SINGULARITIES OF PROJECTIVE EMBEDDING (POINTS OF ORDER n ON AN ELLIPTIC GURVE)

Abstract

AKIKUNI KATO

In the Plücker formula for a curve embedded in a higher dimensional projective space, one encounters the notion of stationary point (cf, $[B],[W]$). W.F. Pohl gave new view point about it in terms of vector bundles and he defined 'the singularities of embedding" (cf. $[P]$). At first, we shall give dual formulation of Pohl's one by means of the sheaf of principal parts of order $n \mathscr{P}_{x}^{n}$, and next we shall prove the following: If an elliptic curve is embedded in $(n-1)$-dimensional projective space \underline{P}_{n-1} as a curve of degree n, singularities of projective embedding of order $n-1$ are exactly the points of order n with suitable choice of a neutral element on the curve which is an abelian variety of dimension one. The proof is given by making use of the relation between \mathscr{P}_{x}^{n} and Schwarzenberger's secant bundle which we shall also give.

I wish to thank Professor H. Morikawa who introduced me to this problem and also to thank Professor H. Yamada who made helpful suggestions.

§ 1. Singularities of embedding.

Let $f: X \rightarrow \underline{A}^{m}$ be an embedding (i.e. a closed immersion) of an affine S-scheme X into m-dimensional affine space A^{m} over $S=\operatorname{Spec}(A)$. We shall define singularities of a closed immersion f. Let $\mathscr{P}_{x}^{n}, \mathscr{P}_{A}^{n}$ be the sheaf of principal parts of order n over X, \underline{A}^{m} respectively. If $\underline{A}^{m}=\operatorname{Spec}(R)$, where $R=A\left[T_{1}, \cdots, T_{m}\right], T_{i}$ being indeterminates, then \mathscr{P}_{A}^{n} is the associated sheaf of R-module $P_{R}^{n}=R \otimes_{A} R / I^{n+1}$, where I being the kernel of multiplication $R \otimes_{A} R \rightarrow R$. Let $U_{i}(1 \leq i \leq m)$ be indeterminates and K be an ideal of $R\left[U_{1}, \cdots, U_{m}\right]$ generated by $U_{i}(1 \leq i \leq m)$. Then R-module P_{R}^{n} is isomorphic to $R\left[U_{1}, \cdots, U_{m}\right] / K^{n+1}\left(c f\right.$. EGA IV (16.4.10)). Since $P_{R}^{1}=R\left[U_{1}, \cdots, U_{m}\right] / K^{2}$ $R d T_{1} \oplus \cdots \oplus R d T_{m}$, where $d T_{i}$ being the class of $U_{i} \bmod K^{2}$, the correspondence $d T_{i} \longmapsto U_{i} \bmod K^{n+1}$ defines a homomorphism of (left) R-modules P_{R}^{1}
$\rightarrow P_{R}^{n}$ and this defines a homomorphism of sheaves:

$$
\omega_{n}: \mathscr{P}_{\underline{A}}^{1} \rightarrow \mathscr{P}_{\underline{A}}^{n} .
$$

On the other hand, S-morphism $f: X \rightarrow \underline{A}^{m}$ induces a canonical homomorphism of \mathcal{O}_{X}-Algebra $P^{n}(f): f^{*}\left(\mathscr{P}_{\underline{A}}^{n}\right) \rightarrow \mathscr{P}_{X}^{n}$.

Definition (1.1). For a closed immersion $f: X \rightarrow \underline{A}^{m}$, a point x of X is called an n-regular point or a regular point of order n of f, if the homomorphism of left \mathcal{O}_{x}-Modules $P^{n}(f) f^{*}\left(\omega_{n}\right): f^{*}\left(\mathscr{P}_{A}^{1}\right) \rightarrow \mathscr{P}_{x}^{n}$ is surjective at x, and if not surjective at x, it is called an n-singular point (or a singular point of order n) of f.

Now suppose that projective embedding $f: X \rightarrow \underline{P}^{m}$ be given. Then there is a canonical surjective homomorphism of \mathcal{O}_{x}-Modules $\varphi: \mathcal{O}_{x}^{m+1} \rightarrow \mathcal{O}_{x}(1)$. Let $s: \mathcal{O}_{x} \rightarrow \mathscr{P}_{x}^{n}$ be the structure homomorphism of left \mathcal{O}_{x}-Algebra \mathscr{P}_{x}^{n}. This s defines a homomorphism $s^{m+1}: \mathcal{O}_{x}^{m+1} \rightarrow\left(\mathscr{P}_{x}^{n}\right)^{m+1}=\mathscr{P}_{x}^{n} \otimes \mathcal{O}_{x} \mathcal{O}_{x}^{m+1}=\mathscr{P}_{x}^{n}$ (\mathcal{O}_{x}^{m+1}).

Definition (1.2). For a closed immersion $f: X \rightarrow \underline{P}^{m}$, a point x of X is called an n-regular point of f, if the homomorphism of left \mathcal{O}_{x}-Modules $E^{n}(f)$ $\left.=\mathscr{P}^{n}(\varphi) \circ s^{m+1}: \mathcal{O}_{x}^{m+1} \rightarrow \mathscr{P}_{x}^{n}\left(\mathcal{O}_{x}\right)(1)\right)$ is surjective at x, and otherwise, it is called an n-singular point of f. We denote by \mathscr{W}_{x}^{n} the sheaf of image of homomorphism $E^{n}(f)$.

Let $\xi_{i}(0 \leq i \leq m)$ be the global sections which are images of canonical basis of free \mathcal{O}_{x}-Module \mathcal{O}_{x}^{m+1} by φ. Their images $d^{n} \xi_{i}(0 \leq i \leq m)$ in $\mathscr{P}_{x}^{\infty}\left(\mathcal{O}_{x}(1)\right)$ generate (left) \mathcal{O}_{x}-Module \mathscr{W}_{x}^{n}. For a case $n=1$, it is easy to check that $\mathscr{W}_{X}^{1}=\mathscr{P}_{x}^{1}\left(\mathcal{O}_{x}(1)\right)$. Namely, every point is 1-regular point of f.

Proposition (1.3). If $f: X \rightarrow \underline{P}^{m}$ is a closed immersion and \underline{P}^{m} is obtained by patching affine spaces $A_{j}(0 \leq j \leq m)$ together, then for a point $x \in X$ such that $f(x)$ $\in \underline{A}_{j}, f$ is n-regular (or n-singular) at x if and only if $f \mid f^{-1}\left(\underline{A}_{j}\right)$ is n-regular (or n-singular) at x.

Proof. Since, $\mathscr{P}_{\underline{P}}^{n}\left(\mathcal{O}_{\underline{P}}(1)\right) \mid \underline{A}_{j} \simeq \mathscr{P}_{\underline{A}}^{n}$, the homomorphism ω_{n} defines homomorphisms $\mathscr{P}_{\underline{P}}^{1}\left(\mathcal{O}_{\underline{P}}(1)\right)\left|A_{j} \rightarrow \mathscr{P}_{\underline{P}}^{n},\left(\mathcal{O}_{\underline{P}}(1)\right)\right| \underline{A}_{j}, 0 \leq j \leq m$. From these we get homomorphism $\mathscr{P}_{\underline{P}}^{1}\left(\mathcal{O}_{\underline{P}}(1)\right) \rightarrow \mathscr{P}_{\underline{P}}^{n}\left(\mathcal{O}_{\underline{P}}(1)\right)$ (which maps $d^{1} \xi_{i}$ into $\left.d^{n} \xi_{i}\right)$ and the diagram

is commutative. Since $E^{1}(f)$ is surjective, we get the proposition.
Proposition (1.4). The set of n-singular points of a closed immersion f is a closed subset of X.

Proof. Since structure morphism $X \rightarrow S$ is of finite type, $\mathscr{P}_{x}^{n}, \mathscr{P}_{x}^{n}\left(\mathcal{O}_{x}(1)\right)$ are of finite type and cokernels of homomorphisms $f^{*}\left(\mathscr{P}_{A}^{1}\right) \rightarrow \mathscr{P}_{x}^{n}, \mathcal{O}_{x}^{m+1} \rightarrow$ $\mathscr{P}_{x}^{n}\left(\mathcal{O}_{X}(1)\right)$ are also of finite type and this implies their support, i.e., the set of n-singular points of f is a closed subset of X.

Proposition (1.5). If f is n-regular at x, then f is k-regular at x for $1 \leq k \leq n$.

Proof. This follows inductively from the following commutative diagrams:

where vertical arrows are canonical surjective homomorphisms.
Proposition (1.6). Let f be an affine or projective embedding of X and g : $Y \rightarrow X$ be a closed immersion. If f is n-regular at $g(y), y \in Y$, then $g \circ f$ is n-regular at y.

Proof. Since homomorphis $i^{*} f^{*}\left(\mathscr{P}_{\underline{A}}^{1}\right) \rightarrow i^{*}\left(\mathscr{P}_{X}^{n}\right)$ is surjective at x and canonical homomorphism $i^{*}\left(\mathscr{P}_{x}^{n}\right)$ is surjective, their combined homomorphism $i^{*} f^{*}$ $\left(\mathscr{P}_{\underline{A}}^{1}\right) \rightarrow \mathscr{P}_{Y}^{n}$ is surjective at y.

Proposition (1.7). If X is an affine scheme or a projective scheme, then for a given integer, $n>0$, there is an affine or projective embedding respectively which is everywhere n-regular.

Proof. By proposition (1.6), we may assume that $X=\underline{A}^{m}$ or $X=\underline{P}^{m}$. From the canonical homomorphism $\mathcal{O}_{\underline{P}}^{m+1} \rightarrow \mathcal{O}_{\underline{P}}(1)$, we get a surjective homomorphism $\mathcal{O}_{\underline{P}}^{N+1}=\left(\mathcal{O}_{-}^{m+1}\right)^{\otimes n} \rightarrow \mathcal{O}_{P}(n)$ and this defines a closed immersion f : $\underline{P}^{m} \rightarrow \underline{P}^{N}\left(\left(x_{0}, x_{1}, \cdots, x_{m}\right) \longmapsto\left(y_{0}, y_{1}, \cdots, y_{N}\right), y_{0}=x_{0}{ }^{n}, \cdots, y_{i}=x_{0}^{i 0} \cdots x_{m}^{i^{m}}\right.$,
$\left.\cdots, y_{N}=x_{m}{ }^{n}, i_{0}+i_{1}+\cdots+i_{m}=n\right)$. We show that f is n-regular at every point $\left(x_{0}, x_{1}, \cdots, x_{m}\right)$. We may assume that $x_{0} \neq 0$. If we restrict to an affine open subset $\underline{A}^{N}=\left(\underline{P}^{N}\right)_{y_{0}}$ of \underline{P}^{N}, it is enough to show that the closed immersion $\underline{A}^{m} \rightarrow \underline{A}^{N} \quad\left(\xi_{1}, \cdots, \xi_{m}\right) \longmapsto\left(\eta_{1}, \cdots, \eta_{N}\right), \eta_{i}=\eta_{1}{ }^{i}{ }_{1} \cdots \eta_{m}{ }^{i_{m}}, i_{1}+\cdots i_{m}$ $\leqslant n$) is everywhere n-regular (and this proves the case $X=\underline{A}^{m}$). Put \underline{A}^{N} $=\operatorname{Spec}(B), \underline{A}^{m}=\operatorname{Spec}(C)$, where $B=A\left[Y_{1}, \cdots, Y_{N}\right], C=A\left[X_{1}, \cdots, X_{m}\right]$. The closed immersion $\underline{A}^{m} \rightarrow \underline{A}^{N}$ corresponds to a surjective homomorphism $\varphi: B$ $\rightarrow C\left(Y_{i} \longmapsto X_{1}{ }^{{ }^{i_{1}}} \cdots X_{m}{ }^{{ }^{i} m}\right)$. Then P_{c}^{n} can be identified to $A\left[X_{1}, \cdots, X_{m}, U_{1}\right.$, $\left.\cdots, U_{m}\right] / K^{n+1}$, and the C-module W^{n} which defines \mathscr{W}_{x}^{n}, is generated by 1 and $\left(X_{1}+U_{1}\right)^{t_{1}} \cdots\left(X_{m}+U_{m}\right)^{t_{m}} \equiv U_{1}{ }^{i_{1}} \cdots U_{m}{ }^{{ }^{m} m}+\left(\right.$ terms of lower degrees of U_{1}, $\left.\cdots, U_{m}\right), \bmod K^{n+1}$. This shows $W^{n}=P_{c}^{n}$.

Proposition (1.8). For a closed immersion $X \hookrightarrow A^{m}$ or $X \hookrightarrow P^{m}$, of r-dimensional variety X, if a positive integer n satisfies inequality $m<r+\left({ }_{2}^{r+1}\right)+\cdots+\left({ }_{n}^{r+n-1}\right)$, then the closed immersion is everywhere n-singular.

Proof. If the closed immersion is n-regular at $x \in X$, we may assume that x is a simple point of X, because the set of n-singular points is closed. Then there is an affine neighborhood of $U=\operatorname{Spec}(B)$ of x such that B is a formally smooth A-algebra. Over U, there is an isomorphism

$$
S \cdot \mathscr{O}_{x}\left(\Omega_{x}^{1}\right) \simeq \mathscr{G} r \cdot\left(\mathscr{P}_{x}\right)
$$

(cf. [EGA] IV (16.10.1), (16.10.2)).
Since Ω_{X}^{1} is a locally free of rank r over U, by the exact sequence on U :

$$
0 \rightarrow S_{O_{x}^{\prime}}^{n}\left(\Omega_{X}^{1}\right) \rightarrow \mathscr{P}_{x}^{n} \rightarrow \mathscr{P}_{x}^{n-1} \rightarrow 0,
$$

we see that \mathscr{P}_{x}^{n} is locally free of rank $r+\left({ }_{2}^{r+1}\right)+\cdots+\left({ }_{n}^{r+n-1}\right)+1$ on U. Since \mathscr{W}_{x}^{n} is generated by $m+1$ sections on U, it can not be $\mathscr{W}_{x}^{n} \neq \mathscr{P}_{x}^{n}$, if n satisfies the inequality.

§ 2. Stationary points.

Let X be an r-dimensional algebraic variety over an algebraically closed field k. We assume that X is embedded in \underline{A}^{m} or \underline{P}^{m}. Let x be a simple point of X. If t_{1}, \cdots, t_{r} are uniformizing parameters at x, then $\mathcal{O}_{x, x}$ is contained in the formal power series ring $k\left[\left[t_{1}, \cdots, t_{r}\right]\right]$. Since the property that an embedding is n-regular at x is invariant under linear transformation of ambient space \underline{A}^{m} or \underline{P}^{m}, we may assume that (inhomogeneous) coordinate x_{1}, \cdots, x_{m} of x and their power series $x_{i}=\varphi_{i}(t)(1 \leqslant i \leqslant m)$ are as follows:

$$
\begin{equation*}
\varphi_{1}(t)=H_{i, j}(t)+H_{i, j+1}(t)+\cdots,\left(l_{j-1}<i \leqslant l_{j}\right) \tag{2.1}
\end{equation*}
$$

where $H_{i k}(t)$ is a homogeneous polynomial of t_{1}, \cdots, t_{r} of degree k and $H_{l_{j-1}+1, j}, H_{l_{j-1}+2, j}, \cdots, H_{l_{j}+j}$ are linearly independent over $k, l_{0}=0 \quad l_{1}=r \leqslant l_{2}$ $\leqslant \cdots \leqslant l_{j} \leqslant \cdots \leqslant m$.

In particular, if X is a curve, (2.1) can be also written by the following form (cf. [W]):

$$
\begin{equation*}
\varphi_{i}(t)=t^{\delta_{i}}+\cdots, 1 \leqslant i \leqslant n \tag{2.2}
\end{equation*}
$$

where $\boldsymbol{\delta}_{1}<\boldsymbol{\delta}_{2}<\cdots<\boldsymbol{\delta}_{n}$.
Let s^{n}, d^{n}, be structure homomorphism of left or right $\mathcal{O}_{x, x}$-algebra $\mathscr{P}_{x, x}^{n}$ respectively. Put $d=d^{n}-s^{n}$. Then d satisfies following equality:

$$
d(f \cdot g)=f d g+g d f+(d f)(d g), f, g \in \mathcal{O}_{X, x} .
$$

By the above equality, it is easily verified following lemma:
Lemma (2.3). If $\varphi(t)=\sum_{\nu=k}^{\infty} H_{\nu}\left(t_{1}, \cdots, t_{r}\right)$, where $H_{\nu}(t)$ is a homogeneous polynomial of t_{1}, \cdots, t_{r} of degree ν, then $d \varphi(t)=\sum_{l=1}^{n} F_{l}\left(t_{1}, \cdots, t_{r} ; d t_{1}, \cdots\right.$, $\left.d t_{r}\right)$, where $F_{l}(t ; d t)$ is a homogeneous polynomial of $d t_{1}, \cdots, d t_{r}$ of degree l with coefficients in $\mathcal{O}_{x, x}$ such that coefficients of F_{l} are formal power series of order $k-l$ for $l<k$ and $F_{l}\left(0, \cdots, 0 ; d t_{1}, \cdots, d t_{r}\right)=H_{l}\left(d t_{1}, \cdots, d t_{r}\right)$ for $k \leqslant l \leqslant n$.

Theorem (2.4). A point x of X, whose coordinates satisfies (2.1), is an n regular point of embedding if and only if $l_{j}-l_{j-1}=\binom{j+r-1}{r-1}$, for all $j, 1 \leqslant j \leqslant n$.

Proof. A basis of free (left) $\mathcal{O}_{x, x}$-module $\mathscr{P}_{x, x}^{n}$ is given by $\left(d t_{1}\right)^{i_{1}} \ldots$ $\left(d t_{r}\right)^{i_{r}}\left(0 \leqslant i_{1}+\cdots+i_{r} \leqslant n\right)$. Clearly, it holds that $l_{j}-l_{j-1} \leqslant\binom{ j+r-1}{r-1}=$ number of monomials of degree j of r-variables $=$ number of $\left(d t_{1}\right)^{i_{1}} \cdots\left(d t_{r}\right)^{i_{r}}$, $\left(i_{1}+\cdots+i_{r}=j\right)$. We denote by $\omega_{0}=1, \omega_{1}, \cdots, \omega_{N}$ the above basis with lexicographically order. Put $d x_{i}=d \varphi_{i}(t)=\sum_{j=1}^{n} f_{i j}(t) \omega_{j}$. Then, x is an n regular point $\Leftrightarrow \mathscr{P}_{x, x}^{n}$ is generated by $1, d x_{1}, \cdots, d x_{m} \Leftrightarrow \operatorname{rank}\left(f_{i j}\right)=N$.

By lemma (2.3), matrix ($f_{i j}$) is following form:

$$
\left(f_{\imath j}\right)=\left(\begin{array}{cc}
A_{1} & \\
& A_{2} * \\
\# & \\
\cdots & A_{m} \\
\cdots & \#
\end{array}\right) \text {, where } A_{j} \text { is a matrix with } l_{j}-l_{i-1} \text { rows, }\binom{(j+r-1}{r-1}
$$

columns and components at \# are elements of the maximal ideal \mathfrak{m} of $\mathcal{O}_{x, x}$,
Hence, if rank $\left(f_{i j}\right)=N$, it must be $l_{j}-l_{j-1}=\binom{j+r-1}{r-1}$. Conversely, if
$l_{j}-l_{j-1}=\binom{j+r-1}{r-1}$, then $\operatorname{det} A_{j}$ is invertible, since $A_{j} \bmod \mathfrak{m}$ is a coefficient matrix of $H_{l_{j-1}+1, j}, \cdots, H_{l_{j}, j}$, This implies that $\operatorname{det}\left(\begin{array}{ccc}A_{1} & & \\ \# & A_{2} * & \\ \# & & A_{m}\end{array}\right)$ is invertible in $\mathcal{O}_{X, x}$.

Remark (2.5). A point x of a curve X, whose coordinates satisfies (2.2), is called a stationary point of rank n, if $\delta_{n}-\delta_{n-1}>1$ (cf. [W] p. 45).

§ 3. Secant bundle.

Let us consider a commutative diagram of S-prescheme,

which we denote simply by $P=(W, X, Y, f, g)$ (Schwarzenberger called it a product scheme, if f is a covering map [S]). For a quasi-coherent \mathscr{O}_{Y}-Module \mathscr{F}, there is an \mathcal{O}_{x}-Module $\Sigma_{P}(\mathscr{F})$ defined by the relation

$$
\sum_{P}(\mathscr{F})=f_{*} g^{*}(\mathscr{F})
$$

By abuse of language, we shall call this \mathcal{O}_{X}-Module $\Sigma_{P}(\mathscr{F})$ secant sheaf which defines a secant bundle in particular case (cf. [S]).

Let $X^{(n)}$ be the n-th infinitesimal neighbourhood of X for the diagonal morphism (cf. [EGA] IV) (16.1.2)). If we consider a diagram
 jections, then for a quasi-coherent \mathcal{O}_{x}-Module, \mathscr{F}, we obtain a secant sheaf $\sum_{I_{n}}(\mathscr{F})$. In this case $\sum_{I_{n}}(\mathscr{F})$ is nothing else than $\left(p_{1}^{(n)}\right) *\left(p_{2}^{(n)}\right) *(\mathscr{F})=$ $\mathscr{P}_{x}^{n}(\mathscr{F})$. Another diagram with which we shall concern is that of cartesian product. Let X_{n} be an n-fold cartesian product of S-prescheme X. Identity morphim $1_{X_{n}}: X_{n} \rightarrow X_{n}$ and projection to t-th factor $X_{n} \rightarrow X$ define a closed immersion $h_{t}: X_{n} \rightarrow X_{n} \times_{s} X$. Let W_{n} be the union of subschemes $h_{t}\left(X_{n}\right)$ of $X_{n} \times_{s} X$ and i inclusion $W_{n} \rightarrow X_{n} \times_{s} X$. Then these give a diagram

and secant sheaf $\Sigma_{c_{n}}(\mathscr{F})$, if quasi-coherent \mathscr{Q}_{x}-Module \mathscr{F} is given. We denote $\sum_{c_{n}}(\mathscr{F})$ by $\Sigma^{n}(\mathscr{F})$. In this section we shall prove the following: If Δ is a diagonal morphism $\Delta: X \rightarrow X_{n}$, there is a canonical isomorphism $\Delta^{*}\left(\Sigma^{n+1}\right.$ $(\mathscr{F})) \leftrightharpoons \mathscr{P}_{x}^{n}(\mathscr{F})$.

For two diagrams of S-preschemes $P=(W, X, Y, f, g), P^{\prime}=\left(W^{\prime}, X^{\prime}, Y^{\prime}\right.$, $\left.f^{\prime}, g^{\prime}\right)$, triple of morphisms of S-preschemes, $r_{W}: W^{\prime} \rightarrow W, r_{X}: X^{\prime} \rightarrow X, r_{Y}: Y^{\prime}$ $\rightarrow Y$ is defined to be a morphism of $P^{\prime}=\left(W^{\prime}, X^{\prime}, Y^{\prime}, f^{\prime}, g^{\prime}\right)$ into $P=(W, X$, $Y, f, g)$, if $f \circ r_{W}=r_{X} \circ f^{\prime}$ and $g \circ r_{W}=r_{Y} \circ g^{\prime}$. For such a morphism $\underline{r}=\left(r_{W}\right.$, r_{X}, r_{Y}) and a quasi-coherent \mathcal{O}_{Y}-Module \mathscr{F}, there is a canonical homomorphism $\rho: g^{*}(\mathscr{F}) \rightarrow\left(r_{W}\right) *\left(r_{W}\right)^{*} g^{*}(\mathscr{F})=\left(r_{W}\right) * g^{\prime *} r_{Y} *(\mathscr{F})$ and this induces a homomorphism $f_{*}(\rho): \Sigma_{P}(\mathscr{F}) \rightarrow\left(r_{X}\right)_{*} \Sigma_{P^{\prime}}\left(r_{Y}^{*}(\mathscr{F})\right)$. The adjoint homomorphism of $f_{*}(\rho)$ is denoted by $\beta(\underline{r}), \beta(\underline{r}): r_{x}^{*}\left(\sum_{P}(\mathscr{F})\right) \rightarrow \sum_{P^{\prime}}\left(r_{Y}^{*}(\mathscr{F})\right)$.

For a diagram $P=(W, X, Y, f, g)$ and a morphism $r_{X}: X^{\prime} \rightarrow X$, it is obtained new diagram $P^{\prime}=\left(W^{\prime}, X^{\prime}, Y, f^{\prime}, g \circ r_{W}\right)$ in which W^{\prime} is the fibered product $X^{\prime} \times_{X} W$ and f^{\prime}, r_{W} are projections. Then $\underline{r}=\left(r_{W}, r_{X}, l_{Y}\right)$ is a morphism of P^{\prime} into P. Let \mathscr{E} be a quasi-coherent \mathscr{O}_{W}-Module. If f is an affine morphism, there is an isomorphism (EGA II (1.5.2)),

$$
r_{X}^{*} \circ f_{*}(\mathscr{E}) \leadsto f_{*}^{\prime} r_{W}^{*}(\mathscr{E}),
$$

in particular if $\mathscr{E}=g^{*}(\mathscr{F})$, where \mathscr{F} is a quasi-coherent \mathcal{O}_{Y}-Module, this isomorphism is

$$
\begin{equation*}
\beta(\underline{r}): r_{X}^{*}\left(\sum_{P}(\mathscr{F})\right) \xrightarrow{\rightarrow} \sum_{P r}(\mathscr{F}) . \tag{3.1}
\end{equation*}
$$

The diagonal $\Delta: X \rightarrow X_{n+1}$ factors through $X \xrightarrow{j} W_{n+1} \xrightarrow{f} X_{n+1}$, where j is a closed immersion such that $j(X)$ is diagonal of $X_{n+1} \times_{s} X$. The composite morphism $r: X^{(n)} \rightarrow W_{n+1}$ of morphisms $p_{1}^{(n)}: X^{(n)} \rightarrow X$ and $j: X \rightarrow W_{n+1}$ is also a closed immersion, hence it is an affine morphism. Two morphisms $p_{1}^{(n)}$: $X^{(n)} \rightarrow X$ and $r: X \rightarrow W_{n+1}$ induce a morphism $\sigma: X^{(n)} \rightarrow X \times_{X_{n+1}} W_{n+1}$

Proposition (3.2). σ is an isomophism, $\sigma: X^{(n)} \simeq X \times_{X_{n+1}} W_{n+1}$.
Proof. Since r is affine, σ is also affine, and we can assume that X, S
are affine schemes such that $X=\operatorname{Spec}(B), S=\operatorname{Spec}(A)$. Then $X^{(n)}=\operatorname{Spec}$ $\left(P_{B / A}^{n}\right)$, where $P_{B / A}^{n}=B \otimes_{A} B / I_{B / A}^{n+1}$. Put $T^{n+1}(B)=B \otimes_{A} B \otimes_{A} \cdots \otimes_{A} B \quad(n+1$ times), then $X_{n+1}=\operatorname{Spec}\left(T^{n+1}(B)\right), X_{n+1} \times_{S} X=\operatorname{Spec}\left(T^{n+1}(B) \otimes_{A} B\right)$. Let J be the ideal of W_{n+1} in $T^{n+1}(B) \otimes_{A} B$ such that $W_{n+1}=\operatorname{Spec}\left(T^{n+1}(B) \otimes_{A} B / J\right)$. The diagonal morphism $\Delta: X \rightarrow X_{n+1}$ determines a homomorphism of rings $T^{n+1}(B) \rightarrow B$ which makes B a $T^{n+1}(B)$-module. Tensoring an exact sequence of $T^{n+1}(B)$-modules

$$
0 \rightarrow J \rightarrow T^{n+1}(B) \otimes_{A} B \rightarrow T^{n+1}(B) \otimes_{A} B / J \rightarrow 0
$$

with B, we get an exact sequence

$$
\begin{equation*}
B \otimes_{T^{n+1}(B)} J \xrightarrow{\psi} B \otimes_{T^{n+1}(B)}\left(T^{n+1}(B) \otimes_{A} B\right) \rightarrow C \rightarrow 0 \tag{}
\end{equation*}
$$

where $\quad C=B \otimes_{T^{n+1}(B)}\left(T^{n+1}(B) \otimes_{A} B / J\right)$ and $\operatorname{Spec}(C)=X \times_{X_{n+1}} W_{n+1}$. On the other hand, we have another exact sequence

$$
\begin{equation*}
0 \rightarrow I_{B / A}^{n+1} \rightarrow B \otimes_{A} B \rightarrow P_{A / B}^{n} \rightarrow 0 \tag{}
\end{equation*}
$$

Since there is a canonical isomorphism between middle terms of exact sequences $\left({ }^{(}\right)$and $\left({ }^{* *)}\right.$, in order to prove $P_{B / A}^{n} \simeq C$, it reduces to show that the image of ψ is canonically isomorphic to $I_{B / A}^{n+1}$. Let J_{i} be an ideal of $T^{n+1}(B)$ $\otimes_{A} B$ generated by elements $\varphi_{i}(a) \otimes 1-\varphi_{i}(1) \otimes a, a \in B$, where $\varphi_{i}(a)=1 \otimes 1 \otimes$ $\cdots \otimes \stackrel{i}{a} \otimes \cdots \otimes 1$. Then J_{i} is a kernel of multiplication $T^{n+1}(B) \otimes_{A} B \rightarrow$ $T^{n+1}(B)$ of last component with i-th component, and it holds that $J=J_{1} \cap J_{2} \cap$ $\cdots \cap J_{n+1}$ and $\psi\left(J_{i}\right)=I$, hence it suffices to prove that $J=J_{1} \cdot J_{2} \cdots J_{n+1}$. Let $\sum_{\nu} a_{1}^{(\nu)} \otimes a_{2}^{(\nu)} \cdots \otimes a_{n+1}^{(\nu)} \otimes b^{(\nu)}$ be an arbitrary element of $J=J_{1} \cap J_{2} \cap \cdots \cap J_{n+1}$. Then, $\sum_{\nu} a_{1}^{(\nu)} \otimes \cdots \otimes \stackrel{i}{1} \otimes \cdots \otimes a_{n+1}^{(\nu)} \dot{a}_{i}^{(\nu)} b^{(\nu)}=0$, for every i, repeatedly, we have $\sum_{\nu} a_{1}^{(\nu)} \otimes \cdots \otimes \stackrel{i_{1}}{1} \otimes \cdots \stackrel{i_{k}}{1} \otimes \cdots \otimes a_{n+1}^{(\nu)} \otimes a_{i_{1}}^{(\nu)} \cdots a_{i_{k}}^{(\nu)} b^{(\nu)}=0$.
Since $\quad \prod_{i=1}^{n+1}\left(\varphi_{i}\left(a_{i}^{(\nu)}\right) \otimes 1-\varphi_{i}(1) \otimes a_{i}^{(\nu)}\right)$

$$
=\left(a_{1}^{(\nu)} \otimes 1 \otimes \cdots \otimes 1-1 \otimes \cdots \otimes 1 \otimes a_{1}^{(\nu)}\right)
$$

$$
\cdots\left(1 \otimes \cdots \otimes a_{n+1}^{(\nu)} \otimes 1-1 \otimes \cdots \otimes 1 \otimes a_{n+1}^{(\nu)}\right)
$$

$$
=a_{1}^{(\nu)} \otimes a_{2}^{(\nu)} \otimes \cdots \otimes a_{n+1}^{(\nu)} \otimes 1-1 \otimes a_{2}^{(\nu)} \otimes \cdots \otimes a_{n+1}^{(\nu)} \otimes a_{1}^{(\nu)}+\cdots
$$

we see that $\sum_{\nu} a_{1}^{(\nu)} \otimes a_{2}^{(\nu)} \otimes \cdots \otimes a_{n+1}^{(\nu)} \otimes b^{(\nu)}$

$$
=\sum_{\nu}\left(1 \otimes \cdots \otimes 1 \otimes b^{(\nu)} \prod_{t=1}^{n+1}\left(\varphi_{i}\left(a_{i}^{(\nu)}\right) \otimes 1-\varphi_{i}(1) \otimes a_{i}^{(\nu)}\right)\right.
$$

is an element of $J_{1} \cdot J_{2} \cdots J_{n+1}$. Since it is clear that $J_{1} \cdot J_{2} \cdots J_{n+1} \subset J, J=$ $J=J_{1} \cdot J_{2} \cdots J_{n+1}$.

Theorem (3.3). If $\Delta: X \rightarrow X_{n+1}=X \times \cdots \times X$ is a diagonal morphism and $\Sigma^{n+1}(\mathscr{F})$ is a secant sheaf on X_{n+1} associated with a quasi-coherent \mathcal{O}_{x}-Module \mathscr{F}, then there is a canonical isomorphism, $\Delta^{*}\left(\Sigma^{n+1}(\mathscr{F})\right) \cong \mathscr{P}_{x}^{n}(\mathscr{F})$.

Proof. By roposition (3.2), isomorphism (3.1) gives the isomorphism in question.

Remark. We can also consider a diagram for n-fold symmetric product $X_{(n)}$ of X and a secant sheaf $\Sigma^{(n)}(\mathscr{F})$ on $X_{(n)}$ cf. [S], p. 375). Then there is a canonical morphism $r_{X}: X_{n} \rightarrow X_{(n)}$ and $r_{x}^{*}\left(\Sigma^{(n)}(\mathscr{F})\right)=\Sigma^{n}(\mathscr{F})$, hence we have also a canonical isomorphism $\Delta^{*} r_{x}^{*}\left(\Sigma^{(n+1)}(\mathscr{F})\right) \simeq \mathscr{P}_{x}^{n}(\mathscr{F})$.

§4. Points of order n on elliptic curve.

Suppose that an elliptic curve X is embedded in ($n-1$)-dimensional projective space \underline{P}^{n-1} over an algebraically closed field k, as a curve of degree n and not contained in a proper linear subspace of \underline{P}^{n-1}. Then by RiemannRoch theorem, $H^{1}\left(X, \mathcal{O}_{X}(1)\right)=0$. Consider an exact sequence:

$$
\begin{equation*}
0 \rightarrow J(W) \rightarrow \mathcal{O}_{X_{n \times X}} \rightarrow i_{*} \mathcal{O}_{W_{n}} \rightarrow 0 \tag{4.1}
\end{equation*}
$$

where $J(W)$ is an Ideal of $\mathcal{O}_{X_{n \times x}}$ corresponding the subscheme W_{n}. Tensor by $q^{*}\left(\mathcal{O}_{X}(1)\right)$ and apply p^{*}. The result is a cohomology exact sequence which begins

$$
\begin{gather*}
0 \rightarrow p_{*}\left(J(W) \otimes q^{*}\left(\mathcal{O}_{X}(1)\right)\right) \rightarrow p_{*} q^{*}\left(\mathcal{O}_{X}(1)\right) \xrightarrow{\alpha} \tag{4.2}\\
p_{*}\left(i _ { * } (\mathcal { O } _ { W _ { n } }) \otimes q ^ { * } (\mathcal { O } _ { X } (1)) \rightarrow R ^ { 1 } p _ { * } \left(q^{*}\left(\mathcal{O}_{x}(1) \otimes J(W)\right) \rightarrow 0\right.\right.
\end{gather*}
$$

Its last term is zero (apply principle of exchange (cf. [M] p. 785) and $H^{1}(X$, $\left.\mathcal{O}_{X}(1)\right)=0$). Apply Σ^{n} to a canonical surjective homomorhpism $\mathcal{O}_{x}^{n} \rightarrow \mathcal{O}_{X}(1)$ and combine canonical homomorphism $\mathcal{O}_{x n}^{n} \rightarrow \Sigma^{n}\left(\mathcal{O}_{x}\right)^{n}=\Sigma^{n}\left(\mathcal{O}_{x}^{n}\right)$, then resulting homomorphism is $\alpha: \mathcal{O}_{x_{n}}^{n} \rightarrow \Sigma^{n}\left(\mathcal{O}_{X}(1)\right)$ by our assumption. Thus by theorem (3.3), $\Delta^{*}(\alpha)$ is the homomorphism $E^{n-1}(f): \mathcal{O}_{x}^{n} \rightarrow \mathscr{P}_{x}^{n-1}\left(\mathcal{O}_{x}(1)\right)$ in definition (1.2). By Nakayama's lemma, projective embedding $X \rightarrow P^{n-1}$ is ($n-1$)-singular at x if and only if α is not surjective at $(x, x, \cdots, x) \in X_{n}$, i.e. if and only if $(x, x, \cdots, x) \in \operatorname{Supp} R^{1} p_{*}\left(q^{*}\left(\mathcal{O}_{X}(1) \otimes J(W)\right)\right.$. Now we calculate ${ }^{(*)} \operatorname{Supp} R^{1} p_{*}\left(q^{*}\left(\mathcal{O}_{X}(1)\right) \otimes J(W)\right)$. For a given geometric point $\xi=$

[^0]$\operatorname{Spec}(k) \xrightarrow{i} X_{n}, i(\xi)=y$, consider a diagram

where s is a morphism $x \longmapsto(y, x), r$, structure morphism, and p, projection. Apply principle of exchange:
\[

$$
\begin{aligned}
R^{1} p_{*}\left(q^{*}\left(\mathcal{O}_{X}(1)\right) \otimes J(W)\right) \otimes k(y) & \simeq R^{1} r_{*}\left(s^{*}\left(q^{*}\left(\mathcal{O}_{X}(1)\right) \otimes J(W)\right)\right. \\
& =H^{1}\left(X, s^{*}\left(q^{*}\left(\mathcal{O}_{X}(1)\right) \otimes J(W)\right) .\right.
\end{aligned}
$$
\]

Hence, $R^{1} p_{*}\left(q^{*}\left(\mathcal{O}_{x}(1)\right) \otimes J(W)\right)=0$ if and only if $H^{1}\left(X, s^{*}\left(q^{*}\left(\mathcal{O}_{X}(1)\right) \otimes J(W)\right)=0\right.$. From the exact sequence (4.1), we get following diagram:

where [y] is the corresponding divisor on X to point $y \in X_{n}$. A surjective homomorphism φ induces a surjective homomorphism $H^{1}\left(X, s^{*}\left(q^{*}\left(\mathcal{O}_{X}(1)\right) \otimes\right.\right.$ $J(W)) \rightarrow H^{1}\left(X, \mathcal{O}_{X}(-[y]) \otimes \mathcal{O}_{X}(1)\right)$, since $\operatorname{dim} X=1$, but it is also injective, since dimension of supports of kernel of φ is zero. By duality, $H^{1}\left(X, \mathscr{O}_{X}(-\right.$ $\left.[y] \otimes \mathcal{O}_{X}(1)\right) \neq 0$ if and only if $H^{0}\left(X, \mathscr{O}([y]) \otimes \mathcal{O}_{x}(-1)\right) \neq 0$, i.e. [y] is contained in the linear system of hyperplanesections.

Theorem (4.3). If an elliptic curve X is embedded in ($n-1$)-dimensional projective space P^{n-1} over an algebraically clased field k as a curve of degree $n(n \geqslant 3)$ and not contained in a proper subspace, then the points of order n of abelian variety X with suitable choice of a neutral element are exactly the ($n-1$)-singularities of the embedding.

Proof. There exists a point on X at which the projective embedding is ($n-1$)-singular, for otherwise, $E^{n-1}(f): \mathcal{O}_{x}^{n} \rightarrow \mathscr{P}_{x}^{n-1}\left(\mathcal{O}_{x}(1)\right)$ is a surjective homomorphism of locally free sheaves of same rank, since X is a curve, it must be an isomorphism, but this cannot be happen, since the following sequence
is exact:

$$
0 \rightarrow \Omega_{X}^{\otimes k} \otimes \mathcal{O}_{X}(1) \rightarrow \mathscr{P}_{X}^{k}\left(\mathcal{O}_{X}(1)\right) \rightarrow \mathscr{P}_{X}^{k-1}\left(\mathscr{O}_{X}(1)\right) \rightarrow 0
$$

for $k=1, \cdots, n-1$. We choose 0 as a neutral element. A point x of X is $(n-1)$-singular if and only if the divisors $[(x, \cdots, x)],[(0, \cdots, 0)]$ are linearly equivalent, but this is equivalent to $n x=0$ by Abel's theorem.

References

[B] H.F. Baker, Principles of geometry Vol. 5.
[EGA] A. Grothendieck, Élements de géométrie algébrique, Publ. Math. IHES.
[P] W.F. Pohl, Differential geometry of higher order, Topology Vol. 1, (1962) 169-211.
[S] R.L.E. Schwarzenberger, The secant bundle of a projective variety, Proc. London Math. Soc. 14 (1964) 369-84.
[W] H. Weyl and J. Weyl, Meromorphic functions and analytic curves, Ann. Math. No. 12, Princeton Univ. Press. 1943.
[M] A. Mattuck, Secant bundles on symmetric products, Amer. J. of Math. 87 (1965) 779-97.

Nagoya Institute for Technology
Department of Mathematics

[^0]: *) This calculation is suggested by H. Yamada.

