FUNCTION-THEORETIC METRICS AND BOUNDARY BEHAVIOUR OF FUNGTIONS MEROMORPHIC OR HOLOMORPHIC IN THE UNIT DISK

SHINJI YAMASHITA

§ 1. Introduction. The metrics to which the title of the present paper refers are expressed in the form of elements of arc length as follows:
(i) $|d w|$ in the finite w-plane $W_{1}:|w|<\infty$.
(ii) $\frac{|d w|}{1+|w|^{2}}$ in the Riemann w-sphere $W_{2}:|w| \leqq \infty$.
(iii) $\frac{|d w|}{1-|w|^{2}}$ in the open unit disk $W_{3}:|w|<1$.

Let $D:|z|<1$ be the open unit disk and let $\Gamma:|z|=1$ be the unit circle in the z-plane. We fix a constant $\rho, 1 / 2<\rho<1$, once and for all and we denote by $\mathscr{D}(\zeta)$ the open disk $\{z ;|z-\rho \zeta|<1-\rho\}$ for $\zeta \in \Gamma$. By a segment X at $\zeta \in \Gamma$ we mean an open rectilinear segment connecting ζ and a point of D. Let $w=f(z)$ be a function from D into $W_{j}(j=1,2,3)$, being meromorphic or holomorphic in D, and set for $z=r e^{i \theta} \in D$,

$$
\begin{aligned}
& \delta_{1}(r, \theta)=\left|f^{\prime}\left(r e^{i \theta}\right)\right| ; \\
& \delta_{2}(r, \theta)=\frac{\left|f^{\prime}\left(r e^{i \theta}\right)\right|}{1+\left|f\left(r e^{i \theta}\right)\right|^{2}} ; \\
& \delta_{3}(r, \theta)=\frac{\left|f^{\prime}\left(r e^{i \theta}\right)\right|}{1-\left|f\left(r e^{i \theta}\right)\right|^{2}} ;
\end{aligned}
$$

corresponding respectively to $j=1,2$ and 3 . The word "capacity" always means "logarithmic capacity". Then our result is stated in the following

Theorem. Let M be a subset of Γ which is a Borel set in the plane and set

$$
\sigma=\bigcup_{\zeta \in M} \mathscr{D}(\zeta) .
$$

Received November 27, 1970.

Let $w=f(z)$ be a meromorphic or holomorphic function from D into W_{j} such that

$$
\begin{equation*}
\iint_{\sigma}\left\{\delta_{j}(r, \theta)\right\}^{2} r d r d \theta<\infty \quad(j=1,2,3) \tag{1}
\end{equation*}
$$

Then there exists a subset E_{j} of M, being of capacity zero*), such that for any $\zeta \in M$ $-E_{j}$ and for any segment X at ζ we have

$$
\begin{equation*}
\int_{X} \delta_{j}(r, \theta)|d z|<\infty \quad\left(z=r e^{i \theta} \in X\right) \tag{2}
\end{equation*}
$$

according as $j=1,2,3$.
The condition (2) for $j=1,2,3$ implies the existence of a limiting value $f(\zeta) \in W_{j}$ of $f(z)$ as $X \ni z \rightarrow \zeta$ according as $j=1,2,3$. Then by the theorem of Lindelöf-Iversen-Gross [1, p. 5] combined with our condition (1), the function f has the angular limit $f(\zeta)$ at ζ, in other words, ζ is a Fatou point [1, p. 59] of f. It should therefore be noted that our theorem in the case $j=1,2$ gives "localization" of Beurling-Tsuji's theorem ([3, Theorems 3 and 4], [4, p. 344]).

An application of the theorem for $j=3$ is the following. Let $G \subset W_{3}$ be a Jordan domain whose non-Euclidean area is finite and let $w=\Phi(z)$ be a one-to-one conformal map from D onto G in the w-plane. Furthermore, let $\Phi(\zeta)$ be the Carathéodory extension of Φ to Γ. Then we have $|\Phi(\zeta)|<1$ except perhaps for a set of $\zeta \in \Gamma$ of capacity zero. Therefore, the boundary of G touches the circle $|w|=1$ at a "thin" set in this sense.
§2. Three lemmas. Let $0<\alpha<\pi / 2$ and let $\Delta=\left\{r e^{i \theta} ; 0<r \leqq 1,|\theta| \leqq \alpha\right\}$. We let $\Delta^{*} \supset \Delta$ be an open disc whose boundary contains the origin and we use the same notation $\delta_{j}(r, \theta)$ as in $\S 1$ for a function f defined in $\Delta *(j=1$, 2,3). We begin with two lemmas [4, p. 342, Theorem VIII. 47 and p. 343, Theorem VIII. 48] expressed in one.

Lemma $j(j=1,2)$. Let $w=f(z)$ be a function from Δ^{*} into W_{j}, being meromorphic or holomorphic in Δ^{*}. Assume that f does not take three distinct points of W_{2} in Δ^{*} and set

$$
\Lambda_{j}(\theta)=\int_{0}^{1} \partial_{j}(r, \theta) d r
$$

for $|\theta| \leqq \alpha$. Assume furthermore that both $\Lambda_{j}(-\alpha)$ and $\Lambda_{j}(\alpha)$ are finite. Then $\Lambda_{j}(\theta)$ is bounded for $|\theta| \leqq \alpha$.

[^0]The following lemma needs a proof.
Lemma 3. Let $w=f(z)$ be a holomorphic function from Δ^{*} into W_{3}. Set

$$
\Lambda_{3}(\theta)=\int_{0}^{1} \dot{o}_{3}(r, \theta) d r
$$

for $|\theta| \leqq \alpha$ and assume that both $\Lambda_{3}(-\alpha)$ and $\Lambda_{3}(\alpha)$ are finite. Then $\Lambda_{3}(\theta)$ is bounded for $|\theta| \leqq \alpha$.

Proof. As f is bounded in Δ^{*}, by the same argument as in the next paragraph to the theorem in $\S 1$ the origin is a Fatou point of f at which f has the angular limit $f(0)$ with $|f(0)|<1$. This implies that we have a positive constant B such that $\left(1-\left|f\left(r e^{i \theta}\right)\right|^{2}\right)^{-1}<B$ on Δ. On the other hand, both $\Lambda_{1}(-\alpha)$ and $\Lambda_{1}(\alpha)$ are finite because of $\delta_{3}(r, \theta) \geqq \delta_{1}(r, \theta)$ for $|\theta| \leqq \alpha$. Lemma 3 follows from Lemma 1 combined with $\Lambda_{3}(\theta) \leqq B \Lambda_{1}(\theta)$ for $|\theta| \leqq \alpha$.
§ 3. Proof of Theorem. In the following $z=r e^{i \theta}$ and $e^{i \omega}$ are always points of D and M respectively. To avoid unnecessary complexity we drop the suffix j of $\delta_{j}(r, \theta)$ if the argument is true for $j=1,2,3$. We remark that $\delta_{2}(r, \theta)$ is not defined at the poles of f; but this is not essential in the following proof.

We set

$$
h(r, \theta)= \begin{cases}\delta(r, \theta) & \text { for } z \in \sigma, \\ 0 & \text { for } z \in D-\sigma .\end{cases}
$$

Let $\psi \equiv \psi(r, \theta)=\pi-\arg \left(r e^{i \theta}-1\right)$, where $0<r<1,|\theta| \leqq \pi$ and $\pi / 2<\arg$ $\left(r e^{i \theta}-1\right)<3 \pi / 2$. Then by $\tan \psi=r \sin \theta /(1-r \cos \theta)$ we have

$$
\begin{align*}
\frac{\partial \psi}{\partial \theta} & =-\frac{\partial}{\partial \theta} \arg \left(r e^{i \theta}-1\right) \tag{3}\\
& =\frac{\partial}{\partial \theta} \operatorname{Im} \log \left\{1 /\left(r e^{\imath \theta}-1\right)\right\} \\
& =r(\cos \theta-r) /\left(1-2 r \cos \theta+r^{2}\right) .
\end{align*}
$$

We next consider the function

$$
\begin{equation*}
H(\omega ; r, \theta)=h(r, \theta+\omega) \frac{\partial \psi}{\partial \theta} . \tag{4}
\end{equation*}
$$

Then $H(\omega ; r, \theta)$, for a fixed ω, is Lebesgue measurable for $0<r<1$ and $|\theta|$ $\leqq \pi$; and $H(\omega ; r, \theta) \geqq 0$ in the disk

$$
S=\left\{r e^{i \theta} ; \cos \theta>r\right\}
$$

and further $H(\omega ; r, \theta) \leqq 0$ in $D-S$ by (3). Therefore we may consider two integrals:

$$
J_{1}(\omega)=\iint_{S} H(\omega ; r, \theta) d r d \theta \geqq 0
$$

and

$$
J_{2}(\omega)=-\iint_{D-S} H(\omega ; r, \theta) d r d \theta \geqq 0
$$

for $e^{i \omega} \in M$. We first assert that
(I) $J_{2}(\omega)<+\infty$ for any $e^{i \omega} \in M$, so that $H(\omega ; r, \theta)$ possesses a definite integral on D [2, p. 20] and that

$$
\begin{equation*}
J(\omega) \equiv \iint_{D} H(\omega ; r, \theta) d r d \theta=J_{1}(\omega)-J_{2}(\omega) \tag{5}
\end{equation*}
$$

We let, for the proof, C_{r} be the circle $|z|=r, 0<r<1$. Then

$$
-\frac{\partial \psi}{\partial \theta}=r(r-\cos \theta) /\left(1-2 r \cos \theta+r^{2}\right) \leqq r /(r+1)<r
$$

for $r e^{2 \theta} \in C_{r}-S$. This can be proved by considering $-\frac{\partial \psi}{\partial \theta}$ as a function of $\cos \theta$ (cf. [4, p. 346]). Therefore by (3) and (4) we have

$$
\begin{equation*}
-H(\omega ; r, \theta) \leqq r h(r, \theta+\omega), r e^{i \theta} \in C_{r}-S . \tag{6}
\end{equation*}
$$

We estimate $J_{2}(\omega)$ upwards by (6) and by Schwarz's inequality as follows:

$$
\begin{aligned}
J_{2}(\omega) & =-\int_{0}^{1} d r \int_{C_{r}-S} H(\omega ; r, \theta) d \theta \leqq \int_{0}^{1} d r \int_{C_{r}-S} r h(r, \theta+\omega) d \theta \\
& =\iint_{D-S} h(r, \theta+\omega) r d r d \theta \leqq \iint_{D} h(r, \theta+\omega) r d r d \theta \\
& =\iint_{D} h(r, \theta) r d r d \theta \leqq \pi^{1 / 2}\left[\iint_{D}\{h(r, \theta)\}^{2} r d r d \theta\right]^{1 / 2} \\
& =(\pi U)^{1 / 2}<+\infty,
\end{aligned}
$$

where

$$
\begin{equation*}
U=\iint_{D}\{h(r, \theta)\}^{2} r d r d \theta=\iint_{\sigma}\{\delta(r, \theta)\}^{2} r d r d \theta<+\infty \tag{7}
\end{equation*}
$$

by our assumption (1) in the theorem. This completes the proof of (I).

Let $\ell(\omega, \varphi)$ be the chord of the circle $\left|z-\rho e^{i \omega}\right|=1-\rho$, with one endpoint $e^{i \omega}$, making the directed angle $\varphi,|\varphi|<\pi / 2$, with the radius of D at $e^{i \omega}$. We shall use the notation $\ell(0, \varphi)$ though $\zeta=1$ may not be in M. The chord $\ell(\omega, \varphi)$ has the length

$$
\begin{equation*}
\lambda(\varphi)=(2-2 \rho) \cos \varphi, \tag{8}
\end{equation*}
$$

being independent of ω. We then set for $-\pi / 2<\varphi<\pi / 2$,

$$
\begin{equation*}
L(\omega, \varphi)=\int_{\ell(\omega, \varphi)} \delta(r, \theta)|d z| \quad\left(z=r e^{i \theta} \in \ell(\omega, \varphi)\right) \tag{9}
\end{equation*}
$$

and we consider the function $\chi(\omega)$ on M defined by

$$
\begin{equation*}
\chi(\omega)=\int_{-\pi / 2}^{\pi / 2} L(\omega, \varphi) \cos \varphi d \varphi \tag{10}
\end{equation*}
$$

(II) The function $\chi(\omega)$ is Borel measurable on M.

We shall prove this for $\delta_{2}(r, \theta)^{*)}$. In other cases the proofs are simpler and hence are omitted.

Let $\gamma_{k}(k=1,2, \cdots)$ be the circle $|z|=r_{k}, 2 \rho-1 \leqq r_{k}<1$, such that $r_{k} \nearrow 1$ and the set $\bigcup_{k=1}^{\infty} \gamma_{k}$ contains all the poles of f in the half-open ring $\{z ; 2 \rho-1 \leqq|z|<1\}$. Let $R_{\nu}(\nu=1,2, \cdots)$ be the open set, being o the form of a summation of ring domains whose boundaries are concentric circles with the centre $z=0$, such that

$$
R_{1} \supset R_{2} \supset \cdots \supset \bigcap_{\nu=1}^{\infty} R_{\nu}=\bigcup_{k=1}^{\infty} r_{k} .
$$

Let $2 \rho-1<\beta_{1}<\cdots<\beta_{m}<\cdots<1, \beta_{m} \nearrow 1$ and let D_{m} be the closed ring $\left\{z ; 2 \rho-1 \leqq|z| \leqq \beta_{m}\right\}$. We then set $D_{m \nu}=D_{m}-R_{\nu}$ for $m, \nu=1,2 \cdots$ We note first that

$$
\begin{gather*}
L(\omega, \varphi)=\int_{\ell(\omega, \varphi)} \delta_{2}(r, \theta)|d z|=\int_{\ell(0, \varphi)} \delta_{2}(r, \theta+\omega)|d z| \tag{11}\\
\left(z=r e^{\imath \theta} \in \iota(0, \varphi) \text { in the last expression }\right)
\end{gather*}
$$

and we then consider

$$
\begin{gathered}
L_{m \nu}(\omega, \varphi) \equiv \int_{\ell(0, \varphi) \cap D_{m \nu}} \delta_{2}(r, \theta+\omega)|d z| \\
\left(z=r e^{\imath \theta} \in!(0, \varphi) \cap D_{m \nu}\right) .
\end{gathered}
$$

[^1]We shall show that for any $e^{i \omega_{0} \in M}$ we have $L_{m \nu}(\omega, \varphi) \rightarrow L_{m \nu}\left(\omega_{0}, \varphi\right)$ as $\omega \rightarrow \omega_{0}$ uniformly for $-\pi / 2<\varphi<\pi / 2$, so that

$$
\chi_{m \nu}(\omega) \equiv \int_{-\pi / 2}^{\pi / 2} L_{m \nu}(\omega, \varphi) \cos \varphi d \varphi
$$

is continuous on M. Indeed,

$$
\begin{aligned}
& \left|L_{m \nu}(\omega, \varphi)-L_{m \nu}\left(\omega_{0}, \varphi\right)\right| \\
\leqq & \int_{\ell(0, \varphi) \cap D_{m \nu}}\left|\delta_{2}(r, \theta+\omega)-\delta_{2}\left(r, \theta+\omega_{0}\right) \| d z\right| \\
\leqq & \left\{\max _{\left.r e^{i \theta} \in D_{m \nu}\left|\delta_{2}(r, \theta+\omega)-\delta_{2}\left(r, \theta+\omega_{0}\right)\right|\right\} \times}^{\times}\left\{\begin{array}{|c|}
|\varphi|<\pi / 2
\end{array} \int_{\ell(0, \varphi) \cap D_{m \nu}}|d z|\right\},\right.
\end{aligned}
$$

so that our assertion follows from the uniform continuity of the function $\delta_{2}(r, \theta)$ on the compact set $D_{m \nu}$. Set

$$
L_{m}(\omega, \varphi)=\int_{\ell(0, \varphi) \cap D_{m}} \hat{\delta}_{2}(r, \theta+\omega)|d z|
$$

and further set

$$
\chi_{m}(\omega)=\int_{-\pi / 2}^{\pi / 2} L_{m}(\omega, \varphi) \cos \varphi d \varphi
$$

Then $\chi_{m \nu}(\omega) \nearrow \chi_{m}(\omega)$ as $\nu \nearrow \infty$ and $\chi_{m}(\omega) \nearrow \chi(\omega)$ as $m \nearrow \infty$. This proves our proposition (II).
(III) The inequality $J_{1}(\omega) \geqq(2 \rho-1) \chi(\omega)$ holds for any $e^{i \omega} \in M$.

We remember that $\mathscr{D}(1)$ is the disk $|z-\rho|<1-\rho$ and we let

$$
J_{1}^{*}(\omega)=\iint_{\mathscr{D}(1)} H(\omega ; r, \theta) d r d \theta
$$

Then $J_{1}(\omega) \geqq J_{1}^{*}(\omega)$ since $S \supset \mathscr{D}(1)$ and $H(\omega ; r, \theta) \geqq 0$ in S. To estimate $J_{1}^{*}(\omega)$ downwards, we set for $r e^{i \theta} \in \mathscr{D}(1)$,

$$
\begin{aligned}
& t=\left|r e^{i \theta}-1\right| \text { and } \psi=\pi-\arg \left(r e^{i \theta}-1\right) \text { for } \\
& \pi / 2<\arg \left(r e^{i \theta}-1\right)<3 \pi / 2
\end{aligned}
$$

Then $1>r=\left(1-2 t \cos \psi+t^{2}\right)^{1 / 2}$, and on the chord $\ell(0, \psi)$, for a fixed ψ, $|\psi|<\pi / 2$, we have

$$
\begin{aligned}
d r & =(t-\cos \psi)\left(1-2 t \cos \psi+t^{2}\right)^{-1 / 2} d t \\
& \geqq(\cos \psi-t)(-d t) \quad(\text { for } d t \leqq 0) .
\end{aligned}
$$

We note that r decreases as t increases on $\ell(0, \psi)$ and $\cos \psi \geqq t$ since $r e^{2 \theta} \in$ $\mathscr{D}(1) \subset S$. Furthermore, on the circle $C_{r}:|z|=r, 0<r<1$, we have

$$
H(\omega ; r, \theta) d \theta=h(r, \theta+\omega) d \psi
$$

by (4). We therefore obtain

$$
\begin{aligned}
J_{1}^{*}(\omega) & =\int_{2 \rho-1}^{1} d r \int_{C_{r} \cap \mathscr{D}(1)} H(\omega ; r, \theta) d \theta \\
& =\int_{2 \rho-1}^{1} d r \int_{C_{r} \cap \mathscr{D}_{(1)}} h(r, \theta+\omega) d \psi \\
& =\iint_{\mathscr{D}(1)} h(r, \theta+\omega) d r d \psi \\
& =\int_{-\pi / 2}^{\pi / 2} d \psi \int_{\mathscr{C}(0, \psi)} h(r, \theta+\omega) d r \\
& \geqq \int_{-\pi / 2}^{\pi / 2} d \psi \int_{0}^{\alpha(\varphi)} \delta(r, \theta+\omega)(\cos \psi-t) d t
\end{aligned}
$$

(where $\lambda(\psi)$ is defined in (8); we note that $h(r, \theta+\omega)=\delta(r, \theta+\omega)$ for $r e^{i \theta} \in$ $\mathscr{D}(1)$ since $\left.\sigma \supset \mathscr{D}\left(e^{i \omega}\right)\right)$

$$
\geqq(2 \rho-1) \int_{-\pi / 2}^{\pi / 2} d \psi \int_{0}^{2(\phi)} \delta(r, \theta+\omega) \cos \psi d t
$$

(because of $\cos \psi-t \geqq(2 \rho-1) \cos \psi$ for $0 \leqq t \leqq \lambda(\psi)$)

$$
=(2 \rho-1) \int_{-\pi / 2}^{\pi / 2} L(\omega, \psi) \cos \psi d \psi
$$

(cf. (11); the formula (11) is true for $\boldsymbol{\delta}$)

$$
=(2 \rho-1) \chi(\omega)
$$

(IV) The set $E=\left\{e^{i \omega} \in M ; \chi(\omega)=+\infty\right\}$ is of capacity zero.

By (II) the set E is a Borel set in the plane, so that E is capacitable by the celebrated Choquet theorem. Therefore we have only to prove that E is of inner capacity zero. Assume on the contrary that E contains a closed set F of positive capacity and let

$$
u(z)=\int_{F} \log \left(1 /\left|z-e^{i \omega}\right|\right) d \mu(\omega) \leqq V<+\infty
$$

be the conductor potential [4, p. 55] of F, where V is a constant and μ is a Borel measure on F of total mass $\mu(F)=1$. Then we have [4, p. 345]

$$
\begin{equation*}
\iint_{D}\left(\frac{\partial u}{\partial r}\right)^{2} r d r d \theta \leqq \pi V / 2 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
r \frac{\partial u}{\partial r}=-\int_{F} \frac{\partial}{\partial \theta} \arg \left(r e^{i \theta}-e^{i \omega}\right) d \mu(\omega) \tag{13}
\end{equation*}
$$

We next consider the function

$$
\begin{align*}
Q(\omega ; r, \theta) & \equiv H(\omega ; r, \theta-\omega) \tag{14}\\
& =-h(r, \theta) \frac{\partial}{\partial 0} \arg \left(r e^{i \theta}-e^{i \omega}\right) \\
& =h(r, \theta) r\{\cos (\theta-\omega)-r\} /\left\{1-2 r \cos (\theta-\omega)+r^{2}\right\}
\end{align*}
$$

for $r e^{2 \theta} \in D$ and $e^{i \omega} \in F$ (cf. (3), (4)). Then Q is a Borel measurable function on the product space $D \times F$ and by (13) and (14) we have

$$
h(r, \theta) r \frac{\partial u}{\partial r}=\int_{F} Q(\omega ; r, \theta) d \mu(\omega) .
$$

On the other hand, both $h(r, \theta)$ and $\frac{\partial u}{\partial r}$ are square summable on D with respect to the measure $r d r d \theta$ by (7) and (12). Therefore, we have by Schwarz's inequality,

$$
\begin{aligned}
J & \equiv \iint_{D} d r d \theta \int_{F} Q(\omega ; r, \theta) d \mu(\omega) \\
& =\iint_{D} h(r, \theta) r \frac{\partial u}{\partial r} d r d \theta \neq \pm \infty
\end{aligned}
$$

By Fubini's theorem [2, p. 87] applied to the positive and the negative parts of Q respectively we have

$$
\begin{equation*}
J=\int_{F} d \mu(\omega) \iint_{D} Q(\omega ; r, \theta) d r d \theta \neq \pm \infty . \tag{15}
\end{equation*}
$$

Now, by (3), (4), (5) and (14) we have

$$
\begin{aligned}
J(\omega) & =\iint_{D} h(r, \theta+\omega) \frac{\partial}{\partial \theta}\left\{-\arg \left(r e^{i \theta}-1\right)\right\} d r d \theta \\
& =\iint_{D} h(r, \theta) \frac{\partial}{\partial \theta}\left\{-\arg \left(r e^{i \theta}-e^{i \omega}\right)\right\} d r d \theta \\
& =\iint_{D} Q(\omega ; r, \theta) d r d \theta,
\end{aligned}
$$

so that by (15),

$$
J=\int_{F} J(\omega) d \mu(\omega) \neq \pm \infty .
$$

However, by (5), (III) and the very definition of E we have $J(\omega)=+\infty$ for $e^{i \omega} \in F \subset E$. This is a contradiction.
(V) The set E is the exceptional set in the statement of the theorem.

Let $e^{i \omega} \in M-E$. Then $\chi(\omega)<+\infty$, so that by the definition of $\chi(\omega)$ (cf. (10)), the quantity $L(\omega, \varphi)$ (cf. (9)) is finite for a.e., $\varphi,|\varphi|<\pi / 2$. Consequently, there are two chords $\ell\left(\omega, \varphi_{1}\right)$ and $\ell\left(\omega, \varphi_{2}\right),-\pi / 2<\varphi_{1}<\varphi_{2}<\pi / 2$, at $e^{i \omega}$ such that $L\left(\omega, \varphi_{k}\right)<+\infty, k=1,2$. By Lemma j for $j=1,2,3$ and by our assumption (1) we know that $L(\omega, \varphi)<+\infty$ for any $\varphi, \varphi_{1}<\varphi<\varphi_{2}$. Repeating this process, we have the required property (2) at the point $e^{i \omega} \in M$ $-E$.

References

[1] K. Noshiro, Cluster sets, Berlin-Göttingen-Heidelberg (1960).
[2] S. Saks, Theory of the integral, second edition, Warsaw (1937).
[3] M. Tsuji, Beurling's theorem on exceptional sets, Tôhoku Math. J. 2 (1950), 113-125.
[4] M. Tsuji, Potential theory in modern function theory, Tokyo (1959).

Mathematical Institute
Tôhoku University
Sendai 980, Japan

[^0]: *) In other words, the outer logarithmic capacity of E_{j} is zero.

[^1]: *) δ_{2} may be extended continuously to the poles of f and our proof will be rather simplified (Added in proof).

