, and ξ_{3} defined in a neighborhood U of x such that $\xi_{1}=\frac{\eta}{\|\eta\|}$. Since $D \eta=0$ implies that $D \xi_{1}=0$ we have $s_{1 \alpha}=s_{\alpha 1}=0$ in U. The Ricci equation then implies that A_{1} and A_{α} commute. Let $A_{1}=A, A_{2}=B$, and $A_{3}=C$. If we simultaneously diagonalize A and B, then the Gauss equation implies that

$$
C E_{i} \wedge C E_{j}=\left(C_{i i} C_{j j}-C_{i j}^{2}\right) E_{i} \wedge E_{j} \text { for } i<j
$$

where E_{1}, \cdots, E_{n} are the common eigenvectors of A and B corresponding to eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$ and μ_{1}, \cdots, μ_{n}, respectively. Let $\sigma_{1}, \cdots, \sigma_{n}$ be the eigenvalues of C; thus $\sigma_{1}^{2}, \cdots, \sigma_{n}^{2}$ are the eigenvalues of C^{2} with the
eigenvectors E_{1}, \cdots, E_{n} above by the equation for the Ricci tensor. If one of B or C has rank ≥ 3 we may suppose it is C and apply Lemma 11 to $\bar{C}=C$ restricted to the image of C, say the span $\left\{E_{k+1}, \cdots, E_{n}\right\}$. Noting that

$$
C=\left(\begin{array}{c|c}
0 & 0 \\
\hline 0 & \bar{C}
\end{array}\right)
$$

when represented with respect to E_{1}, \cdots, E_{n} we obtain the desired result. If one of B or C has rank ≤ 1, then we may suppose it is C. Then C^{2} diagonal implies C is diagonal. Thus we are left to consider the case when both B and C have rank 2. Suppose B and C have rank 2. Let σ_{1}, σ_{2} be the non-zero eigenvalues of C. Let

$$
C=\left(\begin{array}{rr|c}
a & b & \\
b & -a & 0 \\
\hline 0 & 0
\end{array}\right) \quad(\text { recall } \operatorname{tr} C=0)
$$

Since $A C=C A$ we have $\lambda_{1} b=\lambda_{2} b$. If $b=0$ we are done. If $b \neq 0$ then $\lambda_{1}=\lambda_{2}$. Let $\lambda_{1}=\lambda_{2}=\lambda$. Then $K\left(E_{1} \wedge E_{j}\right)=K\left(E_{2} \wedge E_{j}\right)$ for $j \geq 3$ implies that $\mu_{1} \mu_{j}=\mu_{2} \mu_{j}$. Since rank $B=2$, we see that $\mu_{1}=0$ if and only if $\mu_{2}=0$. If $\mu_{1}=\mu_{2}=0$ then $B C=C B$. Thus we are reduced to considering the case that B and C have rank 2, the same null space, and $\lambda_{1}=\lambda_{2}=\lambda$. For $c \neq \tilde{c}$ we .will show that this does not occur. From

$$
K\left(E_{1} \wedge E_{j}\right)-\tilde{c}=\lambda \lambda_{j}=c-\tilde{c}
$$

we get $\lambda_{j}=\frac{c-\tilde{c}}{\lambda}$ for $j \geq 3$. Also

$$
K\left(E_{j} \wedge E_{k}\right)-\tilde{c}=\lambda_{j} \lambda_{k}=c-\tilde{c}=\frac{(c-\tilde{c})^{2}}{\lambda^{2}}
$$

for $j>k \geq 3$. Here we use $n \geq 4$. Thus $\lambda^{2}=c-\tilde{c}$. But

$$
K\left(E_{1} \wedge E_{2}\right)-\tilde{c}=\lambda^{2}-\mu^{2}-\sigma^{2}=c-\tilde{c}
$$

where $\mu_{1}=\mu=-\mu_{2}$ and $\sigma_{1}=\sigma=-\sigma_{2}$. Thus $\mu=\sigma=0$ contradicting rank $B=\operatorname{rank} C=2$. If $c=\tilde{c}$ then $\lambda \lambda_{j}=0$ for $j>2$. Hence $\lambda_{j}=0$ for $j>2$. Also $\lambda^{2}-\mu^{2}-\sigma^{2}=0$. If $\lambda=0$ then $\mu=\sigma=0$. Hence $B C=C B$ or the relative nullity is $n-2$.

Theorems 1 and 2 imply:

Theorem 4. For $n \geq 3$ the real projective space $P^{n}\left(\frac{1}{r^{2}}\right)$ of curvature $\frac{1}{r^{2}}$, $r \neq 1$, cannot be isometrically immersed as a minimal submanifold of $S^{n+2}(1)$.

Lemma 8 implies Theorem 4 is also true for $n=2, r=1$. Theorems 1 and 3 also imply:

Proposition 1. Let $n \geq 4$. Let $M^{n}(c)$ be compact and have constant sectional curvature $c>0$ and isometrically immersed in \boldsymbol{R}^{n+3} by ψ such that $D \eta=0$. Then $M^{n}(c)=S^{n}(c), \psi$ is an imbedding and $\psi\left(M^{n}\right)$ is the usual n-dimensional sphere in some \boldsymbol{R}^{n+1}.

Proposition 2. Let $n \geq 4$. Let $M^{n}(c)$ be compact and have constant sectional curvature $c \geq 0$ and isometrically immersed in $S^{n+3}(\tilde{c}), \tilde{c} \neq c$, such that $D \eta=0, \eta \neq 0$. If $c>0$, then ψ is an imbedding and $\psi\left(M^{n}\right)=S^{n+3} \cap \boldsymbol{R}^{n+1}$ for some Euclidean space \boldsymbol{R}^{n+1}. If $c=0$, then $\psi\left(M^{n}\right)$ is a product of circles, said circles lying in perpendicular Euclidean planes.

In the next section we characterize the isometric immersions of $M^{n}(1)$ into \boldsymbol{R}^{n+2}.
4. Codimension two isometric immersions of spheres into Euclidean space.

Consider the following example. Let ϕ be an isometric immersion of \boldsymbol{R}^{n+1} into \boldsymbol{R}^{n+2} and let ψ be the restriction of ϕ to $S^{n}(1)$. Then ψ is an isometric immersion of S^{n} into \boldsymbol{R}^{n+2}. Let M^{n+1} be the image of \boldsymbol{R}^{n+1} under $\phi ; M^{n+1}$ is locally smooth and flat. Let ξ be the inward pointing normal on $S^{n} \subset \boldsymbol{R}^{n+1}$ and let $\xi_{1}=\phi_{*} \xi$. Let ξ_{2} be normal to M^{n+1}. Let A_{1} and A_{2} be the second fundamental forms associated with ξ_{1} and ξ_{2} and $s_{\alpha \beta}$ the normal connection forms; let $s_{12}=s$. Then an easy calculation shows that $A_{1}=I$ and A_{2} has at most one non-zero eigenvalue μ. If E_{1}, \cdots, E_{n} are orthonormal eigenvectors of A_{2} with $A_{2} E_{1}=\mu E_{1}$, then $s\left(E_{i}\right)=0$ for $i \geq 2$.

In the rest of this section let $n \geq 4$ and let $\psi: M^{n}(1) \rightarrow \boldsymbol{R}^{n+2}$ be an isometric immersion of an n-dimensional Riemannian manifold $M^{n}(1)$ of constant sectional curvature 1 into ($n+2$)-dimensional Euclidean space. From Theorem 2 we conclude that the normal connection is trivial.

Lemma 12.
(a) For each $x \in M^{n}$ there exist orthonormal normal vectors ξ_{1} and ξ_{2} at x such that $A_{1}=I$ and A_{2} has at most one non-zero eigenvalue μ. If E_{1}, \cdots, E_{n} are
the common orthonormal eigenvectors of A_{1} and A_{2} with $A_{2} E_{1}=\mu E_{1}$, then

$$
A_{1}=I \quad \text { and } \quad A_{2}=\left(\begin{array}{llll}
\mu & & & \\
& 0 & & \\
& & \ddots & \\
& & \cdot & \\
& & & 0
\end{array}\right)
$$

when represented with respect to $E_{1}, \cdots, E_{n} . \quad \mu$ is clearly uniquely determined up to sign.
(b) If $\mu(x) \neq 0$ or $\mu=0$ in a neighborhood of x, then ξ_{1} and ξ_{2} may be chosen continuously in a neighborhood of x such that A_{1} and A_{2} are as in (a). Furthermore, since the eigenvalues of A_{2} are continuous and have constant multiplicities we may find continuous orthonormal eigenvector fields in this case.

Proof. Let ξ_{1} and ξ_{2} be any differentiable orthonormal normal vector fields defined in a neighborhood U of x. Let A_{1} and A_{2} be the associated second fundamental forms. Then the eigenvalues of A_{1} and A_{2} are continuous. Let $\lambda_{1}, \cdots, \lambda_{n}$ and μ_{1}, \cdots, μ_{n} be the eigenvalues of A_{1} and A_{2} respectively with corresponding eigenvectors E_{1}, \cdots, E_{n}. We do not know yet that E_{1}, \cdots, E_{n} can be chosen continuously; as remarked, when the eigenvalues of A_{2} have constant multiplicity, this will follow. Since

$$
1=K\left(E_{i} \wedge E_{j}\right)=\lambda_{i} \lambda_{j}+\mu_{i} \mu_{j} \quad \text { for } \quad i \neq j
$$

we may assume $\lambda_{1} \neq 0$. Letting

$$
\xi_{1}^{\prime}=\left(\lambda_{1} \xi_{1}+\mu_{1} \xi_{2}\right) /\left(\lambda_{1}^{2}+\mu_{1}^{2}\right)^{\frac{1}{2}}
$$

and

$$
\xi_{2}^{\prime}=\left(\mu_{1} \xi_{1}-\lambda_{1} \xi_{2}\right) /\left(\lambda_{1}^{2}+\mu_{1}^{2}\right)^{\frac{1}{2}}
$$

we see that we may assume that we have continuous ξ_{1} and ξ_{2} with $\mu_{1}=0$ in U. Since

$$
1=K\left(E_{1} \wedge E_{j}\right)=\lambda_{1} \lambda_{j}+\mu_{1} \mu_{j}=\lambda_{1} \lambda_{j}
$$

for $j \geq 2$, we have $\lambda_{j}=\frac{1}{\lambda_{1}}$ for $j \geq 2$. Let $\lambda=\lambda_{1}$. We now distinguish three possibilities:
(i) all $\mu_{i}(x) \neq 0$ for $i \geq 2$ (and therefore by continuity of the μ_{i}, this is so in a neighborhood of x),
(ii) at least one $\mu_{i}(x)=0$ for $i \geq 2$ but not all $\mu_{i}(x)=0$ for $i \geq 2$, and
(iii) all $\mu_{i}(x)=0$.

Case (i): We have

$$
1=\frac{1}{\lambda^{2}}+\mu_{i} \mu_{j}=\frac{1}{\lambda^{2}}+\mu_{i} \mu_{k}
$$

for $k \geq j>i \geq 2$. Thus all μ_{i} are equal for $i \geq 2$. Let σ be their common value. Let $\xi_{1}^{\prime}=\frac{1}{\lambda} \xi_{1}+\sigma \xi_{2}$ and $\xi_{2}^{\prime}=\sigma \xi_{1}-\frac{1}{\lambda} \xi_{2}$. Then ξ_{1}^{\prime} and ξ_{2}^{\prime} have the properties in (a) and (b) with $\mu=\sigma \lambda \neq 0$.

Case (ii): We may suppose $\mu_{2}(x) \neq 0$, and therefore, by continuity of $\mu_{2}, \mu_{2} \neq 0$ in a neighborhood of x; and we may suppose $\mu_{3}(x)=0$. Then

$$
1=K\left(E_{j} \wedge E_{3}\right)=\frac{1}{\lambda^{2}}+\mu_{j} \mu_{3}=\frac{1}{\lambda^{2}}
$$

at x for $j>3$. Hence $\lambda(x)= \pm 1$; we may suppose $\lambda(x)=1$. Since

$$
1=\lambda_{i} \lambda_{j}+\mu_{i} \mu_{j}=1+\mu_{i} \mu_{j}
$$

at x for $i \neq j$, at most one μ_{i} is non-zero at x. We now claim that $\lambda=1$ and $\mu_{i}=0$ for $i \neq 2$ in neighborhood of x. By continuity of the eigenvalues there exists an $\varepsilon>0$ and a neighborhood V of x such that $\left|\mu_{i}(y)\right|<\varepsilon$ for $i \geq 3$ and $\left|\mu_{2}(y)\right|>\varepsilon$ for all $y \in V$. But the argument in case (i) and the above applied to such y imply that either all $\mu_{i}(y)$ are equal for $i \geq 2$ or at most one of them is non-zero. Clearly we must have the latter case and $\mu=\mu_{2} \neq 0$. Reorder the eigenvalues to obtain the desired result.

Case (iii): If all $\mu_{i}(x)=0$ then $\lambda(x)= \pm 1$ and we may suppose $\lambda(x)=+1$. It remains to prove (b) when $\mu=0$ in a neighborhood V of x. If ξ_{1} and ξ_{2} chosen as above with $\mu_{1}=0$ and $\lambda_{1}=\lambda=\frac{1}{\lambda_{i}}$ for $i \geq 2$ in a neighborhood U of $x, U \subset V$, with $\lambda(x)=1$ and $\mu_{i}(x)=0$ for $i \geq 2$, then we claim $\lambda=1$ and $\mu_{i}=0$ in U. For if $\mu_{i}(y) \neq 0$ for some $y \in V$ and some i, then (i) and (ii) applied to y imply $\mu(y) \neq 0$, a contradiction. This completes the proof of Lemma 12.

Lemma 13. If $\mu(x) \neq 0$ or $\mu=0$ in a neighborhood of x, then we may choose ξ_{1} and ξ_{2} differentiably in a neighborhood of x such that A_{1} and A_{2} are as in Lemma 12. Since the eigenvalues of A_{2} have constant multiplicities μ is differentiable and we may find differentiable orthonormal eigenvector fields E_{1}, \cdots, E_{n} of A_{2}.

Proof. Let ξ_{1} and ξ_{2} be continuous orthonormal normal vector fields defined in a neighborhood of x such that

$$
A_{1}=I \quad \text { and } \quad A_{2}=\left(\begin{array}{lll}
\mu & & \\
& 0 & \\
& & \\
& & \ddots \\
& & \\
& & \\
& &
\end{array}\right)
$$

when represented with respect to continuous orthonormal eigenvector fields E_{1}, \cdots, E_{n} of A_{2}. Let $\bar{\xi}_{1}$ and $\bar{\xi}_{2}$ be any differentiable orthonormal normal vector fields defined in a neighborhood of x such that $\bar{\xi}_{1}=a \xi_{1}+b \xi_{2}$ and $\bar{\xi}_{2}=-b \xi_{1}+a \xi_{2}$ with $a(x)=b(x)=\frac{1}{\sqrt{2}}$ and a, b continuous since $a=g\left(\xi_{1}, \bar{\xi}_{1}\right)$ and $b=g\left(\xi_{2}, \bar{\xi}_{1}\right)$. Then

$$
\bar{A}_{1}=\left(\begin{array}{cc}
a+b \mu & \\
a & \\
& \cdot \\
& \\
a
\end{array}\right) \text { and } \quad \bar{A}_{2}=\left(\begin{array}{cc}
-b+a \mu & \\
-b & \\
& \ddots \\
& \\
& \\
& \\
&
\end{array}\right)
$$

when represented with respect to E_{1}, \cdots, E_{n}. Thus by the assumptions on μ the eigenvalues of \bar{A}_{1} and \bar{A}_{2} have constant multiplicities in a neighborhood of x and are therefore differentiable in this neighborhood. Thus a and b are differentiable. But $\xi_{1}=a \bar{\xi}_{1}-b \bar{\xi}_{2}$ and $\xi_{2}=b \bar{\xi}_{1}+a \bar{\xi}_{2}$. Hence ξ_{1} and ξ_{2} are differentiable.

Lemma 14. If $\mu(x) \neq 0$ and ξ_{1} and ξ_{2} chosen differentiably in a neighborhood U of x such that $\mu \neq 0$ in U,

$$
A_{1}=I \quad \text { and } \quad A_{2}=\left(\begin{array}{ccc}
\mu & & \\
0 & & \\
& \ddots & \\
& & 0
\end{array}\right)
$$

when represented with respect to orthonormal differentiable eigenvector fields E_{1}, \cdots, E_{n} of A_{2}, then
(a) The distribution $\mathscr{S}(y)$ defined by $\mathscr{S}(y)=\operatorname{span}\left\{E_{2}(y), \cdots, E_{n}(y)\right\}$ is integrable,
(b) The normal connection 1 -form s satisfies $s\left(E_{i}\right)=0$ for $i \geq 2$.

Proof. Codazzi's equation applied to E_{i} and E_{j} for $i>j \geq 2$ implies that

$$
-A_{2}\left(\nabla_{E_{i}} E_{j}-\nabla_{E_{j}} E_{i}\right)+s\left(E_{i}\right) E_{j}-s\left(E_{j}\right) E_{i}=0
$$

Since $g\left(A_{2} X, E_{k}\right)=0$ for $k>1$ we conclude that $s\left(E_{i}\right)=s\left(E_{j}\right)=0$ for $i>j \geq$ 2. Since $\nabla_{E_{i}} E_{j}-\nabla_{E_{j}} E_{i}=\left[E_{i}, E_{j}\right]$ we conclude that $g\left(E_{1},\left[E_{i}, E_{j}\right]\right)=0$.

Lemma 15. If $\mu=0$ in a neighborhood of x and $\xi_{1}, \xi_{2}, A_{1}, A_{2}, E_{1}, \cdots, E_{n}$ as in Lemma 13, then $s\left(E_{i}\right)=0$ for all i.

Proof. Codazzi's equation implies that $s\left(E_{i}\right) E_{j}-s\left(E_{j}\right) E_{i}=0$ for all i, j.
Note that the set of x such that $\mu(x) \neq 0$ or μ identically zero in a neighborhood of x is a dense open subset of M^{n}.

Proposition 3. If $\mu=0$ in a neighborhood of x, then there exists a neighborhood U of x such that $\psi(U)$ is part of a sphere S^{n} in some \boldsymbol{R}^{n+1}.

Proof. Choose differentiable orthonormal normal vector fields ξ_{1} and ξ_{2} defined in neighborhood U of x such that $A_{1}=I, A_{2}=0$, and $s=0$. From the classical rigidity theorem (see [1], volume 2, page 45 for the rigidity theorem in codimension 1) we conclude the desired result.

Suppose $\mu\left(x_{0}\right) \neq 0$. Choose ξ_{1} and ξ_{2} as in Lemma 13. Let y_{1}, \cdots, y_{n} be local coordinates defined in a neighborhood U of x_{0} with $y_{i}=0$ for all i at x_{0} and such that $\partial / \partial y_{2}, \cdots, \partial / \partial y_{n}$ span the distribution $\mathscr{S}(y)$ for $y \in U$. Let $P(y)$ be the hyperplane in \boldsymbol{R}^{n+2} spanned by $T_{y}\left(M^{n}\right)+\operatorname{span}\left\{\xi_{1}(y)\right\}$ and passing through y. Thus we have an n-parameter family of $(n+1)$-dimensional hyperplanes given by

$$
g\left(\vec{X}, \hat{\xi}_{2}\left(y_{1}, \cdots, y_{n}\right)\right)+p\left(y_{1}, \cdots, y_{n}\right)=0
$$

where \vec{X} is the position vector, and, putting $\vec{x}=\overrightarrow{O y}, p\left(y_{1}, \cdots, y_{n}\right)$ is given by

$$
\begin{equation*}
g\left(\vec{x}\left(y_{1}, \cdots, y_{n}\right), \xi_{2}\left(y_{1}, \cdots, y_{n}\right)\right)+p\left(y_{1}, \cdots, y_{n}\right)=0 \tag{36}
\end{equation*}
$$

Since $\tilde{V}_{E_{k}} \xi_{2}=0$ (\tilde{V} is covariant differentiation in \boldsymbol{R}^{n+2}) for $k \geq 2, \xi_{2}$ depends only on y_{1}. Differentiating (36) we have

$$
\begin{equation*}
g\left(\frac{\partial \vec{x}}{\partial y_{k}}, \quad \xi_{2}\right)+g\left(\vec{x}, \frac{\partial \xi_{2}}{\partial y_{k}}\right)+\frac{\partial p}{\partial y_{k}}=0 . \tag{37}
\end{equation*}
$$

The flrst term on the left hand side of (37) is zero since $\frac{\partial \vec{x}}{\partial y_{k}}$ is tangent to M^{n}. For $k \geq 2$ the second term is zero. Thus $\frac{\partial p}{\partial y_{k}}=0$ for $k \geq 2$ and we really have a one-parameter family of hyperplanes. For $k=1$ (37) is

$$
\begin{equation*}
g\left(\vec{x}, \frac{\partial \xi_{2}}{\partial y_{1}}\right)+\frac{\partial p}{\partial y_{1}}=0 . \tag{38}
\end{equation*}
$$

Since $\mu(x) \neq 0$ we also have near x :

$$
\begin{equation*}
g\left(\tilde{\boldsymbol{V}}_{E_{1}} \xi_{2}, E_{1}\right) \neq 0 \tag{39}
\end{equation*}
$$

Since $g\left(E_{1}, \partial / \partial y_{1}\right) \neq 0$ and by (39) we have near x :

We claim that the envelope (see below) of this one parameter family of hyperplanes is a smooth flat manifold near x.

Lemma 16. Let $\gamma(y)$ be a smooth curve in \boldsymbol{R}^{n+2} and $P(y)$ a one-parameter family of hyperplanes with normals $\xi(y)$ such that $P(y)$ passes through $\gamma(y)$ and contains the tangent vector $\partial / \partial y$ to γ at $\gamma(y)$. Suppose $g\left(\frac{\partial \xi}{\partial y}, \frac{\partial r}{\partial y}\right) \neq 0$ at $y=0$: Then the envelope of $P(y)$ (see below) is a smooth flat $(n+1)$-dimensional Riemannian manifold near $r(0)$.

Proof. We may choose Euclidean coordinates x_{1}, \cdots, x_{n+2} such that $x_{i}=0$ for all i at $\gamma(0), \partial / \partial x_{1}=\xi(0)$, and $\partial / \partial x_{2}$ is in the direction of $\frac{\partial \xi}{\partial y}(0)$. The family of hyperplanes $P(y)$ is given by

$$
\begin{equation*}
g(\vec{X}, \xi(y))+p(y)=0 \tag{41}
\end{equation*}
$$

where \vec{X} is the position vector, and, putting $\vec{x}=\overrightarrow{O y}, p(y)$ is given by

$$
\begin{equation*}
g(\vec{x}(y), \xi(y))+p(y)=0 . \tag{42}
\end{equation*}
$$

Differentiating (42) with respect to y we obtain

$$
\begin{equation*}
g\left(\vec{x}, \frac{\partial \xi}{\partial y}\right)+\frac{\partial p}{\partial y}=0 \tag{43}
\end{equation*}
$$

since $\frac{\partial \vec{x}}{\partial y}$ is tangent to r. Since $\vec{x}=0$ at $\gamma(0)$ we have

$$
p(0)=\frac{\partial p}{\partial y}(0)=0
$$

We also consider the $(n+1)$-dimensional planes defined by

$$
\begin{equation*}
g\left(\vec{X}, \frac{\partial \xi}{\partial y}(y)\right)+\frac{\partial p}{\partial y}(y)=0 . \tag{44}
\end{equation*}
$$

The characteristics of the family of hyperplanes P is defined to be the family of n-dimensional planes defined by (41) and (44). We define the envelope to be the set of characteristic planes.

If one writes out (41) and (44) in terms of the coordinates x_{1}, \cdots, x_{n+2}, and y, the assumptions that $\xi(0)=\partial / \partial x_{1}$ and that $\frac{\partial \xi}{\partial y}(0)$ is in the direction of $\partial / \partial x_{2}$ imply that we may solve for x_{1} and x_{2} as functions of x_{3}, \cdots, x_{n+2}, and y :

$$
\begin{aligned}
& x_{1}=F\left(x_{3}, \cdots, x_{n+2}, y\right) \\
& x_{2}=G\left(x_{3}, \cdots, x_{n+2}, y\right)
\end{aligned}
$$

If we calculate $\frac{\partial G}{\partial y}(0, \cdots, 0,0)$ we find that

$$
\begin{equation*}
\frac{\partial G}{\partial y}(0, \cdots, 0,0)=\frac{-\partial^{2} p}{\partial y^{2}}(0) / g\left(\frac{\partial \xi}{\partial y}(0), \frac{\partial}{\partial x_{2}}\right) \tag{45}
\end{equation*}
$$

Differentiating (43) we obtain

$$
g\left(\frac{\partial \vec{x}}{\partial y}, \frac{\partial \xi}{\partial y}\right)+g\left(\vec{x}, \frac{\partial^{2} \xi}{\partial y^{2}}\right)+\frac{\hat{\sigma}^{2} p}{\partial y^{2}}=0
$$

which evaluated at $y=0$ is

$$
\begin{equation*}
g\left(\frac{\partial \vec{x}}{\partial y}, \frac{\partial \xi}{\partial y}\right)+\frac{\partial^{2} p}{\partial y^{2}}=0 . \tag{46}
\end{equation*}
$$

Since the first term on the LHS of (46) is not zero, $\frac{\partial^{2} p}{\partial y^{2}}(0) \neq 0$. Thus we may solve for y as a differentiable function of x_{2}, \cdots, x_{n+2} near $y=0$. Hence we obtain x_{1} as a differentiable function of x_{2}, \cdots, x_{n+2} on the envelope near $y=0$. Thus near $y=0$ the envelope is a smooth manifold with $P(y)$ as its tangent plane. It is clear that it is also flat.

Let us return to the immersion $\psi: M^{n}(1) \rightarrow \boldsymbol{R}^{n+2}$. Let $\gamma\left(y_{1}\right)$ be an integral curve of $\partial / \partial y_{1}$ through ($0, \cdots, 0$). Using this for γ in the previous lemma we see that we have proved our claim. Call this envelope \bar{M}^{n+1}. It is clear that for $y \in M^{n}, y$ near $x, y \in \bar{M}^{n+1}$.

Thus we have proved:
Theorem 5. Let $n \geq 4$. Let $\psi: M^{n}(1) \rightarrow \boldsymbol{R}^{n+2}$ be an isometric immersion of an n-dimensional Riemannian manifold M^{n} of constant sectional curvature 1 into
$(n+2)$-dimensional Euclidean space. Then there exists a dense open set $V \subset M^{n}$ such that each point $x \in V$ has a neighborhood U and an isometric imbedding g of U into $S^{n}(1) \subset \boldsymbol{R}^{n+1}$ and an isometric immersion f of an open set W of \boldsymbol{R}^{n+1} into \boldsymbol{R}^{n+2} such that $\psi_{\mid U}=f \circ g$.
5. Remarks. Compact hypersurfaces of \boldsymbol{R}^{n+1} of constant mean curvature $\neq 0$ satisfy a variational principle. Namely, a compact hypersurface M^{n} of \boldsymbol{R}^{n+1} has constant mean curvature $\neq 0$ if and only if its n-dimensional area \mathscr{A} is stationary with respect to ($n+1$)-dimensional volume preserving variations; where the above $(n+1)$-dimensional volume is the volume in \boldsymbol{R}^{n+1} enclosed by M^{n}. More precisely: Let $\left\{\psi_{t}\right\}$ be a 1-parameter family of immersions of a compact M^{n} into \boldsymbol{R}^{n+1}, defined for $t \in(-\varepsilon, \varepsilon)$, with ψ_{0} $=\psi$ and such that the map $\Psi: M^{n} \times(-\varepsilon, \varepsilon) \rightarrow \boldsymbol{R}^{n+1}$ defined by $\Psi(m, t)=$ $\psi_{t}(m)$ is C^{∞}. Then Ψ is called a variation of ψ. Let $\mathscr{A}(t)$ be n-dimensional area of $\psi_{t}\left(M^{n}\right)$ and $V(t)(n+1)$-dimensional volume enclosed by $\psi_{t}\left(M^{n}\right)$. We are assuming that $\psi_{\iota}\left(M^{n}\right)$ is a simple closed hypersurface of \boldsymbol{R}^{n+1}; i.e., $\psi_{t}\left(M^{n}\right)$ is a manifold-no self intersections. An ($n+1$)-dimensional volume preserving variation is one for which $V(t)=V(0)$ for all t. Now, $\psi: M^{n} \rightarrow$ \boldsymbol{R}^{n+1} has constant mean curvature if and only if $\frac{d A}{d t}(0)=0$ for all $(n+1)$ dimensional volume preserving variations.

A fundamental question seems to be: Do n-dimensional submanifolds of \boldsymbol{R}^{n+p} of constant mean curvature $\neq 0$ satisfy a variational principle?

If M^{1} is a compact connected 1-dimensional submanifold of R^{p+1} such that $D \eta=0$, then it is quite easy to show that M^{1} is a circle that lies in some 2-dimensional Euclidean plane. Bryan Smyth has communicated to me that he has shown that if M^{2} is a compact 2 -dimensional submanifold of \boldsymbol{R}^{4} such that $D \eta=0$ and M^{2} is topologically a sphere, then M^{2} is isometric to S^{2} and lies in some 3-dimensional Euclidean space. The above result of Bryan Smyth and our results Theorem 1^{\prime} and Proposition 1 suggest the following question: How necessary are our assumptions on the triviality of the normal connection and the sectional curvatures in Theorem 1? Can we replace one or both of them by some topological condition or some other condition?

Bryan Smyth has also pointed out to me that by considering the Laplacian of $\operatorname{tr} A_{\eta}^{2}$ one can show that a connected compact submanifold M^{n} of \boldsymbol{R}^{n+p} of positive curvature and constant mean curvature is a minimal submanifold of some sphere S^{n+p-1}.

Cartan (Oeuvres Completes, partie III, vol. 1, p. 417) has shown that if an n-dimensional space form $M^{n}(c)$ is isometrically immersed in an $(n+p)$ dimensional space form $\tilde{M}^{n+p}(\tilde{c}), c<\tilde{c}$, then $p \geq n-1$; and if $p=n-1$, then the normal curvature tensor is zero. John Moore has used this result in his Berkeley Thesis to show that in the case $p=n-1$, if in addition $D \eta=0$, then M^{n} is flat, i.e. $c=0$.

Do Theorems 2 and 3 have analogues for higher codimension? Do the algebraic lemmas used in the proof of Theorems 2 and 3 extend? Finally, is Theorem 5 true for $n=3$?

Bibliography

[1] Kobayashi and Nomizu, Foundations of Differential Geometry, Vol. I-II, John Wiley and Sons Inc., 1963, 1969.
[2] Nomizu and Smyth, A formula of Simon's type and hypersurfaces with constant mean curvature, J. Differential Geometry 3 (1969), 367-377.
[3] Simons, Minimal Varieties in Riemannian Manifolds, Ann. of Math. 88 (1968), 62-105.

Brown University

University of Southern California

[^0]: Received March 5, 1971, Revised June 17, 1971.

 * This paper is part of the author's doctoral dissertation written under the direction of Professor K. Nomizu at Brown University. The research was partially supported by the National Science Foundation.

