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ISOMETRIC IMMERSIONS OF CONSTANT MEAN

CURVATURE AND TRIVIALITY OF THE

NORMAL CONNECTION*

JOSEPH ERBACHER

0. Introduction. In a recent paper [2] Nomizu and Smyth have

determined the hypersurfaces Mn of non-negative sectional curvature iso-

metrically immersed in the Euclidean space Rn+1 or the sphere Sn+ι with

constant mean curvature under the additional assumption that the scalar

curvature of Mn is constant. This additional assumption is automatically

satisfied if Mn is compact. In this paper we extend these results to codi-

mension φ isometric immersions. We determine the n-dimensional sub-

manifolds Mn of non-negative sectional curvature isometrically immersed in

the Euclidean Space Rn+P or the sphere Sn+P with constant mean curvature

under the additional assumptions that Mn has constant scalar curvature and

the curvature tensor of the connection in the normal bundle is zero. By

constant mean curvature we mean that the mean curvature normal is paral-

lel with respect to the connection in the normal bundle. The assumption

that Mn has constant scalar curvature is automatically satisfied if Mn is

compact. The assumption on the normal connection is automatically sa-

tisfied if p = 2 and the mean curvature normal is not zero.

We then investigate isometric immersions of space forms into space forms

and obtain conditions that imply the vanishing of the curvature tensor of

the connection in the normal bundle. We make some applications of these

results and in particular determine the local nature of an isometric im-

mersion of the sphere Sn into the Euclidean space R^2 for

1. Notation and some formulas of Kiemannian geometry.

Let φ : Mn -• Mn+P(c) be an isometric immersion of an n-dimensional

Riemannian manifold Mn into an (n + p)-dimensional Riemannian manifold
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Mn+P(c) of constant sectional curvature c. For all local formulas and com-

putations we may consider φ as an imbedding and thus identify x e Mn

with ψ(x)^Mn+p. The tangent space Tx(Mn) is identified with a subspace

of Tx(Mn+p). The normal space Tx is the subspace of Tx(Mn+p) consisting

of all l ε Tx{Mn+p) which are orthogonal to Tx{Mn) with respect to the

Riemannian metric g. Let V (respectively V) denote the covariant different-

iation in Mn (respectively Mn+P) and let D denote the covariant differentiation

in the normal bundle. We will refer to V as the tangential connection and

to D as the normal connection.

To each £e Tx is associated a linear transformation of Tx(Mn) in the

following way. Extend ζ to a normal vector field defined in a neighbor-

hood of x and define —AξX to be the tangential component of Vxξ for

X^T^M11). ΛζX depends only on ξ at x and X. Given an orthonormal

basis ζu , ξp of TXy we write Λa = Λξa and call the Aa's the second

fundamental forms associated with ξu ,ζp. If ξίt ,ζp are now ortho-

normal normal vector fields in a neighborhood of x, they determine normal

connection forms saβ9 in a neighborhood of x, by

for X tangent to M\

Let R, Rt and RN be the curvature tensors for V, F, and Z>, respectively,

and S the Ricci tensor (of type 1-1) for Mn as defined in [1], If X, F G Tx{Mn)

we let XAY denote the skew symmetric endomorphism:

(X A Y)Z = g(Y, Z)X - g(X, Z)Y.

Let X and Y be tangent to Mn and ξu , | p orthonormal normal

vector fields. We then have the following relationships (in this paper Greek

indices run form 1 to p and Latin indices run from 1 to n, except when

noted):

(1)

(2)

(3) Vx f. = -AaX + Dx$a = -AaX + ψ sap(X)ξp

(4) s.f + sβa = 0

(5) R(X, Y) = c(X Λ Y) + Σ ^4«^ Λ Λ Γ Gauss equation
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(6) (Fx Aa)Y - Σ saβ(X)AβY = (Fr A.)X-φ saβ(Y)AβX

Codazzi's equation

(7) (Fx sap)Y - (Fy saβ)X = 2(dsaβ)(X, Y)

= X saβ{Y) - Y saβ{X) - saβ{[X,Y])

= 9(ίAa,AβJ)X,Y) + Σ {sar(X)srβ(Y) ~ sar(Y)srβ(X)} Ricci equation
r

(8) RN(X, Y)ξa = Σ 9IΛ, Ar-\X, Y)ξβ

= Σ {2(dsaβ)(X,Y) + Σ {sar(Y)su(X) - sar(X)srβ(Y)}}ζβ

(9) S = (n

(ίr Λ = trace Aa = Σl9(ΛaEuEi)t {Et} an orthonormal basis of Tx(Mn); 1 =
i

the identity transformation)

(10) tr S = n{n - l)c + Σ (tr AaY - Σ /r A ,̂

where tr S is the scalar curvature.

The mean curvature normal η is defined by

where the i?i/S (right hand side) is independent of our choice of ortho-

normal basis of Ti. Note that (10) may be written as

(10') tr S = n{n - ΐ)c + gfa η)-J\tr AL
a

Let F* denote the sum of the tangential and the normal connections..

ί7* is the connection in the Whitney sum of the tangent bundle of Mn and

the normal bundle of Mn induced by V and D; see proposition 6.3, pg. 82,.

of Volume / of [1]. Then, letting V*xAa denote (P*xA)ξa, we have

(11) F*xAa = FxAa

and Codazzi's equation may be written as

(60 (FxAa)Y = (F*γAa)X.

We note that (8) implies that RN = 0 at x if and only if AaAβ = AβAa.

at x for all a, β; or, equivalently, the AJs are simultaneously diagonalizable

at x. Also, RN = 0 everywhere if and only if for each x^Mn there exists
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orthonormal normal vector fields ζu ',ζp defined in a neighborhood U of

x such that Dξa = 0 in U, i.e., saβ = 0 in U. If RN = 0 at x e ΛfΛ we will

say that the normal connection is trivial at cc if RN — 0 for all cc e M^ we

will say that the normal connection is trivial.

Note that (10') implies that J]trAZ is independent of our choice of

orthonormal basis of T^.

For X, Y tangent to Mn, K(X f\Y) will denote the sectional curvature

in Mn of the plane spanned by X and Y. \\T\\2 = g{T, T) for any tensor T.

Let Rk denote A -dimensional Euclidean space and Sk(c), c > 0 , will denote

the sphere in Rk+1 of curvature c.

All manifolds, immersions, vector fields, and functions are assumed C00

unless otherwise stated.

2. Isometric immersions of constant mean curvature.

Let φ : Mn -+ Mn+P(c) be as in Section 1. Let / = Σ tr AL

Simons [3] has established a formula for the Laplacian of the second

fundamental form of a submanifold in a Riemannian manifold and has

made some applications to minimal hypersurfaces of spheres by means of

the Laplacian of the function / above. Nomizu and Smyth [2] have ob-

tained the same type of formula for the Laplacian of / for a hypersurface

Mn immersed with constant mean curvature in a space of constant sectional

curvature by a more direct route than Simons', and derived a new formula

for the Laplacian of / involving the sectional curvatures of Mn. In Lemmas

1 and 2 below we extend the formulas of Nomizu and Smyth to codimension

P-

LEMMA 1. If Dη = 0, then

(12) -J- Δf = cnf - c Σ (tr AaY + Σ! tr[Aa9 Aβ7

+ Σ (tr Aa)(tr AaAj) ~ Σ (tr AaAβ)* +

where Δ is the Laplacian.

LEMMA 2. If in addition the normal connection is trivial and we let λia,

l ^ i ^ n , 1 : < a < p , be the eigenvalues of Aa corresponding to eigenvectors Ei

(recall RN = 0 implies the AJs are simultaneously diagonalizable), then
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(13) - I " J / = Σ . Σ (ha - λJa)
2(C + λnλn + + λlpλj,) + ΣI|F*A,I|2

where c + λnλji + +λivλjp = K{EiAEj).

Proof of Lemma 1. Note that for X tangent to Mn

Dxη = Σ (X(*r i4β))fβ + Σ (ίr i4β)Z)^fβ

= Σ (X(ίr Aa))ξa - Σ (Σ sβί(X)ίr i4,)ίβ.

α a. β

Thus

(14) D^ = 0 if and only if X(tr Aa) - Σ saβ(X)tr Λβ = 0

for each α. Remark: Γ x ^ = 0 for all X^Tx{Mn) if and only if η = 0. Let

/ β = ίr i42, then J / = Σ Δfa. If J5 is any tensor of type 1-1 on Mn, then

for F = tr B2 we have

(15) -±-JF

where

{Ez} an orthonormal basis of Tx(Mn) and

F 2£(; K; X) = VX{VYB) - VvxYB.

Let Ka{X,Y) = (F2Λa)(; Y; X). Then

(16) Ka(X, Y) = Ka(Y, X) + IR(X, Y), Λal

For X,Y(ΞTx(Mn) and an orthonormal basis {£,} of ^(Λf71) extend

X, F, £ί to vector fields in a normal neighborhood of x by parallel transla-

tion along geodesies with respect to the connection in Mn. Let ζu ,ξp

be orthonormal normal vector fields defined in a neighborhood of x. Then

(17) FX = FY = FEt = 0 at α>.

Because of (17) we have at x

KJX, X) = FY(FX Λa) - FvγXAa = Γ y {Fx Aa).

Similarly, at x we have
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(18) Ka(Y,X)Y=Fr((FxAa)Y)

= Fr ((Fy Aa)X) + Fr (Σ (saβ(X)AβY - saβ(Y)AβX))

where the last line is obtained by using Codazzi's equation. Similarly, at

x we have

Ka(Y,Y)X = Fy ((Fy Aa)X)

= Ka{X,Y)Y-UUX,Y),Aajr

- Vr (Σ (saβ(X)AβY - saβ(Y)AβX))

where we have used (16) and (18) to get the last line. Thus, at x, we have

(19) Σ Ka(Eu E,)X = Σ Ka(X, Et)Ei + ΣίR(Eu X), Aa}Et

i i i

- Σ F,,(Σ (saf{X)AfEt - s^EMβX))

We compute the second term on the RHS of (19):

Σ R(Eu X)AaEt = Σ cg(AaEu X)Ei - Σ cg(AaEu Et)X
i i i

+ Σίg(AaEuAβX)AβEi- J]g(AaEι,AβEi)AβX

= Σ WE,, AttX)Et - Σ £g(AaEu Et)X
i i

= cAaX-c(tr Aa)X+Σ,AβAaAβX- Σ (tr AβAa)AβX.

Similarly we can compute ^ιAaR(Eι,X)Ei. We find
i

(20) Σ [R(EU X), AaiEt = ncAaX- c(tr Aa)X
i

+ Σ LAp, AaAβ]X +Σ,(tr Aβ)AaAβX - Σ {tr AβAa)AβX.

To compute the first term on the RHS of (19),

ΣKa(X,E t)E t =
i

note that Aa symmetric implies that Vx Aa is also symmetric. Thus for an

arbitrary vector field Z on Mn, we have in a neighborhood of x

Eu Z) = Σ g(Eu (FEiAa)Z)
i

(Vz Aa)Et) - 2J g(Et, sa,{Z)A,E,)
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+ JlQ(Eusaβ{Ei)AβZ) (by Codazzi's equation)

= Z tr Aa -Σ±saf(Z)tr Aβ
β

by using (14) here, and the use of (21) in (22) to get (23), are the only

places in the calculation where we use Dr{ = 0. Thus

(21) Σ ψEιAa)Ei = Σ saβ{Ei)AβEi.
i i, p

Thus the sum of the first and third terms on the RHS of (19) is

Σ / * {s^EJA.Ed - ^VEl{sa,{X)A,Ei - se>{Et)A,X)

which again by (17), is

(22) 5J {ψx saβ) (Et)A,Et - (FBisaβ) (X)AβEt

+ (FEisaβ)(Ei)AβX+ saβ(EtWx Aβ)Et

If we now use the Ricci equation for the first two terms of (22) and Co-

dazzi's equation for {VEiAβ)X in the fourth term and (21) for the last term

we find that (22) equals

(23) J}g([Aa,Aβ-]X,Et)AβEt

(PElsaβ)(Et)AβX

- 'Σ,saβ{Eι)sβr{Eι)AίX
i, β, r

Note: the first term in (23) is Σ Λ Ί A . Λ l ^ Thus

(24) A'Aa = ncAa - c{tr Aa)I + Σ {tr Aβ)AaAβ

- Σ {tr AβAa)Aβ + Σ

+ Σ Aβ[Aa, AtΊ + Σ] (PEisaβ)(Ei)Aβ

+ 2 Σ saβ(Et)PElAβ - Σ s.fiEJspiEJA,

and
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(25) - L άf = Σ tr((JΆa)A«) + Σ I

= nc Σ /r Λ2 - c Σ (f r Λ*)2 + Σ {tr Λβ){tr AaΛβAa)
a α *,β

AβAa)
2 + Σ *r EΛ» A ^ A *

tr AJLAa,Ap}Aa + Σ {VEisJ{Ei)tr AβAa

a., 0 i $

+ 2 Σ s^CEdMΓj^A

- Σ saf(E,)sμ(Et)tr
i,*,β,r

By properties of the trace the first six terms of the RHS of (25) reduce to

the first five terms of the RHS of (12). Since saβ + sβa = 0, the seventh term

of the RHS of (25) is zero. And the sum of the last three terms of the

RHS of (25) is Σ \W*Aa\\2 as is easily seen from (11) and
a-

HF*ΛJI2 = Σ *r(FίA)(FίA)
i

Proof of Lemma 2. Nomizu and Smyth [2] have shown that for any

nxn symmetric matrix A with eigenvalues λu ,λn that

cntr A2 - c{tr A)2 - {tr Aψ + tr A tr A*

To prove Lemma 2 it suffices to show that for any nxn commuting sym-

metric matrices A and B with eigenvalues λi and μt respectively that

(26) tr A tr B2A + tr B tr A2B - {tr AB)2 - {tr BA)2

= Ί\iλi-λjYμiμj+ Hiμi-μjYλiλj

Equation (26) is proved by simultaneously diagonalizing A and B and calcu-

lating the LHS (left hand side).

LEMMA 3. Suppose Mn has non-negative sectional curvatures, Dη = 0, and the

normal connection is trivial. If Mn has constant scalar curvature or Mn is compact,

then J / = 0 and ||F*ΛJ|2 = 0. If Mn is compact then Mn has constant scalar

curvature.

Proof. If Mn has constant scalar curvature, then since g{rj, η) is constant

(10') implies that / is constant; hence J / = 0 . Lemma 2 implies that J/;>0.



ISOMETRIC IMMERSIONS 147

Hence, if Mn is compact, then df = Q (cf. page 338, volume II of [1]) and

/ is constant. Since g(rn rj) is constant, (10') implies that Mn has constant

scalar curvature. Since all the terms on the RHS of (13) are non-negative

and Δf = 0 we conclude that | |FMJ|2 = 0.

L E M M A 4. If the assumption of Lemma 3 are satisfied and Mn+P — Rn+P

f

then for each x^Mn there exist orthonormal normal vector fields ξu -,ξp defined

in a neighborhood U of x such that

(a) Dξa = 0 in U, i.e., saβ = 0 in U

(b)

/

\

0

0

0

λt

0

0

0

0

0

\

/

where 7TOβ is the maxma identity matrix and the zero matrix in the upper left hand

corner is of degree mx + + mα_i and the Aa's are expressed with respect to their

common orthonormal eigenvectors Eu , En. Note that Aa — 0 if mx+ +rna-ι = n

and we may assume that Aa — 0 implies that Aβ — 0 for β > a

(c) Each λa is constant in U.

Proof Since the normal connection is trivial there exist orthonormal

normal vector fields ζί9 , ζp defined in a neighborhood U of x such that

D ζa - 0 in U. With such a choice of ξu , ξp we have V\Aa = Vx Aa for

X tangent to M\ By Lemma 3, ||ΓMβ | | = 0 and thus ||Γi4β|| = 0. Hence

the eigenvalues of Aa are constant. If $'β = 2 Oaβζa, [Oaβ] an orthogonal
α

matrix with constant entries, then Dξβ = 0 in U and Aβ — 2 OaβAa. In what

follows we will begin with any ςu , ξP such that Dξa = 0 in U and show

that there exists an orthogonal matrix [Oaβ] with constant entries such that

the second fundamental forms Aβ with respect to ζβ — 2 Oaβίa have the
a.

desired property (b). The claim is clearly true if all the A'as = 0 at x (and

therefore by constancy of the eigenvalues Aa = 0 in a neighborhood of x)*

If this is not the case we distinguish three cases:

(i) all sectional curvatures of Mn > 0 at x,

(ii) all sectional curvatures of Mn = 0 at x,

(iii) at least one non-zero sectional curvature at x and at least one

sectional curvature that is zero at x.
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Suppose £1, ,£ p and U have been chosen such that (a) is satisfied;

thus each Λa has constant eigenvalues in U.

Case (i): Lemmas 2 and 3 imply that Aa = λal. We may assume

λi ψ 0. Let

and

for 0 > 1. Then A[ = λl, λψ 0, and Λβ = 0 for 0 > 1, f, _L ί{. Use the

Gram-Schmidt orthogonalization process on f2, ' ,ξP to obtain ξ'29 , |p.

Then A'β = 0 for β > 1.

Case (ii): Let Aa =

when expressed with respect to the common eigenvectors Eί9

AJs. We may assume λ'n Ψ 0. Let

fα = for a

/ °
0

\ °

o

' • • /

of the

Again, ία J_ ίί Use the Gram-Schmidt orthogonalization process on f2,

to obtain ξr

2, , f£. Then, for a > 2,

and λ'u^O. Thus we may assume that λla = 0 for a > 1, Jin f= 0. Since

0 = K{Eι Λ £y) = Σ^iα^jα = λnλj\ for y > 1, we have ^ i = 0 for j > 1. If one

of the A'as, for α ^ 2 , is not zero we may assume that it is A2 and apply

the above argument to f 2» , ίP and A2y , Ap restricted to the span

{£2, , En}. We obtain λJ2 = 0 for j > 2 and λ2a = 0 for α > 2. It is now

clear that an induction argument will work.



ISOMERTIC IMMERSIONS 149

Case (iii): Order Eu -,En so that K(E1AEl)>0 for 2<c/:<m 1,

and K(Ei Λ Et) — 0 for l> mu Then Lemmas 2 and 3 imply that λla = λιa

for l : < / : < m i . Define £« as in case (ii). We see that we may assume

that λia = 0 for l^l<mlt 2^a^cp. Then K{EX Λ Eι)=λnhi = 0 for / > mx

and thus λu = 0 for l> mx. If K{Et Λ £.,•) ̂  0 for some i,j > mx we repeat

the above argument applied to ξ2, , ζp and Λ>, , Ap restricted to the

span {Emi+U , £ J . If #(£* Λ Eά) = 0 for all ij> mλ we apply the

argument of case (ii) to ζ2, , ίp and A, , Ap restricted to the span

{Emι+l9 ,En}. In either case we obtain the desired form for Ax and A2.

It is clear that an induction argument will work.

LEMMA 5. Let Mn be isometrically immersed in Sn+P suck that

(a) / = Σ ^ Al is constant on Mn

(b) Dη - 0, and

(c) the normal connection is trivial.

Then, if we consider Sn+P as isometrically immersed in Rn+p+ί, conditions {a)9 (6),

and (c) are also satisfied. (Of course / , η, and the normal connection are now taken

with respect to Mn immersed in Rn+P+1).

Proof Let ξ be the inward normal on Sn+P and let &,•••,£* be

orthonormal normal vectors to Mn but tangent to Sn+P. Let Aa be the

corresponding second fundamental forms for Mn immersed in Sn+P. Let A1

and Af

a be the second fundamental forms for ξ and ξa for Mn considered

as immersed in Rn+P+1. Let D (respectively Df) be the covariant differentia-

tion in the normal bundle for Mn immersed in Sn+P (respectively Rn+p+^

Then it is easy to show that A'a = Aa, Ar = /, Dξa=D'ξa, and D'ξ = 0, from

which the conclusion readily follows.

Consider the following example. Let Mn* = SWi (—ί—) be isometrically

immersed in Rn*+1 by ψt for i = 1, , / — 1. For nt = 1 we assume φi(Sι)

is a circle; for w*;>2, φt is unique up to an isometry of /Γ ί+1. Let ζt be

the inward normal to Mnκ Let Mn* — Rnι and let Rn> be isometrically im-

mersed in jβnι+^+i-* such that the image is of the form S1 (—\~jx x

S1 (—2~)xRnι~\ where each S1 ( 5-) is a circle of radius rk in some Eu-

clidean plane Nk, NkA_Nm for kψmy and Nk±.RΎlι~t. Let ίι+k-i be the
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inward normal to S1 ( K-) in Nk and let ? ι+ί, 9ζp be normal to R*1^

and Nk and constant. Let Mn = Mniχ xMn< and let ^ be the product

immersion. We may consider ξa as normal to Mn immersed in Rn+P. Let

Λa be the corresponding second fundamental forms. Then the normal con-

nection is trivial, D-η = 0, / = constant, all sectional curvatures of Mn ;> 0,

Dξa = 0 on Mn, and the Aa's have the form of (b) in Lemma 4.

Let φ be as in Lemma 4. We will show that Mn is locally a product

of spheres and possibly a Euclidean space, in the manner of the example

above.

Let f i, , ξp be chosen as in Lemma 4. We may assume λa Ψ 0 for

1 ^ α ̂  / — 1, Λα = 0 for a>.l (if all Λα = 0 then the immersion is totally

geodesic). Define distributions TuT2y , Tt by

Ta(y) = {X^Ty(Mn)\AaX=λaX} for α < / - 1

T*(y) = {X^Ty(Mn)\AaX=0, l^a^p}

Let nα = dim Ta (nt may be 0). Assume Mn is connected, simply connected,

and complete. Then each Ta is globally denned (for | e T £ parallel trans-

lation of ζ with respect to the normal connection is independent of path if

RN = 0 everywhere and Mn is simply connected). Each Ta has constant

dimension and is differentiable (the eigenspaces of the Aa have constant

dimension and thus we may find differentiable orthonormal eigenvector

fields). The TYs are orthogonal to each other and

(27) Tx{Mn) = Tt{x) + + Tι(x) (orthogonal direct sum)

LEMMA 6. Each Ta is involutive, totally geodesic (X, Y e Γ α implies that

and parallel ( F e T α , X tangent to Mn implies that VxY^Ta).

Proof. 0 = (FxAa)Y = Vx {AaY) - Aa(FzY) for X, Y tangent to Mn since

ψAa = 0. If Y is an eigenvector field of Aa belonging to the eigenvalue λa

(a constant) we have

λa7zY-Aa(rzY) = 0.

Thus Vx Y is an eigenvector field of Aa with eigenvalue λa. Thus each

Ta is totally geodesic and therefore, because of (27), each Ta is parallel.

Let x^Mn and let Mn* be the maximal integral submanifold of Ta

through x. From Lemma 6 we conclude that

Mn = M n iχ xM"« (Riemannian product)
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If na — 1, then Mn° = R (we are assuming Mn is simply connected, com-

plete). If na>.2y then the curvature tensor of Mn* is the restriction of the

curvature tensor of Mn since Mn* is totally geodesic in Mn. Therefore the

sectional curvature of Mn° is constant and equals λl. Also, Mn* = Rnκ Thus

Mn is a product of spheres and possibly a Euclidean space. Clearly, the

corresponding local result is true if we do not assume completeness since

we only used completeness to obtain MUa as the entire sphere or Euclidean

space.

The second fundamental forms and the normal connection forms of our

isometric immersion φ with respect to ζu , ζp, chosen as in Lemma 4,

are the same as those of our example φ. Thus by the classical rigidity

theorem (see [1], volume 2, page 45, for the case p = 1) φ = τ o φ where τ

is an isometry of Rn+P. If Mn is complete and connected but not simply

connected, let Mn be its simply connected Riemannian covering manifold

and let π be the covering map. Define ψ by φ = φ o π. Then φ satisfies

the assumptions of Lemma 4 and by the above there exists an isometry τ

of Rn+P such that φ = τ o φ. If φ is 1-1, so is ψ. If φ is 1-1, then π and

φ are 1-1. Also, φ is 1-1 except possibly when φ{Mn) contains an S1 as one

of its products.

If Mn+P = Sn+P and the hypothesis of Lemma 3 are satisfied then con-

sider Mn as immersed in Rn+P+1. Lemma 5 implies φ{Mn) is of the form

φ{Mn) and hence a product of spheres, assuming Mn is complete.

We summarize our results as follows.

THEOREM 1. Let ψ be an isometric immersion of an n-dimensional, connected,

complete Riemannian manifold Mn of non-negative sectional curvatures into Rn+P or

Sn+P. Suppose that the mean curvature normal is parallel with respect to the normal

connection and that the curvature tensor of the normal connection is zero. If either

Mn is compact or has constant scalar curvature, then

φ{Mn) = M n iχ xMn<

where each Mn* is an nι-dimensional sphere of some radius contained in some Eucli-

dean space Nn*+ί of dimension nt + 1, Nn*+1 ±.Nnj+ί for iψ j ; except possibly one

of the Mn* is a Euclidean space = Nn* (this can only occur if Mn+P = Rn+P).

Furthermore, the immersion is an imbedding except possibly when some Mn* — S1(-^-\

a circle of radius r in some Euclidean plane. The corresponding local result is true

with the assumption of constant scalar curvature.
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We also have:

THEOREM 1'. The assumption on the normal connection in Theorem 1 is not

necessary in the following cases:

(a) p = 2 and η Ψ 0,

(b) Mn has constant sectional curvature c, p = 2, η = 0, and Mn+2(c) = Sn+2(c).

Proof. The proof will follow from Lemmas 7 and 8 below.

LEMMA 7. Let ψ : Mn-> Mn+2{c). If Dη = 0 and η Ψ 0, then the normal

connection is trivial.

Proof. Let & and £2 be orthonormal normal vector fields defined in a

neighborhood U of x such that ξt = -rτ̂ rr-. Now Zty = 0 implies P | i = 0 and

hence s12 = 0 in U. This implies the normal connection is trivial, as re-

marked in Section 1.

Note that if Mn is compact and Mn+P = Rn+P, then η Ψ 0.

LEMMA 8. Let Mn have constant sectional curvature c and isometrically immersed

as a minimal submanifold of Mn+2{c), then the immersion is totally geodesic.

Proof.

A,

l repr

The

Γ-\
esenteί

relative

—λ
r\U

i with r<

nullity

\

τ is ^ n — ί

A,

aspect to the eiffej

I (see [1]).

=

I a b

b — a

C1V€ ctors Eu

Thus,

0

0

• , £

if

\

/

n of i4i we have

K(E1 A Ez) = c - λ2 - a2 - b2 = c.

Thus λ = a — b = 0 and the immersion is totally geodesic.

Our results clearly imply the following Corollary to Theorem 1.

COROLLARY. Let ψ : Mn -* Mn+P{c) be as in Theorem 1. Further assume

that the sectional curvatures of Mn are strictly greater than zero. Then Mn has

constant sectional curvature and is isometric to a sphere, and ψ(Mn) is the usual sphere

in some Rn+ι.
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3. Isometric immersions of space forms into space forms.

Let φ : Mn{c) -> Mn+P{c) be an isometric immersion of a Riemannian

manifold Mn{c) of constant sectional curvature c into a Riemannian manifold

Mn+P(c) of constant sectional curvature c.

THEOREM 2. Let p = 2, n

(a) If c ψ c, then the curvature tensor of the normal connection is zero.

(b) If c=c, then for each x^Mn the curvature tensor of the normal connection

is zero at x or the relatively nullity [see [1]) at x is n — 2.

THEOREM 3. Ifp = 3, n^4, Dη = 0, ηΨO, then we have {a) and (ft)

of Theorem 2.

To prove Theorems 2 and 3 we will show that the second fundamental

forms Λa commute. The proof is quite algebraic.

LEMMA 9. Let B be a symmetric linear transformation defined on an inner

product space V of dimension n. Let Eu - 9En be an orthonormal basis of V and

[Biji the matrix representing V with respect to this basis. If BEίf\BEj = σijEif\Ej

then

(28) BkiBιj - BuBkJ = 0 for (fc, /) ψ (/, j)9 k<l, i< j .

Proof.

Λ BEj = ^BkiBlaEk Λ Et

= ^(BttBij - BnBkJ)Ek Λ EL

But {Ek Λ Eι :k< 1} are linearly independent in the space of skew symmetric

endomorphisms of V, from which the lemma follows.

LEMMA 10. Let B be as in Lemma 9. Then for even n,

n
ΊΓ

(29a) D e t B = { — I)" Π {Bo(2k-l)σ(2k-l)Bσ(2k)σ(2k) ~~ B2

σ(2k-l)σ(2k))

where σ is any permutation of 1, , n , and (—l)σ denotes the sign of σ.

For odd n,

rn-l
2

(29b) Det B = (—l)σ\ Π {Bσ(2k-i)o(2k-i)Bσ(2k)Bσtek) — B2

o(2k-i)σ(2k))
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Proof.

BEM Λ BEM Λ Λ BEσ{n)

= (~l)σ(Det B)Et A E2 Λ Λ En.

But by Lemma 9

Λ BEj = (BtiBjj - B\j) (E, Λ Ej).

LEMMA 11. Let n ^ 3 . Let B be as in Lemmas 9 and 10. If B2 is dia-

gonal when expressed with respect to Eu , En and the rank of B is n, then B

is diagonal when expressed with respect to Eu ,En.

Proof Let μu « ,μn be the eigenvalues of B and {B2)ij — μ\δij where

δij = 0 for i ψ j , an

and by Lemma 10,

O for i¥=j, and δu=l. Suppose n is even. Then, since Det B= ΐί μt
i — l

n 2

(30) 0 ψ Π μ\ = Π {Bσ{2k-l)σ(2k-l)Bσ(2k)σ(2k) ~~ B2σ(2k-l)σ(2k))2*

ι = l Jc=l

And

(31) %Bh = μ\

(32) Iίμ\= Π

\μ\ =(33) μ\μ

^>B2

rrB
2

s$-2BrrBssB
2

rs+Bls = (BrrBss-B2

rs)
2 for r φ s

Comparing (30) and (32) we see that all the inequalities in (33) are equalities

and hence

(34) μ\μ\ = BrrBss - B2

rs for r Ψ s

(35) B r k B s l = 0 f o r k ψ r o r s , I ψ r oτ s .

Thus if n^S we conclude that 2?iy = 0 for iψj. For odd n a similar

argument holds.

Proof of Theorem 2, Choose orthonormal normal vectors <Ji and ξ2 at
n such that tr A2 = 0 (If ^ = 0, any ζx and $2 will do; if η ψ 0, let
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Let Ax = -A and Λ = 5 . Diagonalize 4̂ with respect to its

eigenvectors Eu - -,En with eigenvalues Λi, ,λn respectively and express

B with respect to Eu , En. Then the Gauss equation and the Ricci

tensor imply that

BE, Λ BEj = (BUBJJ - B\j)Eί Λ £ ,

for i < j and B2 is diagonal. If rank B = n then we may conclude that

B is diagonal and hence AB = 2L4. If rank B <n, then one of its eigen-

values is zero, say μx = 0. But μ? = Σ^i& Thus 51 Λ = 0 for all k. Since

= c

we get Wί = c — c for i > 1. If c ψ c then λj = c 7 C for i ^ 2 Hence

^45 = ^^4, proving (a). If c — c we can obtain (b) by noting that the

relative nullity > n — 2, and therefore both A and B have rank ^ 2. Recall

that μ\ = Y\B\k. Thus if rank B = 1, then £ is diagonal. If rank A = l

and rank 5 = 2, say μx = μ = — μ2 Ψ 0, then

Thus μ = 0, contradicting rank B = 2. If rank 4̂ = rank 5 = 2 we may

suppose μ1 = μ = —μ2^o. Then

We conclude that λi τ= 0, ^2 =̂ 0. Thus 4̂ and 5 have the same null space.

We may also prove (b) without appealing to the above fact on the relative

nullity by a somewhat longer algebraic argument.

Proof of Theorem 3. Choose orthonormal normal vector fields ζl9 ξ2f

and | 3 defined in a neighborhood U of x such that ξt =-TΓΎΓ - Since Dη = 0

implies that Dζ1 = 0 we have sla = sal = 0 in U. The Ricci equation then

implies that At and Aa commute. Let Ax = A, A2 = By and Az = C. If we

simultaneously diagonalize A and B, then the Gauss equation implies that

CEi Λ CEj = {CuCjj - ClJEi Λ Ej for i < j

where Eu 9En are the common eigenvectors of A and B corresponding

to eigenvalues λu ,λn and μu , μn, respectively. Let σu 9σn be

the eigenvalues of C; thus <rf, ,σj are the eigenvalues of C2 with the
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eigenvectors El9 ,En above by the equation for the Ricci tensor. If

one of B or C has rank > 3 we may suppose it is C and apply Lemma 11

to C = C restricted to the image of C, say the span {Ek+U -,En}. Noting

that

C =
0

0

0

when represented with respect to Eu , En we obtain the desired result.

If one of B or C has rank ^ 1 , then we may suppose it is C. Then C2

diagonal implies C is diagonal. Thus we are left to consider the case when

both B and C have rank 2. Suppose B and C have rank 2. Let σu σ2 be

the non-zero eigenvalues of C. Let

c =

b

—a

0

(recall tr C = 0)

0

Since AC = CΛ we have λxb = λ2b. If b = 0 we are done. If b ψ 0 then

λt = λ2. Let λi = Λ2 = Λ. Then ϋ Γ ^ Λ £/) = ϋΓ(£2 Λ £y) for y ^ 3 implies

that μxμj = jM2jMy. Since rank B = 2, we see that μx = 0 if and only if ^2 = 0.

If p x — ̂ 2 = 0 then BC = CB. Thus we are reduced to considering the case

that B and C have rank 2, the same null space, and λι — λ2 — λ. For cψc

we .will show that this does not occur. From

K{E1 Λ Ej) -c = λλj = c-c,

we get λj = c ~ c for j^3. Also
A

K ( £ j Λ E k ) - c = λ j λ k = c - c = { c d ) 2

2

for j>k>3. Here we use n^4. Thus A2 = c — c. But

UL (£i Λ E2) - c = λ2 - μ2 - σ2 = c - c

where μx = μ = — μ2 and σx = σ = — σ2. Thus μ = σ = 0 contradicting rank

B = rank C = 2. If c = c then ^ = 0 for j > 2. Hence λj = 0 for y > 2.

Also λ2 — μ2 — σ2 = 0. If Λ = 0 then μ = σ = 0. Hence £ C = C 5 or the rela-

tive nullity is n — 2.

Theorems 1 and 2 imply:
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THEOREM 4. For n>3 the real protective space Pn (-V) of curvature - ί - ,

rψ\9 cannot be isometncally immersed as a minimal submanifold of Sn+2(1).

Lemma 8 implies Theorem 4 is also true for n = 2, r = 1. Theorems

1 and 3 also imply:

PROPOSITION 1. Let n>^. Let Mn{c) be compact and have constant sectional

curvature c> 0 and isometric ally immersed in Rn+* by ψ such that Dη = 0. Then

Mn(c) = Sn(c), ψ is an imbedding and ψ(Mn) is the usual n-dimensional sphere in

some Rn+ι.

PROPOSITION 2. Let n>A. Let Mn(c) be compact and have constant sectional

curvature c^O and isometncally immersed in Sw+3(c), cψc, such that Dη = 0, y=?=0.

If c>0, then ψ is an imbedding and ψ(Mn) = Sn+3 ΠRn+1 for some Euclidean

space Rn+1. If c = 0, then ψ(Mn) is a product of circles, said circles lying in per-

pendicular Euclidean planes.

In the next section we characterize the isometric immersions of Mn(l)

into Rn+2.

4. Codimension two isometric immersions of spheres into

Euclidean space.

Consider the following example. Let φ be an isometric immersion of

Rn+ι into Rn+2 and let ψ be the restriction of φ to Sn(l). Then ψ is an

isometric immersion of Sn into Rn+2. Let Mn+1 be the image of Rn+1 under

φ; Mn+ι is locally smooth and flat. Let ξ be the inward pointing normal

on SnczRn+1 and let & = φ*ξ. Let f2 be normal to Mn+1. Let Λ1 and Λ2

be the second fundamental forms associated with £x and ζ2

 a n d saβ the nor-

mal connection forms; let s12 = 5. Then an easy calculation shows that

Λi = I and Λ2 has at most one non-zero eigenvalue μ. If Eu , En are

orthonormal eigenvectors of A2 with A2Eλ = μElf then s(Ei) = 0 for i > 2.

In the rest of this section let n>A and let ψ : Mn(l)-• Rn+2 be an iso-

metric immersion of an ^-dimensional Riemannian manifold Mn(l) of con-

stant sectional curvature 1 into (n + 2)-dimensional Euclidean space. From

Theorem 2 we conclude that the normal connection is trivial.

LEMMA 12.

(a) For each x^Mn there exist orthonormal normal vectors ξx and ξ2 at x

such that Ax — I and A2 has at most one non-zero eigenvalue μ. If Eu 9En are
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the common orthonormal eigenvectors of Ax and A2 with AZE1 — μEu then

i = / and A2 =

when represented with respect to Eu

to sign.

\ 0/

,En. μ is clearly uniquely determined up

(b) If μ{x) ¥= 0 or μ = 0 in a neighborhood of x, then & and ζ2 may be

chosen continuously in a neighborhood of x such that A1 and A2 are as in {a).

Furthermore, since the eigenvalues of A2 are continuous and have constant multiplicities

we may find continuous orthonormal eigenvector fields in this case.

Proof. Let & and ζ2 be any differentiable orthonormal normal vector

fields defined in a neighborhood U of x. Let Ai and A2 be the associated

second fundamental forms. Then the eigenvalues of At and A2 are con-

tinuous. Let λί9 ,λn and μu ,μn be the eigenvalues of At and A2

respectively with corresponding eigenvectors Eu , En. We do not know

yet that Eu ,En can be chosen continuously; as remarked, when the

eigenvalues of A2 have constant multiplicity, this will follow. Since

1 = K{Et Λ Ej) = λiλj + μφj for i ψ j,

we may assume λι Ψ 0. Letting

f ί = + + PD

and

we see that we may assume that we have continuous ζi and ζ2 with μx = 0

in U. Since

1 = K{EX Λ Ej) = λiλy + jKi/l, = λiλy

for i ^ 2 , we have λj = -y- for ; ^ : 2 . Let ^ = ;tle We now distinguish
1

three possibilities:

(i) all μi{x)¥=0 for i^2 (and therefore by continuity of the μu this

is so in a neighborhood of x),
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(ii) at" least one μt{x) = 0 for i>2 but not all μt(x) = 0 for i>.2, and

(iii) all μt(x) = 0.

Case (i): We have

for k>j> i>2. Thus all μ* are equal for i>2. Let σ be their common

value. Let ξ[ = -y- & + <χί2 and ξj = ^ 1 — y - £ 2 . Then ί( and ζ'2 have the

properties in (a) and (b) with μ — σλψ 0.

Case (ii): We may suppose μ2{x) ψ 0, and therefore, by continuity of

P i, P"L ^ 0 in a neighborhood of x and we may suppose μ3{x) = 0. Then

1 = K(Ej AE3)=-jΓ + μjμ3 =-1-

at x for i > 3. Hence λ(x) = ± 1 ; we may suppose Λ(ce) = 1. Since

at a? for z τ*= , at most one μt is non-zero at x. We now claim that λ = 1

and ^i = 0 for ί ^ 2 in neighborhood of #. By continuity of the eigenvalues

there exists an ε > 0 and a neighborhood V of x such that \μι{y)\ <s for

z';>3 and |̂ 2(2/)l > ^ for all y&V. But the argument in case (i) and the

above applied to such y imply that either all μt(y) are equal for i>2 or

at most one of them is non-zero. Clearly we must have the latter case and

μ ~ μ*Ψ 0. Reorder the eigenvalues to obtain the desired result.

Case (iii): If all μi(χ) = 0 then λ(x) = + l and we may suppose λ{x) = +l.

It remains to prove (b) when μ = 0 in a neighborhood V of x. If ^ and

ξ2 chosen as above with μx - 0 and lλ = λ = —— for i >. 2 in a neighbor-

hood [7 of a?, UcV, with ^(x) = 1 and μt{x) = 0 for f ^ 2 , then we claim

2 = 1 and /^ = 0 in U. For if μt(y) ψ 0 for some y^V and some /, then

(i) and (ii) applied to y imply μ{y) ψ 0, a contradiction. This completes

the proof of Lemma 12.

LEMMA 13. If μ(x) ¥= 0 or μ = 0 in a neighborhood of x, then we may choose

ξι and ξ2 differentiably in a neighborhood of x such that Ax and Λ2 are as in Lemma

12. Since the eigenvalues of Λ2 have constant multiplicities μ is differentiable and

we may find differentiable orthonormal eigenvector fields Eu , En of A2.
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Proof, Let ξλ and ξ2 be continuous orthonormal normal Vector fields

defined in a neighborhood of x such that

Ax = / and A2 =

o

when represented with respect to continuous orthonormal eigenvector fields

Eu , En of A2. Let ξx and #2 be any differentiable orthonormal normal

vector fields defined in a neighborhood of x such that ξx = aξx + ££2 and

f2 = — ££i + «i2 with Λ(a?) = 6(αs) = -7= and a, b continuous since a = g(ξl9 &)

and b = g{ξ2t fi). Then

fa + bμ

a

l-b +

\

and

'al

\

-bl
when represented with respect to Eu , -£"n. Thus by the assumptions

on μ the eigenvalues of A and A2 have constant multiplicities in a neigh-

borhood of x and are therefore differentiable in this neighborhood. Thus

a and b are differentiable. But ζx = αfi — 6f2 and £2 = ̂ fi + «?2. Hence ίi

and <f2 are differentiable.

LEMMA 14. i/* μ(x) i= 0 αnrf ίi and ξ2 chosen differentiably in a neighborhood

U of x such that μψ 0 in U,

/Ό
i4i = / β/zrf A2 =

\ Όl
when represented with respect to orthonormal differentiable eigenvector fields Eu ,

En of A2, then

(a) The distribution S^{y) defined by £f[y) = span{E2{y)f , En{y)} is

integrable,

(b) The normal connection 1-form s satisfies s{Et) — 0 for i^.2.
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Proof. Codazzi's equation applied to Et and Eά for i>j>:2 implies

that

- Λ2(FEiEj - VEjEi) + s(Et)Ej - s{Ej)Ei = 0.

Since g{A2X, Ek) = 0 for k> 1 we c o n c l u d e t h a t s(Ei) = s{Ej) = 0 for i > j ^

2. Since VEE5 - VEEt = [£*, £ , ] we conc lude t h a t g(E x , [Eu £ , ] ) = 0.

LEMMA 15. If μ = 0 m α neighborhood of x and ξu ξ2, ^4i, ^2, Eu ' * ' y En

as in Lemma 13, ίfe/z s(£j) = 0 ybr fl/Z f.

Codazzi's equation implies that s{Ei)Ej — s{Ej)Ei = 0 for all i, j.

Note that the set of x such that μ{x) Ψ 0 or /i identically zero in a

neighborhood of x is a dense open subset of Mn.

PROPOSITION 3. If μ = 0 in a neighborhood of x, then there exists a neighbor-

hood U of x such that ψ{U) is part of a sphere Sn in some Rn+ι.

Proof Choose differentiate orthonormal normal vector fields & and

ξ2 defined in neighborhood U of x such that Aλ = I, A2 — 0, and s = 0. From

the classical rigidity theorem (see [1], volume 2, page 45 for the rigidity

theorem in codimension 1) we conclude the desired result.

Suppose μ(x0) ¥= 0. Choose f 1 and ζ2 as in Lemma 13. Let yu , yn

be local coordinates defined in a neighborhood U of x0 with yt = 0 for all i

at 0̂ and such that djdy29 , djdyn span the distribution £f{y) for y^U.

Let P{y) be the hyperplane in Rn+2 spanned by Ty{Mn) + span {ξi{y)} and

passing through y. Thus we have an w-parameter family of {n + 1)-dimen-

sional hyperplanes given by

90£, SziVu , y0) + 3̂ (3/1, , Vn) = 0,

where X is the position vector, and, putting x = Oy, φ{yu , Vn) is given

by

(36) 9{x{Vu , 2/«), ί2(2/i, , y«)) + P(yi, , 2/n) = 0.

Since Γ£jt£2 = 0 (V is covariant differentiation in Z2714"2) for & ̂  2, ί2 depends

only on t/i Differentiating (36) we have

(37)
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The first term on the left hand side of (37) is zero since -^- is tangent to

Mn. For k~^2 the second term is zero. Thus -^- = 0 for &:>2 and we

really have a one-parameter family of hyperplanes. For h = 1 (37) is

Since μ(x) ̂ O w e also have near x:

(39) g(FElξ2f E1) Ψ 0.

Since g{Eu djdyx) ψ 0 and by (39) we have near x:

(40) Fa / 3 2 / 1$2 ψ 0 and g{Vd/dy&t djdyx) ψ 0.

We claim that the envelope (see below) of this one parameter family

of hyperplanes is a smooth flat manifold near x.

LEMMA 16. Let ΐ{y) be a smooth curve in Rn+2 and P{y) a one-parameter

family of hyperplanes with normals ζ{y) such that P(y) passes through T(y) and con-

tains the tangent vector d\dy to ϊ at T(y). Suppose g(ψ-9 ψ^j *f=Oaty = O. Then

the envelope of P(y) (see below) is a smooth flat (n + ΐ)-dimensional Riemannian

manifold near 7(0).

Proof We may choose Euclidean coordinates xu , xn+2 such that

Xt = 0 for all % at r(0), djdxx = ί(0), and djdx2 is in the direction of -^-(0).
ay

The family of hyperplanes P(y) is given by

(41) g(X, ξ(y)) + p(y) = 0

where X is the position vector, and, putting x = Oy, p(y) is given by

(42) g(x(y)f ζ(y)) + <p(y) = 0.

Differentiating (42) with respect to y we obtain

since ~ ^ - is tangent to ΐ. Since x = 0 at Γ(0) we have

Ί>(0) = -|2-(0) = 0.

We also consider the {n + l)-dimensional planes defined by



ISOMETRIC IMMERSIONS 163

(44) g(t •*(„)) + -^(y) = 0.

The characteristics of the family of hyperplanes P is defined to be the

family of n-dimensional planes defined by (41) and (44). We define the

envelope to be the set of characteristic planes.

If one writes out (41) and (44) in terms of the coordinates xu , #n+2>

and y, the assumptions that 5(0) = 3/dXι and that -p-(0) is in the direction

of djdx2 imply that we may solve for xx and x2 as functions of x8, , xn+2>

and y:

Xι = F(xΛ, , xn+2, y)

%2 = G(a? 8, , Xn + 2, y)

If we calculate -?e-(0, , 0,0) we find that
By

Differentiating (43) we obtain

- 0

which evaluated at y = 0 is

(46) a( M a ί N ) + d2p -0

Since the first term on the LHS of (46) is not zero, 4-ζ-(0) Φ 0. Thus we may

solve for y as a differentiable function of %2, , ^n + 2 near y = 0. Hence

we obtain #1 as a differentiable function of OJ2, , xn+2 on the envelope

near y = 0. Thus near 2/ = 0 the envelope is a smooth manifold with P(y)

as its tangent plane. It is clear that it is also flat.

Let us return to the immersion ψ : Mn(l) -• Rn+2, Let 7{yι) be an inte-

gral curve of d\oyx through (0, , 0). Using this for T in the previous

lemma we see that we have proved our claim. Call this envelope Mn+1-

It is clear that for y<EMn, y near x, y<=Mn+1.

Thus we have proved:

THEOREM 5. Let n>.A. Let ψ : Mn(l) -> Rn+2 be an isometric immersion of

an n-dimensional Riemannian manifold Mn of constant sectional curvature 1 into-
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(n + ^-dimensional Euclidean space. Then there exists a dense open set VcMn

such that each point X<EV has a neighborhood U and an isometric imbedding g of U

into Sn(l)c:Rn+1 and an isometric immersion f of an open set W of Rn+1 into Rn+2

such that φ\u = f ° g*

5. Remarks . Compact hypersurfaces of Rn+ί of constant mean curva-

ture Ψ 0 satisfy a variational principle. Namely, a compact hypersurface

Mn of Rn+1 has constant mean curvature Ψ 0 if and only if its w-dimensional

area S/ is stationary with respect to {n + l)-dimensional volume preserving

variations; where the above {n + l)-dimensional volume is the volume in

Rn+1 enclosed by Mn. More precisely: Let {ψt} be a 1-parameter family

of immersions of a compact Mn into Rn+ί, defined for £e(—ε, ε), with ψ0

= φ and such that the map Ψ : Mn x (—ε, ε)-+Rn+ί denned by ¥{m, t) =

'ψt{m) is C°°. Then miscalled a variation of ψ. Let Sf{t) be n-dimensional

area of φt(Mn) and V{t) (n + 1)-dimensional volume enclosed by ψt{Mn). We

are assuming that φt[Mn) is a simple closed hypersurface of Rn+ί; i.e.,

ψt{Mn) is a manifold—no self intersections. An (n + 1)-dimensional volume

preserving variation is one for which V(t) = V(0) for all t. Now, ψ : Mn -+

Rn+ί has constant mean curvature if and only if -4^-(0) = 0 for all (n + 1)-

dimensional volume preserving variations.

A fundamental question seems to be: Do ^-dimensional submanifolds

of Rn+P of constant mean curvature Ψ 0 satisfy a variational principle ?

If M1 is a compact connected 1-dimensional submanifold of Rp+1 such

that Dη — 0, then it is quite easy to show that M1 is a circle that lies in

some 2-dimensional Euclidean plane. Bryan Smyth has communicated to

me that he has shown that if M2 is a compact 2-dimensional submanifold

of iJ4 such that Dη = 0 and M2 is topologically a sphere, then M2 is isometric

to S2 and lies in some 3-dimensional Euclidean space. The above result of

Bryan Smyth and our results Theorem Γ and Proposition 1 suggest the

following question: How necessary are our assumptions on the triviality of

the normal connection and the sectional curvatures in Theorem 1? Can we

replace one or both of them by some topological condition or some other

condition ?

Bryan Smyth has also pointed out to me that by considering the La-

placian of tτ A2

η one can show that a connected compact submanifold Mn

of Rn+P of positive curvature and constant mean curvature is a minimal

submanifold of some sphere S1"*"1.
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Cartan (Oeuvres Completes, partie III, vol. 1, p. 417) has shown that if

an ^-dimensional space form Mn{c) is isometrically immersed in an {n + p)-

dimensional space form Mn+P(c), c<c, then p^n — 1; and if φ = n — 1,

then the normal curvature tensor is zero. John Moore has used this result

in his Berkeley Thesis to show that in the case jo = n — 1, if in addition

Dη = 0, then Mn is flat, i.e. c = 0.

Do Theorems 2 and 3 have analogues for higher codimension? Do the

algebraic lemmas used in the proof of Theorems 2 and 3 extend? Finally,

is Theorem 5 true for n = 3 ?
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