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MANIFOLDS WITHOUT GREEN'S FORMULA*

MOSES GLASNER

Recently attention has been focused on manifolds that carry covariant

tensors that are merely bounded measurable. In terms of these tensors

global differential equations are defined and their weak solutions are called

harmonic functions. Nakai [6] initiated the classification of these manifolds

with respect to the global properties of the harmonic functions that they

carry.

The classical Green's formula \ [fυ ψu -f vΔu)dυ = \ v^^-dS is no Ion-
Jo ho ou

ger meaningful due to illusiveness of the tensor on sets of measure zero.

Previously, a great many appeals to Green's formula were made for the

purpose of establishing orthogonality in the Dirichlet inner product. The

very definition of (weak) harmonicity on manifolds of this sort makes these

appeals unnecessary. This observation already allows one to reproduce a

considerable amount of the theory (cf. [5], [6], [7], [2]).

On the other hand, Green's formula has been used to give more de-

tailed information and in this paper we present a substitute. Essentially, it

is fabricated from the capacitary measure and its relation to the Dirichlet

inner product introduced by Stampacchia [11]. We then apply it to gene-

ralize Sario's principal function theorem, as well as the construction of the

operators Lo and Lu and to establish the Royden-Nakai decomposition theorem

in this setting (cf. [10], [1], [3], [9], [8]).

These are some of the basic tools of the classification theory of Riemann

surfaces and Riemannian manifolds and using them one should be able to

develop a theory for the manifolds studied here.

It should also be pointed out that although Nakai (cf. [8, p. 304]) and

Walsh [12] have established the principal function theorem in Brelot's har-

monic spaces, their notions of flux on the manifolds considered in this paper

can be easily computed only by using our observations.
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1. We consider a C1, orientable, connected, separable noncompact m-

manifold R. We shall call R a Riemannian manifold if it carries a symmetric

covariant tensor (#o) which is Lebesgue measurable and essentially bounded

in parametric balls. We further assume that there exists a covering of R

by parametric balls &~ {B} in which the following ellipticity condition is

met: there exists a ^ such that

a) ~-Mfi2^ί(0ΰ (z))f<^m 2 ,

for every vector ξ<ERm, almost every x<sB and every B<^J$.

The usual definition of the Hodge star operator gives an isomorphism

of the exterior algebra of measurable forms over R. For an open set Ua

R we consider the set ^(U) of Tonelli functions on U9 i.e. the real-valued

continuous functions on U with weak exterior derivatives and finite Dirichlet

integrals Dκ{f) = I df Λ *df < + oo for compact sets KcU. The mixed Di-

richlet integral of ey f<^^~(U) is Dκ(e9 /) = I de Λ *df. In a parametric
J K

ball with local coordinates x the Dirichlet integral of e, f<=j?~{B) is

(2) Dκ(e9 f) = \χiκ/~g9iJextfXidx,

where (gij) is the inverse and g the determinant of the matrix (gtj) and ex.,

fXi are weak partial derivatives.

Denote by &{U) the C1 functions with compact supports in U. A fun-

ction u is called harmonic at a point x<=R if there is a neighborhood U of

x such that u<aj7~{U) and if for every open set V with Fc£/ we have Dv

(u, ψ) = 0 for every y>e^(F). For an open set ί2 we denote by H(Ω) the

space of harmonic functions on Ω, i.e. U<EH(Ω), if & is harmonic at every

point of Ω. If x is a coordinate system on a parametric ball Z ? e ^ then

a function U<ΞH(B) is a weak solution of the uniformly elliptic equation
(i/~g9ijuXi)Xj = 0

in x(B). The sheaf {(u, Ω)\Ω open, u(=H(Ω)} forms a harmonic space in the

sense of Brelot (cf. [4], [5], [2]) and we shall use the results of the axiomatic

theory freely.

2. The Dirichlet integral over R of functions e, f<Ej7~{R) is defined

by D(e, f) = Y\mQ^RDΩ{e9 / ) . This limit exists for all pairs of functions with
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D{e) = limo..RDo{e) < + oo and D{f) < + oo. The Royden algebra M of R is

the set of all f^^{R) which are bounded and D{f) < + oo. For a se-

quence {fn} of functions we use the notations / = C-lim fn to indicate fn

converges uniformly to / on compact subsets of R, f = B-\Ίm fn to indicate

/ = C-lim fn and {fn} is bounded and f = D-\imfn to indicate \ΊmD(f — fn)

= 0. We write / = BD-\Ίm fn, for example, to indicate two modes of con-

vergence.

LEMMA 2.1. The Royden algebra M is an algebra and a lattice under the

operations Π, U of pointwise min and max. If ( / n ) c l , / = B-\\mfn and {fn} is

D-Cauchy, then f = BD-\im fn and

LEMMA 2.2. Let Ω be a relatively compact open set in R and f&M with supp

then there exists {φ^czC^R) such that supp φn^Ω and f = BD-\Ίmφn.

For the proofs of these lemmas see [7] (also cf. [9]). It is relations (1)

and (2) that is the key.

COROLLARY 2.3. If Ω is a relatively compact open set in R and h<=MΓ\H{Ω),

then D(h, f) = 0, for every f(=M with supp fczΩ.

Indeed for every ψn approximating / in the sense of the lemma we can

see that D(h, φn) = 0 from the definition of harmonicity and the existence

of a partition of unity subordinate to any finite open cover of supp φn.

3. A relatively compact open set Ω will be called regular if 3Ω is a C1

submanifold of R. For regular open sets the Dirichlet problem is solvable.

T H E O R E M 3.1. Let Ωo, Ω be regular regions with ΩaΩo. There exists a

positive measure μ on dΩ such that

ψ dμ — D{φ, u)

for all <P<EM with s u p p ^ c β 0 , where u^M such that u\Ω = 1, suppuaΩ0 and

u(=H{Ω0\Ω).

This is merely Stampacchia's result [11, Theoreme 3.9]. His hypothesis,

the coercivity of DΩQ ( , •) on the completion of the space £&{Ω0) with re-

spect to the norm \ |/I 2*1 + Dι

Ω

/

Q

2(f), is verified easily in view of (1) and (2).

This has also been remarked by Maeda [5].

From the observation that the theorem depends only on the behavior
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of the functions on Ω0\Ω we obtain the following.

COROLLARY 3.2. There exists a positive measure v on dΩ such that \ψ dv =

JD(Ψ, Uo) for all Ψ<EM with s u p p l e R \ Ω where uo<=M such that uo\Ω = 0,

uo\R\Ωo = 1 and uo^H(Ωo\Ω).

Note that u and u0 above are related by u = 1 — u0. Thus D(f, u) =

— D(f9 u0) for any / ε M Moreover, given any / G M we can write it as

f=φ + Ψ, where φ, Ψ<aM, supp^cβo and supp ΨaR\Ω. The following

generalized Green's formula now follows.

COROLLARY 3.3 For any f<=M

D(f, u) = \f dμ- j / dv.

If h<EMnH(Ω0), then by Corollary 2.3 D(h9 u) = 0 and therefore we have

the following.

COROLLARY 3.4. For h(ΞMΓ)H{Ω0), \h dμ = \h dv. In particular \dμ =

4. A regular boundary neighborhood W of R is the complement of a

regular region Ω. We now turn to the principal function problem. Given

s^H{W), when is it possible to find a pG.HiR) which "imitates" s o n l f ?

In order to describe the mode of imitation we introduce the following de-

finition of normal operators. Let L : M{a) -• HC{W), where a = dW, M{a) is

M restricted to a and HG(W) are the functions in H(W) with continuous

extensions to a.

DEFINITION. The operator L is called normal if

(a) Lf\a = f

(b) L is linear

(c) minα / < Lf ^ maxα /

(d) D(Lf, u) = 0.

Here u has the same meaning as in No. 3. i.e. for a regular region Ωo,

with ΩaΩo, Ω = R\W, u is the function in M with u\Ω - 1, u\R\Ω0 = 0, u&

H(Ω0\Ω). Condition {d) is independent of the particular choice of Ωo but for
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the sake of clarity we keep it, as well as Ω (and W)9 fixed. In fact if ΩQ

were another regular region containing Ω and u' the corresponding function,

then supp u — u' is a compact subset of W and consequently Corollary 2.3

gives D(Lf, u — u') = 0.

T H E O R E M 4.1. Given s^H(W)ΓϊM and L a normal operator. There exists a

p(=H(R) such that p\W = s + L(p — s\ά) if and only if D(s, u) = 0.

As above the truth of D(s, u) = 0 is independent of the particular choice

of Ωo.

For the necessity we observe that p<=H(R) implies that D{p, u) = 0 by

Corollary 2.3.

To establish the sufficiency we employ the following well-known fact

(cf. [8]).

LEMMA 4.2. There exists a #<Ξ(0, 1) such that g sup^ \h\ > s u p α o \h\ for all

h<=H{W) which change sign on a0 = dΩ0.

Assume now that D{s , u) = 0. There is no loss in generality in assuming

that s\a = 0. For if we can show the sufficiency under this additional as-

sumption, then we replace s by s' = s — L{s\a) and the resulting p satisfies

p\W = s' + L(p - sf\a) = s + L(p- s\a).

Let K be the Dirichlet operator for, Ωθ9 i.e. K : C(a0) -> HC{ΩO) such that

Kf\ao = f. Also let T : C{a0) -> C(a0) be the linear operator defined by Tf

— L{Kf\a)\a0. The problem can be reduced to finding a p<=C{a0) such

that

(3) v = T$ + s\a0.

For then the problem is solved by defining p by

p\Ω0 = Kp, p\W = s + L(Kp\a).

Indeed the maximum principle together with (3) shows that p is well-

defined on Ωof]W.

To solve (3) we need to show that

(4) sup 1 Tk(s I a0) i < q* supα o | s |, for all k

oo

since p = ^]Tk{s\a0) would be the solution. We note that the hypotheses

on 5 together with Corollary 3,3 give \s dv = 0. By applying Corollary 3.4
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we obtain \Ks dμ = \s dv = 0. Property (d) of L implies that 0 = D(LKsf

u) = \Ks dμ — \LKs dυ = — \LKs dv. Since v is a positive measure on αα

we conclude that L(K{s\ao)\a) changes sign on a0. Thus by Lemma 4.2,

properties (a) and (c) of normal operators and the maximum principle we

have

sup I T 1(51α0)I = supao \L(K(s\ao)\a)\

^ 2 s u p \L{K{s\ao)\a)\

= qsupa lϋC(sl«0)| ^gsup α o | s | .

Inequality (4) follows by repeating the argument k times.

5. We now turn to the task of demonstrating the existence of normal

operators. We shall construct operators LQ and Lx following the procedure

given in [1] which uses the Royden ideal boundary theory. As shown in

[1], on Riemannian manifolds with (^-Holder metric tensors the procedure

results in operators which coincide with Sario's Lo and L1 (cf. [10]).

The Royden compactifΊcation R* of R is the compact Hausdorίf space

which contains R as an open dense subset such that the functions of M

extend to R* continuously and separate the points of R*. Let Mά be the

J5Z)-closure of the functions in M with compact supports. The Royden

harmonic boundary is the subset of R*\R given by

ά = {pei?*|/(p) = 0 for every

T H E O R E M 5.1. There exists a linear mapping π : M-> H{W) Π M such that

(5) / = πf on J{JΩ,

(6) D(itf)^D(f).

For every h<=H{W)C\M

(7) minaujh ^ h\W :< max α U j h.

This can be established using the techniques of [2] (also cf. [3], [9]).

6. It will be convenient to interpret L : M{a) -> HC(W) as acting on

functions / e M and having the property that Lf = Lf whenever f\a — f\a.

T H E O R E M 6.1. For a given f&M consider F — {g^M\g\Ω = /} . There

exists a unique function h<sF such that D{h) = mingeFD(g). Moreover, the mapping
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Lo : f->h\W gives a normal operator.

If we replace the given / by

J / on Ω

\ ((minα/)U/)Πmaxα/ on W,

then the family F is not disturbed. Therefore we may assume at the outset

that / satisfies

(8) minα / < / 1 Δ ̂  maxα / .

Denote by G the family {πg\g<ΞF}. By virtue of (5) we have GcF and then

by (7) we see that minα / : < h\ W ^ maxα / for any h<BG.

Set d' = infG D(h) and d = inΐF D(g). Clearly d'<d. O n the other

hand, for every ε > 0 there is a gε^F such that d -f ε^D{gε). Since π&eG,

we conclude by (6) that d + ε >:£>(&)>: £>(?:&) ̂ d ' . Hence d = d'. We can

therefore choose a sequence {hn}aG such that limZ)(/&n) = d. Since {hn} is

bounded there exists a subsequence, again denoted by {hn} with h = B-\imhn

and / z e i ^ I F ) . T h e function {hn + hn+p)l2 being in F implies that D(hn +

hn+pϊ^Ad. Thus by the parallelogram law

D(hn - hn+p)^2D{hn) + 2D(hn+p) - Ad

and consequently {/zn} is Z)-Cauchy. We conclude by Lemma 2.1 that

h = BDΛΊmhn^F.

If £><ΞM and ίί>|β = 0, then /* + r^G.F for all r<ΞR. Since £>(& + rφ) =

D(h) + 2rZ)(Af 9) + rW(φ)>D(h) we must have

(9) Z>(*. 9) = 0.

If h' were another minimizing function in F, then D(h, h — hf) = 0. This

would give 0^D(h- hr) = D(h) - D(hf) = 0. Thus h = h' and the first as-

sertion is valid.

Now suppose /, / ' e l with f\a — f\a and h, hf are the corresponding

minimizing functions. Let

ί / on Ω
h = {

{ h' on W.

Then ΪKΞF and is also a minimizing function. We conclude that Lo is well

defined and clearly satisfies properties (a) and (c) of normal operators.

From (9) we obtain D{h, 1 — u) = 0, which is (d). To show the linearity of
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U set Ψ = LofΛ-rUf - L0(f + rf)9 for re/2 and /, / ' e l Since Ψ vani-

shes on Ωy (9) again gives

D(Ψ) = £(L0/, y) + £>(rL0/', 30 - Z>(L0(/ + ' / ' ) , Ψ) = 0,

which means that Ψ = 0.

7. The operator Lj is characterized in the following.

T H E O R E M 7.1. To each f^M there corresponds a constant c and a function

v<=M suck that v\Ω = fy v\Δ = c and the mapping Lx : /'-» v\W is a normal operator.

We choose an exhaustion {Rn}ϋ of R by regular regions such that Ro =

Ω and Rx = Ωo. Apply Theorem 3.1 and Corollary 3.2 with Ro and Rn play-

ing the roles of Ω and Ωo respectively. Denote the resulting ut μy v by un,

μny vn respectively. Take vn<=M with vn\Ω = f, vn\R\Rn = cn, υn<ΞH{Rn\Ω).

The constant cn is chosen so that D{vn, un) = 0, i.e. 1/ dμn — \cn dvn = 0.

Since \dμn = \dvny the constant cn is in the interval [minα/, maxa / ] . Then

{υn} is bounded by sup α | / | and consequently there is a subsequence with

v = B-limvntΞHc(W). In addition

D{Vn+p, Vn ~ Vn+p) = (Cn — Cn+p)D{Vn+Py 1 — Un + p) = 0.

Hence {vn} is Z)-Cauchy and Lemma 2.1 gives υ = BD-Wm vnGM Choose a

convergent subsequence of [cn] with limit ce[min α /, maxα/]. Then υ — c

— BD-\\mvn — cn^Mj which implies that υ\Δ = c and in turn that the original

sequence [cn] is convergent. From (7) we deduce that υ\W depends only

on f\a and consequently Lx is well-defined. Moreover (7) gives property (c)

of normal operators. Properties (a) and (b) follow trivially from the con-

struction. Finally note that D{vnf un — ux) — 0, since supp un — UίCiRnΓ\ W

and conclude that D(vny ux) = D(vny un) = 0 which gives D{υy uγ) = 0, i.e. pro-

perty (d).

8. Another application of the generalized Green's formula is the

Royden-Nakai decomposition which we proceed to describe* A Riemannian

manifold R is called parabolic or hyperbolic according as Δ = φ or ά ψ φ. As

in No. 7 we consider an exhaustion of R by regular regions {Rn}°Z such that

Ω = Ro and we use the symbols un, μn for the u and μ that result from ap-

plying Theorem 3.1 with Ro and Rn playing the roles of Ω and Ωo respe-

ctively. By the maximum principle we see that {un} forms a decreasing
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sequence and again by Corollary 2.3 we have D(un+P, un+p — un) = 0. Thus

Woo = BDAΊmUn exists, u^&H^W) and is either strictly less than 1 on the in-

terior of W or identically 1. It can easily be seen that (cf. [6], [3])

LEMMA 8.1. R is parabolic if and only if D{uJ) = 0.

The norms of the measures μn on a are given by D{un) which are

bounded. Thus there exists a subsequence of {μn} converging in the weak*

sense to a nonnegative measure μTC on a.

LEMMA 8.2. For g^MΔf D(g, uj) = \g dμ^

For the proof take a sequence {gk}aM with compact supports such that

g = BD-lΊm gk. For a fixed k take nk so large that supp^csupp unk. Then

for every n>nk we have D(gk, un) = \gk dμn and letting n -+ oo gives D(gk,

ĉc) = \gk dμ^. Now letting k->co gives the assertion.

COROLLARY 8.3. /)(««,) = [dμ^. In particular, if R is hyperbolic, then μ^

is nonzero.

This follows by noting that MOCGMJ. The Royden-Nakai decomposition

now follows.

THEOREM 8.4. Suppose that R is hyperbolic and f^^{R) with D(f) < + oo.

There exists a unique pair h, g such that f = h + g, h<=H{R) and there exists a

sequence {gn}aM with compact supports with g = CD-\Ίmgn.

For the proof we consider first the positive part / + of /. Taking our

exhaustion {Rn}°o of R we let hή be the continuous function on R such that

K = f+ on R\Rn and h^H(Rn). Set gή = f+ ~ K Then as in preceding

arguments we can see that D(f+) = D{K) + D{g'n) and D{hί+P - K) = D(h'n)

-D{h'nΛV).

Since {hή} is eventually positive harmonic on compact sets a subsequence

converges uniformly on compact sets to a harmonic function h'^H(R) or to

+ oo. Assume the latter alternative. By Lemma 8.2 and the Schwarz

inequality we have

This is a contradiction in view of the facts that / is finite on «, £>(zθ is
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nonzero and μ^ is nontrivial. Thus h'^H{R) and also g' — CD-lim gή exists.

The above procedure gives /"* = h" + g" with the same properties.

Then / = (hr — h") + {gf — g") is the desired decomposition. If / = h0 + g0

were another decomposition of this sort, then h0 — h — g — gQ would be the

CD-limit of a sequence {φn}czM with compact supports. The harmonicity

of h0 — h gives D(h0 — h, ψn) — 0 and consequently D(h0 — h) — 0, i.e. h0 — h

is a constant k. But then k is the jδD-limit of the sequence of functions

{(^ί l |fcI)U(— Ifcl)} with compact supports. Thus k<^Mj. Since R is hyper-

bolic, Δ ψ φ and k must be 0.
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