S. Yamashita Nagoya Math. J. Vol. 45 (1971), 109-117

FUNCTION-THEORETIC METRICS AND BOUNDARY BEHAVIOUR OF FUNCTIONS MEROMORPHIC OR HOLOMORPHIC IN THE UNIT DISK

SHINJI YAMASHITA

- § 1. **Introduction.** The metrics to which the title of the present paper refers are expressed in the form of elements of arc length as follows:
- (i) |dw| in the finite w-plane $W_1: |w| < \infty$.
- (ii) $\frac{|dw|}{1+|w|^2}$ in the Riemann w-sphere $W_2:|w| \leq \infty$.
- (iii) $\frac{|dw|}{1-|w|^2}$ in the open unit disk $W_3:|w|<1$.

Let D:|z|<1 be the open unit disk and let $\Gamma:|z|=1$ be the unit circle in the z-plane. We fix a constant ρ , $1/2<\rho<1$, once and for all and we denote by $\mathcal{D}(\zeta)$ the open disk $\{z; |z-\rho\zeta|<1-\rho\}$ for $\zeta\in\Gamma$. By a segment X at $\zeta\in\Gamma$ we mean an open rectilinear segment connecting ζ and a point of D. Let w=f(z) be a function from D into $W_j(j=1,2,3)$, being meromorphic or holomorphic in D, and set for $z=re^{i\theta}\in D$,

$$egin{aligned} \delta_1(r,\, heta) &= \left| f'(re^{i heta})
ight|; \ \delta_2(r,\, heta) &= rac{\left| f'(re^{i heta})
ight|}{1 + \left| f(re^{i heta})
ight|^2}; \ \delta_3(r,\, heta) &= rac{\left| f'(re^{i heta})
ight|}{1 - \left| f(re^{i heta})
ight|^2}; \end{aligned}$$

corresponding respectively to j = 1, 2 and 3. The word "capacity" always means "logarithmic capacity". Then our result is stated in the following

THEOREM. Let M be a subset of Γ which is a Borel set in the plane and set

$$\sigma = \bigcup_{\zeta \in M} \mathscr{D}(\zeta).$$

Received November 27, 1970.

Let w = f(z) be a meromorphic or holomorphic function from D into W_j such that

(1)
$$\iint_{\sigma} \{ \delta_j(r, \theta) \}^2 r dr d\theta < \infty \quad (j = 1, 2, 3).$$

Then there exists a subset E_j of M, being of capacity zero*, such that for any $\zeta \in M$ — E_j and for any segment X at ζ we have

according as j = 1, 2, 3.

The condition (2) for j = 1, 2, 3 implies the existence of a limiting value $f(\zeta) \in W_j$ of f(z) as $X \ni z \to \zeta$ according as j = 1, 2, 3. Then by the theorem of Lindelöf-Iversen-Gross [1, p. 5] combined with our condition (1), the function f has the angular limit $f(\zeta)$ at ζ , in other words, ζ is a Fatou point [1, p. 59] of f. It should therefore be noted that our theorem in the case j = 1, 2 gives "localization" of Beurling-Tsuji's theorem ([3, Theorems 3 and 4], [4, p. 344]).

An application of the theorem for j=3 is the following. Let $G \subset W_3$ be a Jordan domain whose non-Euclidean area is finite and let $w = \Phi(z)$ be a one-to-one conformal map from D onto G in the w-plane. Furthermore, let $\Phi(\zeta)$ be the Carathéodory extension of Φ to Γ . Then we have $|\Phi(\zeta)| < 1$ except perhaps for a set of $\zeta \in \Gamma$ of capacity zero. Therefore, the boundary of G touches the circle |w| = 1 at a "thin" set in this sense.

§ 2. Three lemmas. Let $0 < \alpha < \pi/2$ and let $\Delta = \{re^{i\theta}; 0 < r \le 1, |\theta| \le \alpha\}$. We let $\Delta^* \supset \Delta$ be an open disc whose boundary contains the origin and we use the same notation $\delta_j(r, \theta)$ as in § 1 for a function f defined in $\Delta^*(j = 1, 2, 3)$. We begin with two lemmas [4, p. 342, Theorem VIII. 47 and p. 343, Theorem VIII. 48] expressed in one.

Lemma j(j=1,2). Let w=f(z) be a function from Δ^* into W_j , being meromorphic or holomorphic in Δ^* . Assume that f does not take three distinct points of W_2 in Δ^* and set

$$\Lambda_j(\theta) = \int_0^1 \delta_j(r, \, \theta) dr$$

for $|\theta| \leq \alpha$. Assume furthermore that both $\Lambda_j(-\alpha)$ and $\Lambda_j(\alpha)$ are finite. Then $\Lambda_j(\theta)$ is bounded for $|\theta| \leq \alpha$.

^{*)} In other words, the outer logarithmic capacity of E_j is zero.

The following lemma needs a proof.

Lemma 3. Let w = f(z) be a holomorphic function from Δ^* into W_3 . Set

$$\Lambda_3(\theta) = \int_0^1 \delta_3(r, \theta) dr$$

for $|\theta| \leq \alpha$ and assume that both $\Lambda_3(-\alpha)$ and $\Lambda_3(\alpha)$ are finite. Then $\Lambda_3(\theta)$ is bounded for $|\theta| \leq \alpha$.

Proof. As f is bounded in Δ^* , by the same argument as in the next paragraph to the theorem in §1 the origin is a Fatou point of f at which f has the angular limit f(0) with |f(0)| < 1. This implies that we have a positive constant B such that $(1 - |f(re^{i\theta})|^2)^{-1} < B$ on Δ . On the other hand, both $\Lambda_1(-\alpha)$ and $\Lambda_1(\alpha)$ are finite because of $\delta_3(r, \theta) \ge \delta_1(r, \theta)$ for $|\theta| \le \alpha$. Lemma 3 follows from Lemma 1 combined with $\Lambda_3(\theta) \le B\Lambda_1(\theta)$ for $|\theta| \le \alpha$.

§ 3. **Proof of Theorem.** In the following $z = re^{i\theta}$ and $e^{i\omega}$ are always points of D and M respectively. To avoid unnecessary complexity we drop the suffix j of $\delta_j(r,\theta)$ if the argument is true for j=1,2,3. We remark that $\delta_2(r,\theta)$ is not defined at the poles of f; but this is not essential in the following proof.

We set

$$h(r, \theta) = \begin{cases} \delta(r, \theta) & \text{for } z \in \sigma, \\ 0 & \text{for } z \in D - \sigma. \end{cases}$$

Let $\phi \equiv \phi(r, \theta) = \pi - \arg(re^{i\theta} - 1)$, where 0 < r < 1, $|\theta| \le \pi$ and $\pi/2 < \arg(re^{i\theta} - 1) < 3\pi/2$. Then by $\tan \phi = r \sin \theta/(1 - r \cos \theta)$ we have

(3)
$$\frac{\partial \phi}{\partial \theta} = -\frac{\partial}{\partial \theta} \arg (re^{i\theta} - 1)$$
$$= \frac{\partial}{\partial \theta} \operatorname{Im} \log \{1/(re^{i\theta} - 1)\}$$
$$= r(\cos \theta - r)/(1 - 2r \cos \theta + r^2).$$

We next consider the function

(4)
$$H(\omega; r, \theta) = h(r, \theta + \omega) \frac{\partial \psi}{\partial \theta}.$$

Then $H(\omega; r, \theta)$, for a fixed ω , is Lebesgue measurable for 0 < r < 1 and $|\theta| \le \pi$; and $H(\omega; r, \theta) \ge 0$ in the disk

$$S = \{re^{i\theta}; \cos \theta > r\}$$

and further $H(\omega; r, \theta) \leq 0$ in D - S by (3). Therefore we may consider two integrals:

$$J_1(\omega) = \iint_S H(\omega; r, \theta) dr d\theta \ge 0$$

and

$$J_2(\omega) = - \iint_{D-S} H(\omega; r, \theta) dr d\theta \ge 0$$

for $e^{i\omega} \in M$. We first assert that

(I) $J_2(\omega) < +\infty$ for any $e^{i\omega} \in M$, so that $H(\omega; r, \theta)$ possesses a definite integral on D [2, p. 20] and that

(5)
$$J(\omega) \equiv \iint_{D} H(\omega; r, \theta) dr d\theta = J_{1}(\omega) - J_{2}(\omega).$$

We let, for the proof, C_r be the circle |z| = r, 0 < r < 1. Then

$$-\frac{\partial \phi}{\partial \theta} = r(r - \cos \theta)/(1 - 2r \cos \theta + r^2) \le r/(r+1) < r$$

for $re^{i\theta} \in C_r - S$. This can be proved by considering $-\frac{\partial \psi}{\partial \theta}$ as a function of $\cos \theta$ (cf. [4, p. 346]). Therefore by (3) and (4) we have

(6)
$$-H(\omega; r, \theta) \leq rh(r, \theta + \omega), re^{i\theta} \in C_r - S.$$

We estimate $J_2(\omega)$ upwards by (6) and by Schwarz's inequality as follows:

$$egin{aligned} J_2(\omega) &= -\int_0^1\!dr\!\int_{C_r-S}\!H(\omega\,;r,\, heta)d heta &\leq \int_0^1\!dr\!\int_{C_r-S}\!rh(r,\, heta+\omega)d heta \ &= \iint_{D-S}\!h(r,\, heta+\omega)rdrd heta &\leq \iint_D\!h(r,\, heta+\omega)rdrd heta \ &= \iint_D\!h(r,\, heta)rdrd heta &\leq \pi^{1/2} \Big[\iint_D\{h(r,\, heta)\}^2rdrd heta \Big]^{1/2} \ &= (\pi U)^{1/2} < +\infty. \end{aligned}$$

where

(7)
$$U = \iint_{D} \{h(r, \theta)\}^{2} r dr d\theta = \iint_{\sigma} \{\delta(r, \theta)\}^{2} r dr d\theta < +\infty$$

by our assumption (1) in the theorem. This completes the proof of (I).

Let $\angle(\omega, \varphi)$ be the chord of the circle $|z - \rho e^{i\omega}| = 1 - \rho$, with one endpoint $e^{i\omega}$, making the directed angle φ , $|\varphi| < \pi/2$, with the radius of D at $e^{i\omega}$. We shall use the notation $\angle(0, \varphi)$ though $\zeta = 1$ may not be in M. The chord $\angle(\omega, \varphi)$ has the length

(8)
$$\lambda(\varphi) = (2 - 2\rho)\cos\varphi,$$

being independent of ω . We then set for $-\pi/2 < \varphi < \pi/2$,

(9)
$$L(\omega, \varphi) = \int_{\mathscr{L}(\omega, \varphi)} \delta(r, \theta) |dz| \quad (z = re^{i\theta} \in \mathscr{L}(\omega, \varphi))$$

and we consider the function $\chi(\omega)$ on M defined by

(10)
$$\chi(\omega) = \int_{-\pi/2}^{\pi/2} L(\omega, \varphi) \cos \varphi d\varphi.$$

(II) The function $\chi(\omega)$ is Borel measurable on M.

We shall prove this for $\delta_2(r, \theta)^*$. In other cases the proofs are simpler and hence are omitted.

Let r_k $(k=1,2,\cdots)$ be the circle $|z|=r_k$, $2\rho-1 \le r_k < 1$, such that $r_k \nearrow 1$ and the set $\bigcup_{k=1}^{\infty} r_k$ contains all the poles of f in the half-open ring $\{z; \ 2\rho-1 \le |z| < 1\}$. Let $R_{\nu}(\nu=1,2,\cdots)$ be the open set, being o the form of a summation of ring domains whose boundaries are concentric circles with the centre z=0, such that

$$R_1 \supset R_2 \supset \cdots \supset \bigcap_{\nu=1}^{\infty} R_{\nu} = \bigcup_{k=1}^{\infty} \gamma_k$$
.

Let $2\rho - 1 < \beta_1 < \cdots < \beta_m < \cdots < 1$, $\beta_m \nearrow 1$ and let D_m be the closed ring $\{z; 2\rho - 1 \le |z| \le \beta_m\}$. We then set $D_{m\nu} = D_m - R_{\nu}$ for $m, \nu = 1, 2 \cdots$. We note first that

(11)
$$L(\omega, \varphi) = \int_{\mathscr{L}(\omega, \varphi)} \delta_2(r, \theta) |dz| = \int_{\mathscr{L}(0, \varphi)} \delta_2(r, \theta + \omega) |dz|$$
$$(z = re^{i\theta} \in \mathscr{L}(0, \varphi) \text{ in the last expression})$$

and we then consider

$$\begin{split} L_{m\nu}(\omega,\;\varphi) &\equiv \int_{\swarrow(0,\;\varphi)\cap D_{m\nu}} \delta_2(r,\;\theta+\omega) \, |\, dz \, | \\ (z &= re^{\imath\theta} \in \swarrow(0,\;\varphi)\cap D_{m\nu}). \end{split}$$

^{*)} δ_2 may be extended continuously to the poles of f and our proof will be rather simplified (Added in proof).

We shall show that for any $e^{i\omega_0} \in M$ we have $L_{m\nu}(\omega, \varphi) \to L_{m\nu}(\omega_0, \varphi)$ as $\omega \to \omega_0$ uniformly for $-\pi/2 < \varphi < \pi/2$, so that

$$\chi_{m\nu}(\omega) \equiv \int_{-\pi/2}^{\pi/2} L_{m\nu}(\omega, \varphi) \cos \varphi d\varphi$$

is continuous on M. Indeed,

$$\begin{split} &|L_{m\nu}(\omega, \varphi) - L_{m\nu}(\omega_0, \varphi)| \\ &\leq \int_{\mathscr{L}(0, \varphi) \cap D_{m\nu}} |\delta_2(r, \theta + \omega) - \delta_2(r, \theta + \omega_0)||dz| \\ &\leq \{ \max_{re^{i\theta} \in D_{m\nu}} |\delta_2(r, \theta + \omega) - \delta_2(r, \theta + \omega_0)| \} \times \\ &\times \{ \sup_{|\varphi| < \pi/2} \int_{\mathscr{L}(0, \varphi) \cap D_{m\nu}} |dz| \}, \end{split}$$

so that our assertion follows from the uniform continuity of the function $\delta_2(r, \theta)$ on the compact set $D_{m\nu}$. Set

$$L_m(\omega, \varphi) = \int_{\mathcal{L}(0, \omega) \cap D_m} \delta_2(r, \theta + \omega) |dz|$$

and further set

$$\chi_m(\omega) = \int_{-\pi/2}^{\pi/2} L_m(\omega, \varphi) \cos \varphi d\varphi.$$

Then $\chi_{m\nu}(\omega) \nearrow \chi_m(\omega)$ as $\nu \nearrow \infty$ and $\chi_m(\omega) \nearrow \chi(\omega)$ as $m \nearrow \infty$. This proves our proposition (II).

(III) The inequality $J_1(\omega) \ge (2\rho - 1)\chi(\omega)$ holds for any $e^{i\omega} \in M$.

We remember that $\mathcal{D}(1)$ is the disk $|z-\rho| < 1-\rho$ and we let

$$J_1^*(\omega) = \iint_{\mathscr{D}(1)} H(\omega; r, \theta) dr d\theta.$$

Then $J_1(\omega) \ge J_1^*(\omega)$ since $S \supset \mathcal{D}(1)$ and $H(\omega; r, \theta) \ge 0$ in S. To estimate $J_1^*(\omega)$ downwards, we set for $re^{i\theta} \in \mathcal{D}(1)$,

$$t=\lceil re^{i\theta}-1 \rceil$$
 and $\psi=\pi-\arg{(re^{i\theta}-1)}$ for $\pi/2<\arg{(re^{i\theta}-1)}<3\pi/2$.

Then $1 > r = (1 - 2t \cos \phi + t^2)^{1/2}$, and on the chord $\angle(0, \phi)$, for a fixed ϕ , $|\psi| < \pi/2$, we have

$$dr = (t - \cos \phi)(1 - 2t \cos \phi + t^2)^{-1/2}dt$$

 $\ge (\cos \phi - t)(-dt) \text{ (for } dt \le 0).$

We note that r decreases as t increases on $\angle(0, \psi)$ and $\cos \psi \ge t$ since $re^{i\theta} \in \mathcal{D}(1) \subset S$. Furthermore, on the circle $C_r : |z| = r$, 0 < r < 1, we have

$$H(\omega; r, \theta)d\theta = h(r, \theta + \omega)d\phi$$

by (4). We therefore obtain

$$\begin{split} J_1^*(\omega) &= \int_{2\rho-1}^1 dr \int_{C_r \cap \mathcal{D}(1)} H(\omega; r, \theta) d\theta \\ &= \int_{2\rho-1}^1 dr \int_{C_r \cap \mathcal{D}(1)} h(r, \theta + \omega) d\psi \\ &= \int_{\mathcal{D}(1)}^{\pi/2} h(r, \theta + \omega) dr d\psi \\ &= \int_{-\pi/2}^{\pi/2} d\psi \int_{\mathcal{L}(0, \psi)} h(r, \theta + \omega) dr \\ &\geq \int_{-\pi/2}^{\pi/2} d\psi \int_0^{\lambda(\psi)} \delta(r, \theta + \omega) (\cos \psi - t) dt \end{split}$$

(where $\lambda(\phi)$ is defined in (8); we note that $h(r, \theta + \omega) = \delta(r, \theta + \omega)$ for $re^{i\theta} \in \mathcal{D}(1)$ since $\sigma \supset \mathcal{D}(e^{i\omega})$

$$\geq (2\rho - 1) \int_{-\pi/2}^{\pi/2} d\psi \int_{0}^{\lambda(\psi)} \delta(r, \theta + \omega) \cos \psi dt$$

(because of $\cos \psi - t \ge (2\rho - 1)\cos \psi$ for $0 \le t \le \lambda(\psi)$)

$$= (2\rho - 1) \int_{-\pi/2}^{\pi/2} L(\omega, \psi) \cos \psi d\psi$$

(cf. (11); the formula (11) is true for δ)

$$= (2\rho - 1)\chi(\omega).$$

(IV) The set $E = \{e^{i\omega} \in M; \ \chi(\omega) = +\infty\}$ is of capacity zero.

By (II) the set E is a Borel set in the plane, so that E is capacitable by the celebrated Choquet theorem. Therefore we have only to prove that E is of inner capacity zero. Assume on the contrary that E contains a closed set E of positive capacity and let

$$u(z) = \int_{F} \log \left(\frac{1}{|z - e^{i\omega}|} \right) d\mu(\omega) \le V < + \infty$$

be the conductor potential [4, p. 55] of F, where V is a constant and μ is a Borel measure on F of total mass $\mu(F) = 1$. Then we have [4, p. 345]

$$(12) \qquad \qquad \iint_{\mathbb{R}} \left(\frac{\partial u}{\partial r} \right)^2 r dr d\theta \le \pi V/2$$

and

(13)
$$r \frac{\partial u}{\partial r} = -\int_{r} \frac{\partial}{\partial \theta} \arg (re^{i\theta} - e^{i\omega}) d\mu(\omega).$$

We next consider the function

(14)
$$Q(\omega; r, \theta) \equiv H(\omega; r, \theta - \omega)$$

$$= -h(r, \theta) \frac{\partial}{\partial \theta} \arg(re^{i\theta} - e^{i\omega})$$

$$= h(r, \theta) r \{\cos(\theta - \omega) - r\} / \{1 - 2r\cos(\theta - \omega) + r^2\}$$

for $re^{i\theta} \in D$ and $e^{i\omega} \in F$ (cf. (3), (4)). Then Q is a Borel measurable function on the product space $D \times F$ and by (13) and (14) we have

$$h(r, \theta)r\frac{\partial u}{\partial r} = \int_{F} Q(\omega; r, \theta) d\mu(\omega).$$

On the other hand, both $h(r, \theta)$ and $\frac{\partial u}{\partial r}$ are square summable on D with respect to the measure $rdrd\theta$ by (7) and (12). Therefore, we have by Schwarz's inequality,

$$\begin{split} J &\equiv \iint_D dr d\theta \! \int_F \! Q(\omega; \, r, \, \theta) d\mu(\omega) \\ &= \iint_D \! h(r, \, \theta) r \! - \! \frac{\partial u}{\partial r} dr d\theta \neq \pm \, \infty. \end{split}$$

By Fubini's theorem [2, p. 87] applied to the positive and the negative parts of Q respectively we have

(15)
$$J = \int_{F} d\mu(\omega) \iint_{D} Q(\omega; r, \theta) dr d\theta \neq \pm \infty.$$

Now, by (3), (4), (5) and (14) we have

$$\begin{split} J(\omega) &= \iint_D h(r, \; \theta + \omega) \frac{\partial}{\partial \theta} \{ -\arg{(re^{i\theta} - 1)} \} dr d\theta \\ &= \iint_D h(r, \; \theta) \frac{\partial}{\partial \theta} \{ -\arg{(re^{i\theta} - e^{i\omega})} \} dr d\theta \\ &= \iint_D Q(\omega; \; r, \; \theta) dr d\theta, \end{split}$$

so that by (15),

$$J = \int_{F} J(\omega) d\mu(\omega) \neq \pm \infty.$$

However, by (5), (III) and the very definition of E we have $J(\omega) = +\infty$ for $e^{i\omega} \in F \subset E$. This is a contradiction.

(V) The set E is the exceptional set in the statement of the theorem.

Let $e^{i\omega} \in M - E$. Then $\chi(\omega) < +\infty$, so that by the definition of $\chi(\omega)$ (cf. (10)), the quantity $L(\omega, \varphi)$ (cf. (9)) is finite for a.e., φ , $|\varphi| < \pi/2$. Consequently, there are two chords $\mathcal{L}(\omega, \varphi_1)$ and $\mathcal{L}(\omega, \varphi_2)$, $-\pi/2 < \varphi_1 < \varphi_2 < \pi/2$, at $e^{i\omega}$ such that $L(\omega, \varphi_k) < +\infty$, k=1,2. By Lemma j for j=1,2,3 and by our assumption (1) we know that $L(\omega, \varphi) < +\infty$ for any φ , $\varphi_1 < \varphi < \varphi_2$. Repeating this process, we have the required property (2) at the point $e^{i\omega} \in M - E$.

REFERENCES

- [1] K. Noshiro, Cluster sets, Berlin-Göttingen-Heidelberg (1960).
- [2] S. Saks, Theory of the integral, second edition, Warsaw (1937).
- [3] M. Tsuji, Beurling's theorem on exceptional sets, Tôhoku Math. J. 2 (1950), 113-125.
- [4] M. Tsuji, Potential theory in modern function theory, Tokyo (1959).

Mathematical Institute Tôhoku University Sendai 980, Japan