SINGULARITIES OF PROJECTIVE EMBEDDING (POINTS OF ORDER n ON AN ELLIPTIC CURVE)

AKIKUNI KATO

In the Plücker formula for a curve embedded in a higher dimensional projective space, one encounters the notion of stationary point (cf, [B], [W]). W. F. Pohl gave new view point about it in terms of vector bundles and he defined "the singularities of embedding" (cf. [P]). At first, we shall give dual formulation of Pohl's one by means of the sheaf of principal parts of order $n \mathcal{P}_X^n$, and next we shall prove the following: If an elliptic curve is embedded in (n-1)-dimensional projective space P_{n-1} as a curve of degree n, singularities of projective embedding of order n-1 are exactly the points of order n with suitable choice of a neutral element on the curve which is an abelian variety of dimension one. The proof is given by making use of the relation between \mathcal{P}_X^n and Schwarzenberger's secant bundle which we shall also give.

I wish to thank Professor H. Morikawa who introduced me to this problem and also to thank Professor H. Yamada who made helpful suggestions.

§1. Singularities of embedding.

Let $f: X \to A^m$ be an embedding (i.e. a closed immersion) of an affine S-scheme X into m-dimensional affine space A^m over $S = \operatorname{Spec}(A)$. We shall define singularities of a closed immersion f. Let \mathscr{F}_X^n , \mathscr{F}_A^n be the sheaf of principal parts of order n over X, A^m respectively. If $A^m = \operatorname{Spec}(R)$, where $R = A[T_1, \dots, T_m]$, T_i being indeterminates, then \mathscr{F}_A^n is the associated sheaf of R-module $P_R^n = R \otimes_A R/I^{n+1}$, where I being the kernel of multiplication $R \otimes_A R \to R$. Let U_i $(1 \le i \le m)$ be indeterminates and K be an ideal of $R[U_1, \dots, U_m]$ generated by U_i $(1 \le i \le m)$. Then R-module P_R^n is isomorphic to $R[U_1, \dots, U_m]/K^{n+1}$ (cf. EGA IV (16.4.10)). Since $P_R^1 = R[U_1, \dots, U_m]/K^2$ $RdT_1 \oplus \dots \oplus RdT_m$, where dT_i being the class of U_i mod K^2 , the correspondence $dT_i \longmapsto U_i$ mod K^{n+1} defines a homomorphism of (left) R-modules P_R^1

Received February 25, 1971.

 $\rightarrow P_R^n$ and this defines a homomorphism of sheaves:

$$\omega_n: \mathscr{F}_A^1 \to \mathscr{F}_A^n$$
.

On the other hand, S-morphism $f: X \to A^m$ induces a canonical homomorphism of \mathcal{O}_X -Algebra $P^n(f): f^*(\mathscr{S}^n_A) \to \mathscr{S}^n_X$.

DEFINITION (1.1). For a closed immersion $f: X \to A^m$, a point x of X is called an *n*-regular point or a regular point of order n of f, if the homomorphism of left \mathcal{O}_X -Modules $P^n(f)f^*(\omega_n): f^*(\mathscr{F}_A^1) \to \mathscr{F}_X^n$ is surjective at x, and if not surjective at x, it is called an n-singular point (or a singular point of order n) of f.

Now suppose that projective embedding $f: X \to \underline{P}^m$ be given. Then there is a canonical surjective homomorphism of \mathcal{O}_X -Modules $\varphi: \mathcal{O}_X^{m+1} \to \mathcal{O}_X(1)$. Let $s: \mathcal{O}_X \to \mathcal{F}_X^n$ be the structure homomorphism of left \mathcal{O}_X -Algebra \mathcal{F}_X^n . This s defines a homomorphism $s^{m+1}: \mathcal{O}_X^{m+1} \to (\mathcal{F}_X^n)^{m+1} = \mathcal{F}_X^n \otimes \mathcal{O}_X \mathcal{O}_X^{m+1} = \mathcal{O}_X^n \otimes \mathcal{O}_X^{m+1} = \mathcal{O}_X^n \otimes \mathcal{O}_X^{m+1} \otimes \mathcal{O}_X^{m+1} = \mathcal{O}_X^n \otimes \mathcal{O}_X^{m+1} = \mathcal{O}_X^n \otimes \mathcal{O}_X^{m+1} \otimes \mathcal{O}_X^{m+1} = \mathcal{O}_X^{m+1} \otimes \mathcal{O}_X^{m+1} \otimes \mathcal{O}_X^{m+1} \otimes \mathcal{O}_X^{m+1} = \mathcal{O}_X^{m+1} \otimes \mathcal{O}$

DEFINITION (1.2). For a closed immersion $f: X \to \underline{P}^m$, a point x of X is called an *n-regular point of* f, if the homomorphism of left \mathcal{O}_X -Modules $E^n(f) = \mathscr{F}^n(\varphi) \circ s^{m+1} : \mathscr{O}_X^{m+1} \to \mathscr{F}_X^n(\mathscr{O}_X)(1)$ is surjective at x, and otherwise, it is called an *n-singular point of* f. We denote by \mathscr{W}_X^n the sheaf of image of homomorphism $E^n(f)$.

Let ξ_i $(0 \le i \le m)$ be the global sections which are images of canonical basis of free \mathcal{O}_X -Module \mathcal{O}_X^{m+1} by φ . Their images $d^n\xi_i$ $(0 \le i \le m)$ in $\mathcal{O}_X^n(\mathcal{O}_X(1))$ generate (left) \mathcal{O}_X -Module \mathcal{W}_X^n . For a case n=1, it is easy to check that $\mathcal{W}_X^1 = \mathcal{O}_X^1(\mathcal{O}_X(1))$. Namely, every point is 1-regular point of f.

PROPOSITION (1.3). If $f: X \to \underline{P}^m$ is a closed immersion and \underline{P}^m is obtained by patching affine spaces \underline{A}_j $(0 \le j \le m)$ together, then for a point $x \in X$ such that $f(x) \in \underline{A}_j$, f is n-regular (or n-singular) at x if and only if $f|_{f^{-1}(\underline{A}_j)}$ is n-regular (or n-singular) at x.

Proof. Since, $\mathscr{F}_{\underline{P}}^{n}(\mathscr{O}_{\underline{P}}(1))|\underline{A}_{j} \simeq \mathscr{F}_{\underline{A}}^{n}$, the homomorphism ω_{n} defines homomorphisms $\mathscr{F}_{\underline{P}}^{1}(\mathscr{O}_{\underline{P}}(1))|\underline{A}_{j} \to \mathscr{F}_{\underline{P}}^{n}$, $(\mathscr{O}_{\underline{P}}(1))|\underline{A}_{j}$, $0 \leq j \leq m$. From these we get homomorphism $\mathscr{F}_{\underline{P}}^{1}(\mathscr{O}_{\underline{P}}(1)) \to \mathscr{F}_{\underline{P}}^{n}(\mathscr{O}_{\underline{P}}(1))$ (which maps $d^{1}\xi_{i}$ into $d^{n}\xi_{i}$) and the diagram

$$\mathcal{O}_{\underline{P}}^{m+1} \overset{\mathscr{F}_{\underline{P}}^{1}(\mathcal{O}_{\underline{P}}(1))}{\underset{\mathscr{F}_{\underline{P}}(\mathcal{O}_{\underline{P}}(1))}{\downarrow}}$$

is commutative. Since $E^{1}(f)$ is surjective, we get the proposition.

Proposition (1.4). The set of n-singular points of a closed immersion f is a closed subset of X.

Proof. Since structure morphism $X \to S$ is of finite type, \mathscr{F}_X^n , $\mathscr{F}_X^n(\mathscr{O}_X(1))$ are of finite type and cokernels of homomorphisms $f^*(\mathscr{F}_A^1) \to \mathscr{F}_X^n$, $\mathscr{O}_X^{m+1} \to \mathscr{F}_X^n(\mathscr{O}_X(1))$ are also of finite type and this implies their support, i.e., the set of n-singular points of f is a closed subset of X.

Proposition (1.5). If f is n-regular at x, then f is k-regular at x for $1 \le k \le n$.

Proof. This follows inductively from the following commutative diagrams:

$$f^*(\mathscr{I}_{\underline{A}}^1) \subset \bigvee_{\mathscr{J}_X^{n-1}}^n, \quad \mathscr{O}_X^{m+1} \subset \bigvee_{\mathscr{J}_X^{n-1}(\mathscr{O}_X(1))}^{\mathscr{I}_X^n}$$

where vertical arrows are canonical surjective homomorphisms.

PROPOSITION (1.6). Let f be an affine or projective embedding of X and $g: Y \to X$ be a closed immersion. If f is n-regular at g(y), $y \in Y$, then $g \circ f$ is n-regular at y.

Proof. Since homomorphis $i^*f^*(\mathscr{T}_{\underline{A}}^1) \to i^*(\mathscr{T}_{X}^n)$ is surjective at x and canonical homomorphism $i^*(\mathscr{F}_{X}^n)$ is surjective, their combined homomorphism $i^*f^*(\mathscr{T}_{\underline{A}}^n) \to \mathscr{F}_{Y}^n$ is surjective at y.

PROPOSITION (1.7). If X is an affine scheme or a projective scheme, then for a given integer, n > 0, there is an affine or projective embedding respectively which is everywhere n-regular.

Proof. By proposition (1.6), we may assume that $X = \underline{A}^m$ or $X = \underline{P}^m$. From the canonical homomorphism $\mathcal{O}_{\underline{P}}^{m+1} \to \mathcal{O}_{\underline{P}}(1)$, we get a surjective homomorphism $\mathcal{O}_{\underline{P}}^{N+1} = (\mathcal{O}_{\underline{P}}^{m+1})^{\otimes n} \to \mathcal{O}_{\underline{P}}(n)$ and this defines a closed immersion $f: \underline{P}^m \to \underline{P}^N$ $((x_0, x_1, \dots, x_m) \longmapsto (y_0, y_1, \dots, y_N), y_0 = x_0^n, \dots, y_i = x_0^{i_0} \cdots x_m^{i_m},$

 \cdots , $y_N = x_m^n$, $i_0 + i_1 + \cdots + i_m = n$). We show that f is n-regular at every point (x_0, x_1, \cdots, x_m) . We may assume that $x_0 \neq 0$. If we restrict to an affine open subset $\underline{A}^N = (\underline{P}^N)_{y_0}$ of \underline{P}^N , it is enough to show that the closed immersion $\underline{A}^m \to \underline{A}^N$ $(\xi_1, \cdots, \xi_m) \longmapsto (\eta_1, \cdots, \eta_N)$, $\eta_i = \eta_1^{i_1} \cdots \eta_m^{i_m}$, $i_1 + \cdots i_m \leq n$) is everywhere n-regular (and this proves the case $X = \underline{A}^m$). Put $\underline{A}^N = \operatorname{Spec}(B)$, $\underline{A}^m = \operatorname{Spec}(C)$, where $B = A[Y_1, \cdots, Y_N]$, $C = A[X_1, \cdots, X_m]$. The closed immersion $\underline{A}^m \to \underline{A}^N$ corresponds to a surjective homomorphism $\varphi: B \to C$ $(Y_i \longmapsto X_1^{i_1} \cdots X_m^{i_m})$. Then P_c^n can be identified to $A[X_1, \cdots, X_m, U_1, \cdots, U_m]/K^{n+1}$, and the C-module W^n which defines \mathcal{W}_X^n , is generated by 1 and $(X_1 + U_1)^{i_1} \cdots (X_m + U_m)^{i_m} \equiv U_1^{i_1} \cdots U_m^{i_m} + (\text{terms of lower degrees of } U_1, \cdots, U_m)$, mod K^{n+1} . This shows $W^n = P_c^n$.

PROPOSITION (1.8). For a closed immersion $X \subseteq A^m$ or $X \subseteq P^m$, of r-dimensional variety X, if a positive integer n satisfies inequality $m < r + \binom{r+1}{2} + \cdots + \binom{r+n-1}{n}$, then the closed immersion is everywhere n-singular.

Proof. If the closed immersion is n-regular at $x \in X$, we may assume that x is a simple point of X, because the set of n-singular points is closed. Then there is an affine neighborhood of $U = \operatorname{Spec}(B)$ of x such that B is a formally smooth A-algebra. Over U, there is an isomorphism

$$S : \mathcal{O}_{x}(\Omega_{x}^{1}) \simeq \mathcal{G}r. (\mathcal{P}_{x})$$

(cf. [EGA] IV (16.10.1), (16.10.2)).

Since Ω_x^1 is a locally free of rank r over U, by the exact sequence on U:

$$0 \to S^n_{\mathscr{O}_X}(\Omega^1_X) \to \mathscr{S}^n_X \to \mathscr{S}^{n-1}_X \to 0$$
,

we see that \mathscr{F}_X^n is locally free of rank $r + \binom{r+1}{2} + \cdots + \binom{r+n-1}{n} + 1$ on U. Since \mathscr{W}_X^n is generated by m+1 sections on U, it can not be $\mathscr{W}_X^n \neq \mathscr{F}_X^n$, if n satisfies the inequality.

§ 2. Stationary points.

Let X be an r-dimensional algebraic variety over an algebraically closed field k. We assume that X is embedded in \underline{A}^m or \underline{P}^m . Let x be a simple point of X. If t_1, \dots, t_r are uniformizing parameters at x, then $\mathcal{O}_{X,x}$ is contained in the formal power series ring $k[[t_1, \dots, t_r]]$. Since the property that an embedding is n-regular at x is invariant under linear transformation of ambient space \underline{A}^m or \underline{P}^m , we may assume that (inhomogeneous) coordinate x_1, \dots, x_m of x and their power series $x_i = \varphi_i(t)$ $(1 \le i \le m)$ are as follows:

$$\varphi_1(t) = H_{i,j}(t) + H_{i,j+1}(t) + \cdots, (l_{j-1} < i \le l_j)$$

where $H_{ik}(t)$ is a homogeneous polynomial of t_1, \dots, t_r of degree k and $H_{l_{j-1}+1,j}, H_{l_{j-1}+2,j}, \dots, H_{l_j+j}$ are linearly independent over $k, l_0 = 0$ $l_1 = r \leq l_2 \leq \dots \leq l_j \leq \dots \leq m$.

In particular, if X is a curve, (2.1) can be also written by the following form (cf. [W]):

$$\varphi_i(t) = t^{\delta_i} + \cdots, \ 1 \leqslant i \leqslant n$$

where $\delta_1 < \delta_2 < \cdots < \delta_n$.

Let s^n , d^n , be structure homomorphism of left or right $\mathcal{O}_{X,x}$ -algebra $\mathcal{I}_{X,x}^n$ respectively. Put $d = d^n - s^n$. Then d satisfies following equality:

$$d(f \cdot g) = f dg + g df + (df)(dg), f, g \in \mathcal{O}_{X,x}.$$

By the above equality, it is easily verified following lemma:

Lemma (2.3). If $\varphi(t) = \sum_{\nu=k}^{\infty} H_{\nu}(t_1, \dots, t_{\tau})$, where $H_{\nu}(t)$ is a homogeneous polynomial of t_1, \dots, t_{τ} of degree ν , then $d\varphi(t) = \sum_{l=1}^{n} F_l(t_1, \dots, t_{\tau}; dt_1, \dots, dt_{\tau})$, where $F_l(t; dt)$ is a homogeneous polynomial of dt_1, \dots, dt_{τ} of degree l with coefficients in $\mathcal{O}_{X,x}$ such that coefficients of F_l are formal power series of order k-l for l < k and $F_l(0, \dots, 0; dt_1, \dots, dt_{\tau}) = H_l(dt_1, \dots, dt_{\tau})$ for $k \le l \le n$.

Theorem (2.4). A point x of X, whose coordinates satisfies (2.1), is an n-regular point of embedding if and only if $l_j - l_{j-1} = \binom{j+r-1}{r-1}$, for all $j, 1 \le j \le n$.

Proof. A basis of free (left) $\mathcal{O}_{X,x}$ -module $\mathscr{S}^n_{X,x}$ is given by $(dt_1)^{i_1} \cdots (dt_r)^{i_r}$ ($0 \le i_1 + \cdots + i_r \le n$). Clearly, it holds that $l_j - l_{j-1} \le (j_r^{j+r-1}) = n$ number of monomials of degree j of r-variables = number of $(dt_1)^{i_1} \cdots (dt_r)^{i_r}$, $(i_1 + \cdots + i_r = j)$. We denote by $\omega_0 = 1$, $\omega_1, \cdots, \omega_N$ the above basis with lexicographically order. Put $dx_i = d\varphi_i(t) = \sum_{j=1}^n f_{i,j}(t)\omega_j$. Then, x is an n-regular point $\iff \mathscr{S}^n_{X,x}$ is generated by $1, dx_1, \cdots, dx_m \iff \operatorname{rank}(f_{i,j}) = N$.

By lemma (2.3), matrix (f_{ij}) is following form:

$$(f_{ij}) = \begin{pmatrix} A_1 & & \\ & A_2 & * \\ & \sharp & A_m \\ & & \sharp \end{pmatrix}, \text{ where } A_j \text{ is a matrix with } l_j - l_{i-1} \text{ rows, } \binom{j+r-1}{r-1}$$

columns and components at # are elements of the maximal ideal m of $\mathcal{O}_{X,x}$,

Hence, if rank $(f_{ij}) = N$, it must be $l_j - l_{j-1} = \binom{j+r-1}{r-1}$. Conversely, if

102 akikuni kato

 $l_j - l_{j-1} = \binom{j+r-1}{r-1}$, then det A_j is invertible, since A_j mod \mathfrak{m} is a coefficient matrix of $H_{l_{j-1}+1,j}, \cdots, H_{l_j,j}$, This implies that det $\begin{pmatrix} A_1 & A_2 * & A_m \end{pmatrix}$ is invertible in $\mathcal{O}_{X,x}$.

Remark (2.5). A point x of a curve X, whose coordinates satisfies (2.2), is called a stationary point of rank n, if $\delta_n - \delta_{n-1} > 1$ (cf. [W] p. 45).

§ 3. Secant bundle.

Let us consider a commutative diagram of S-prescheme,

$$(P) \qquad W \xrightarrow{f} X \times Y \\ Q \\ Y \qquad \qquad (p, q \text{ being projections})$$

which we denote simply by P = (W, X, Y, f, g) (Schwarzenberger called it a product scheme, if f is a covering map [S]). For a quasi-coherent \mathcal{O}_Y -Module $\mathcal{I}_P(\mathcal{F})$ defined by the relation

$$\sum_{P} (\mathcal{F}) = f_* g^* (\mathcal{F}).$$

By abuse of language, we shall call this \mathcal{O}_X -Module $\Sigma_P(\mathcal{F})$ secant sheaf which defines a secant bundle in particular case (cf. [S]).

Let $X^{(n)}$ be the *n*-th infinitesimal neighbourhood of X for the diagonal morphism (cf. [EGA] IV) (16.1.2)). If we consider a diagram

$$(I_n) \quad X^{(n)} \xrightarrow{p_1^{(n)}} X \times_S X, \text{ where } h_n \text{ is canonical morphism and } p_1, p_2, \text{ propagator}$$

jections, then for a quasi-coherent \mathcal{O}_X -Module, \mathcal{F} , we obtain a secant sheaf $\sum_{I_n} (\mathcal{F})$. In this case $\sum_{I_n} (\mathcal{F})$ is nothing else than $(p_1^{(n)})_*(p_2^{(n)})^*(\mathcal{F}) = \mathcal{F}_X^n(\mathcal{F})$. Another diagram with which we shall concern is that of cartesian product. Let X_n be an n-fold cartesian product of S-prescheme X. Identity morphim $1_{X_n}: X_n \to X_n$ and projection to t-th factor $X_n \to X$ define a closed immersion $h_t: X_n \to X_n \times_S X$. Let W_n be the union of subschemes $h_t(X_n)$ of $X_n \times_S X$ and i inclusion $W_n \to X_n \times_S X$. Then these give a diagram

and secant sheaf $\sum_{\mathcal{C}_n}(\mathcal{F})$, if quasi-coherent \mathcal{O}_X -Module \mathcal{F} is given. We denote $\sum_{\mathcal{C}_n}(\mathcal{F})$ by $\sum_{i=1}^n (\mathcal{F})$. In this section we shall prove the following: If Δ is a diagonal morphism $\Delta: X \to X_n$, there is a canonical isomorphism $\Delta^*(\sum_{i=1}^{n+1} (\mathcal{F})) \cong \mathcal{F}_X^n(\mathcal{F})$.

For two diagrams of S-preschemes P = (W, X, Y, f, g), P' = (W', X', Y', f', g'), triple of morphisms of S-preschemes, $r_W : W' \to W, r_X : X' \to X, r_Y : Y' \to Y$ is defined to be a morphism of P' = (W', X', Y', f', g') into P = (W, X, Y, f, g), if $f \circ r_W = r_X \circ f'$ and $g \circ r_W = r_Y \circ g'.$ For such a morphism $\underline{r} = (r_W, r_X, r_Y)$ and a quasi-coherent \mathcal{O}_Y -Module \mathcal{F}_Y , there is a canonical homomorphism $\rho : g^*(\mathcal{F}) \to (r_W)_*(r_W)^*g^*(\mathcal{F}) = (r_W)_*g'^*r_Y^*(\mathcal{F})$ and this induces a homomorphism $f_*(\rho) : \sum_P (\mathcal{F}) \to (r_X)_* \sum_{P'} (r_Y^*(\mathcal{F})).$ The adjoint homomorphism of $f_*(\rho)$ is denoted by $\beta(r), \beta(r) : r_X^*(\sum_P (\mathcal{F})) \to \sum_{P'} (r_Y^*(\mathcal{F})).$

For a diagram P = (W, X, Y, f, g) and a morphism $r_X : X' \to X$, it is obtained new diagram $P' = (W', X', Y, f', g \circ r_W)$ in which W' is the fibered product $X' \times_X W$ and f', r_W are projections. Then $\underline{r} = (r_W, r_X, l_Y)$ is a morphism of P' into P. Let $\mathscr E$ be a quasi-coherent $\mathscr O_W$ -Module. If f is an affine morphism, there is an isomorphism (EGA II (1.5.2)),

$$r_X^* \circ f_*(\mathscr{E}) \cong f_*'r_W^*(\mathscr{E}),$$

in particular if $\mathscr{C} = g^*(\mathscr{F})$, where \mathscr{F} is a quasi-coherent \mathscr{O}_Y -Module, this isomorphism is

$$\beta(r): r_X^*(\Sigma_P(\mathscr{F})) \cong \Sigma_{P'}(\mathscr{F}).$$

The diagonal $A: X \to X_{n+1}$ factors through $X \xrightarrow{j} W_{n+1} \xrightarrow{f} X_{n+1}$, where j is a closed immersion such that j(X) is diagonal of $X_{n+1} \times_S X$. The composite morphism $r: X^{(n)} \to W_{n+1}$ of morphisms $p_1^{(n)}: X^{(n)} \to X$ and $j: X \to W_{n+1}$ is also a closed immersion, hence it is an affine morphism. Two morphisms $p_1^{(n)}: X^{(n)} \to X$ and $f: X \to W_{n+1}$ induce a morphism $\sigma: X^{(n)} \to X \times_{X_{n+1}} W_{n+1}$

Proposition (3.2). σ is an isomorphism, $\sigma: X^{(n)} \cong X \times_{X_{n+1}} W_{n+1}$.

Proof. Since r is affine, σ is also affine, and we can assume that X, S

are affine schemes such that $X = \operatorname{Spec}(B)$, $S = \operatorname{Spec}(A)$. Then $X^{(n)} = \operatorname{Spec}(P_{B/A}^n)$, where $P_{B/A}^n = B \otimes_A B/I_{B/A}^{n+1}$. Put $T^{n+1}(B) = B \otimes_A B \otimes_A \cdots \otimes_A B$ (n+1) times), then $X_{n+1} = \operatorname{Spec}(T^{n+1}(B))$, $X_{n+1} \times_S X = \operatorname{Spec}(T^{n+1}(B) \otimes_A B)$. Let J be the ideal of W_{n+1} in $T^{n+1}(B) \otimes_A B$ such that $W_{n+1} = \operatorname{Spec}(T^{n+1}(B) \otimes_A B/J)$. The diagonal morphism $A: X \to X_{n+1}$ determines a homomorphism of rings $T^{n+1}(B) \to B$ which makes B a $T^{n+1}(B)$ -module. Tensoring an exact sequence of $T^{n+1}(B)$ -modules

$$0 \to J \to T^{n+1}(B) \bigotimes_A B \to T^{n+1}(B) \bigotimes_A B/J \to 0$$

with B, we get an exact sequence

$$(*) B \otimes_{T^{n+1}(B)} J \xrightarrow{\psi} B \otimes_{T^{n+1}(B)} (T^{n+1}(B) \otimes_A B) \to C \to 0$$

where $C = B \otimes_{T^{n+1}(B)} (T^{n+1}(B) \otimes_A B/J)$ and Spec $(C) = X \times_{X_{n+1}} W_{n+1}$. On the other hand, we have another exact sequence

$$(**) 0 \to I_{R/A}^{n+1} \to B \bigotimes_A B \to P_{A/R}^n \to 0$$

Since there is a canonical isomorphism between middle terms of exact sequences (*) and (**), in order to prove $P_{B/A}^n \cong C$, it reduces to show that the image of φ is canonically isomorphic to $I_{B/A}^{n+1}$. Let J_i be an ideal of $T^{n+1}(B) \otimes_A B$ generated by elements $\varphi_i(a) \otimes 1 - \varphi_i(1) \otimes a$, $a \in B$, where $\varphi_i(a) = 1 \otimes 1 \otimes \cdots \otimes a \otimes \cdots \otimes a \otimes \cdots \otimes a$. Then J_i is a kernel of multiplication $T^{n+1}(B) \otimes_A B \to T^{n+1}(B)$ of last component with i-th component, and it holds that $J = J_1 \cap J_2 \cap \cdots \cap J_{n+1}$ and $\psi(J_i) = I$, hence it suffices to prove that $J = J_1 \cap J_2 \cap \cdots \cap J_{n+1}$. Let $\sum_{\nu} a_1^{(\nu)} \otimes a_2^{(\nu)} \cdots \otimes a_{n+1}^{(\nu)} \otimes b^{(\nu)}$ be an arbitrary element of $J = J_1 \cap J_2 \cap \cdots \cap J_{n+1}$. Then, $\sum_{\nu} a_1^{(\nu)} \otimes \cdots \otimes a_{n+1}^{(\nu)} \otimes b^{(\nu)} \otimes a_n^{(\nu)} \otimes a_$

Since
$$\begin{split} &\prod_{i=1}^{n+1}(\varphi_i(a_i^{(\nu)})\otimes 1-\varphi_i(1)\otimes a_i^{(\nu)})\\ &=(a_1^{(\nu)}\otimes 1\otimes \cdot\cdot\cdot \otimes 1-1\otimes \cdot\cdot\cdot \otimes 1\otimes a_1^{(\nu)})\\ &\qquad \cdot\cdot\cdot (1\otimes \cdot\cdot\cdot \otimes a_{n+1}^{(\nu)}\otimes 1-1\otimes \cdot\cdot\cdot \otimes 1\otimes a_{n+1}^{(\nu)})\\ &=a_1^{(\nu)}\otimes a_2^{(\nu)}\otimes \cdot\cdot\cdot \otimes a_{n+1}^{(\nu)}\otimes 1-1\otimes a_2^{(\nu)}\otimes \cdot\cdot\cdot \otimes a_{n+1}^{(\nu)}\otimes a_1^{(\nu)}+\cdot\cdot\cdot \end{split}$$

we see that
$$\sum_{\nu} a_1^{(\nu)} \otimes a_2^{(\nu)} \otimes \cdots \otimes a_{n+1}^{(\nu)} \otimes b^{(\nu)}$$

= $\sum_{\nu} (1 \otimes \cdots \otimes 1 \otimes b^{(\nu)}) \prod_{t=1}^{n+1} (\varphi_i(a_i^{(\nu)}) \otimes 1 - \varphi_i(1) \otimes a_i^{(\nu)})$

is an element of $J_1 \cdot J_2 \cdot \cdot \cdot J_{n+1}$. Since it is clear that $J_1 \cdot J_2 \cdot \cdot \cdot J_{n+1} \subset J$, $J = J_1 \cdot J_2 \cdot \cdot \cdot J_{n+1}$.

THEOREM (3.3). If $\Delta: X \to X_{n+1} = X \times \cdots \times X$ is a diagonal morphism and $\sum_{i=1}^{n+1} (\mathscr{F})$ is a secant sheaf on X_{n+1} associated with a quasi-coherent \mathscr{O}_X -Module \mathscr{F} , then there is a canonical isomorphism, $\Delta^*(\sum_{i=1}^{n+1} (\mathscr{F})) \cong \mathscr{F}_X^n(\mathscr{F})$.

Proof. By roposition (3.2), isomorphism (3.1) gives the isomorphism in question.

Remark. We can also consider a diagram for *n*-fold symmetric product $X_{(n)}$ of X and a secant sheaf $\sum^{(n)}(\mathscr{F})$ on $X_{(n)}$ cf. [S], p. 375). Then there is a canonical morphism $r_X: X_n \to X_{(n)}$ and $r_X^*(\sum^{(n)}(\mathscr{F})) = \sum^n(\mathscr{F})$, hence we have also a canonical isomorphism $\Delta^*r_X^*(\sum^{(n+1)}(\mathscr{F})) \cong \mathscr{F}_X^n(\mathscr{F})$.

§ 4. Points of order n on elliptic curve.

Suppose that an elliptic curve X is embedded in (n-1)-dimensional projective space \underline{P}^{n-1} over an algebraically closed field k, as a curve of degree n and not contained in a proper linear subspace of \underline{P}^{n-1} . Then by Riemann-Roch theorem, $H^1(X, \mathcal{O}_X(1)) = 0$. Consider an exact sequence:

$$(4.1) 0 \to J(W) \to \mathcal{O}_{X_n \times X} \to i_* \mathcal{O}_{W_n} \to 0,$$

where J(W) is an Ideal of $\mathcal{O}_{X_n \times X}$ corresponding the subscheme W_n . Tensor by $q^*(\mathcal{O}_X(1))$ and apply p^* . The result is a cohomology exact sequence which begins

$$(4.2) 0 \to p_*(J(W) \otimes q^*(\mathcal{O}_X(1))) \to p_*q^*(\mathcal{O}_X(1)) \overset{\alpha}{\to}$$

$$p_*(i_*(\mathcal{O}_{W_n}) \otimes q^*(\mathcal{O}_X(1)) \to R^1 p_*(q^*(\mathcal{O}_X(1) \otimes J(W)) \to 0$$

Its last term is zero (apply principle of exchange (cf. [M] p. 785) and $H^1(X, \mathcal{O}_X(1)) = 0$). Apply \sum^n to a canonical surjective homomorphism $\mathcal{O}_X^n \to \mathcal{O}_X(1)$ and combine canonical homomorphism $\mathcal{O}_{Xn}^n \to \sum^n (\mathcal{O}_X)^n = \sum^n (\mathcal{O}_X^n)$, then resulting homomorphism is $\alpha : \mathcal{O}_{Xn}^n \to \sum^n (\mathcal{O}_X(1))$ by our assumption. Thus by theorem (3.3), $\Delta^*(\alpha)$ is the homomorphism $E^{n-1}(f) : \mathcal{O}_X^n \to \mathcal{F}_X^{n-1}(\mathcal{O}_X(1))$ in definition (1.2). By Nakayama's lemma, projective embedding $X \to P^{n-1}$ is (n-1)-singular at x if and only if α is not surjective at $(x, x, \dots, x) \in X_n$, i.e. if and only if $(x, x, \dots, x) \in \operatorname{Supp} R^1 p_*(q^*(\mathcal{O}_X(1) \otimes J(W))$. Now we calculate(*) Supp $R^1 p_*(q^*(\mathcal{O}_X(1)) \otimes J(W))$. For a given geometric point $\xi =$

^{*)} This calculation is suggested by H. Yamada.

Spec $(k) \xrightarrow{i} X_n$, $i(\xi) = y$, consider a diagram

$$X \xrightarrow{s} X_n \times_k X$$

$$\downarrow r \qquad p \downarrow$$

$$\xi \longrightarrow X_n$$

where s is a morphism $x \mapsto (y, x), r$, structure morphism, and p, projection. Apply principle of exchange:

$$\begin{split} R^1p_*(q^*(\mathscr{O}_X(1))\otimes J(W))\otimes k(y) &\simeq R^1r_*(s^*(q^*(\mathscr{O}_X(1))\otimes J(W))\\ &= H^1(X,\ s^*(q^*(\mathscr{O}_X(1))\otimes J(W)). \end{split}$$

Hence, $R^1p_*(q^*(\mathcal{O}_X(1)) \otimes J(W)) = 0$ if and only if $H^1(X, s^*(q^*(\mathcal{O}_X(1)) \otimes J(W)) = 0$. From the exact sequence (4.1), we get following diagram:

$$s^*(q^*(\mathcal{O}_X(1)) \otimes J(W)) \longrightarrow s^*q^*(\mathcal{O}_X(1)) \longrightarrow s^*(i_*\mathcal{O}_W \otimes q^*(\mathcal{O}_X(1))) \longrightarrow 0$$

$$\downarrow \varphi \qquad \qquad \qquad \parallel \qquad \qquad \parallel$$

$$0 \longrightarrow \mathcal{O}_X(-[y]) \otimes \mathcal{O}_X(1) \longrightarrow \mathcal{O}_X(1) \longrightarrow \mathcal{O}_{X \cap s^{-1}(W)} \otimes \mathcal{O}_X(1) \longrightarrow 0$$

$$\downarrow 0$$

where [y] is the corresponding divisor on X to point $y \in X_n$. A surjective homomorphism φ induces a surjective homomorphism $H^1(X, s^*(q^*(\mathcal{O}_X(1)) \otimes J(W)) \to H^1(X, \mathcal{O}_X(-[y]) \otimes \mathcal{O}_X(1))$, since dim X = 1, but it is also injective, since dimension of supports of kernel of φ is zero. By duality, $H^1(X, \mathcal{O}_X(-[y] \otimes \mathcal{O}_X(1)) \neq 0$ if and only if $H^0(X, \mathcal{O}([y]) \otimes \mathcal{O}_X(-1)) \neq 0$, i.e. [y] is contained in the linear system of hyperplanesections.

THEOREM (4.3). If an elliptic curve X is embedded in (n-1)-dimensional projective space P^{n-1} over an algebraically classed field k as a curve of degree n $(n \ge 3)$ and not contained in a proper subspace, then the points of order n of abelian variety X with suitable choice of a neutral element are exactly the (n-1)-singularities of the embedding.

Proof. There exists a point on X at which the projective embedding is (n-1)-singular, for otherwise, $E^{n-1}(f): \mathcal{O}_X^n \to \mathcal{F}_X^{n-1}(\mathcal{O}_X(1))$ is a surjective homomorphism of locally free sheaves of same rank, since X is a curve, it must be an isomorphism, but this cannot be happen, since the following sequence

is exact:

$$0 \to \varOmega_X^{\otimes k} \otimes \mathcal{O}_X(1) \to \mathcal{S}_X^k(\mathcal{O}_X(1)) \to \mathcal{S}_X^{k-1}(\mathcal{O}_X(1)) \to 0$$

for $k = 1, \dots, n-1$. We choose 0 as a neutral element. A point x of X is (n-1)-singular if and only if the divisors $[(x, \dots, x)]$, $[(0, \dots, 0)]$ are linearly equivalent, but this is equivalent to nx = 0 by Abel's theorem.

REFERENCES

- [B] H.F. Baker, Principles of geometry Vol. 5.
- [EGA] A. Grothendieck, Élements de géométrie algébrique, Publ. Math. IHES.
- [P] W.F. Pohl, Differential geometry of higher order, Topology Vol. 1, (1962) 169-211.
- [S] R.L.E. Schwarzenberger, The secant bundle of a projective variety, Proc. London Math. Soc. 14 (1964) 369-84.
- [W] H. Weyl and J. Weyl, Meromorphic functions and analytic curves, Ann. Math. No. 12, Princeton Univ. Press. 1943.
- [M] A. Mattuck, Secant bundles on symmetric products, Amer. J. of Math. 87 (1965) 779–97.

Nagoya Institute for Technology Department of Mathematics