A. Takaku.

Nagoya Math. J.
Vol. 44 (1971), 51-55

UNITS OF REAL QUADRATIC FIELDS

AKIRA TAKAKU

1. Let D be a positive square-free integer. Throughout this note we shall use the following notations;
$d=d(D)$: the discriminant of $\boldsymbol{Q}(\sqrt{D})$,
t_{0}, u_{0} : the least positive solution of Pell's equation $t^{2}-d u^{2}=4$,
$\varepsilon_{D}=\left(t_{0}+u_{0} \sqrt{d}\right) / 2$.
In this note we estimate ε_{D}. At first (in lemma) we prove that for $\boldsymbol{Q}(\sqrt{D})$ there exist integers ℓ, m and Δ (= square-free) such that D is one of three types

$$
D=\Delta\left(m^{2} \Delta \pm \frac{4}{2^{\delta}}\right) / l^{2}, \quad(\delta=0,1 \text { or } 2)
$$

where $2 \nmid m, 2 \nmid \Delta$ for $\delta=0$ and $2 \nmid \Delta$ for $\delta=1$. Therefore we consider the above three types.

As for the estimate of ε_{D} Hua [1] proved

$$
\begin{equation*}
\log \varepsilon_{D}<\sqrt{d}\left(\frac{1}{2} \log d+1\right) \tag{1}
\end{equation*}
$$

Here we estimate ε_{D} in accordance with the above three types.
Theorem. We have

$$
\begin{equation*}
\varepsilon_{D}<2^{\delta} \ell^{2} D \tag{2}
\end{equation*}
$$

where $D=\Delta\left(m^{2} \Delta+4 / 2^{\delta}\right) / \iota^{2}$ and $\delta=0$, 1 or $2 . \Delta$ is a square-free integer >0, m and ℓ are integers. In particular $2 \neq m, 2 \nmid \Delta$ for $\delta=0$ and $2 \nmid \Delta$ for $\delta=1$. More precisely when $\delta=1$ we have

$$
\varepsilon_{D}< \begin{cases}2 \iota^{2} D & (\Delta=1) \tag{3}\\ \iota^{2} D & (\Delta \geqslant 2)\end{cases}
$$

Received January 25, 1971
and when $\delta=2$ we have
(4)

$$
\varepsilon_{D}< \begin{cases}4 \iota^{2} D & (\Delta=1) \\ 2 \iota^{2} D & (\Delta=2,3) \\ \iota^{2} D & (\Delta \geqslant 4)\end{cases}
$$

Hence if $m^{2} \Delta \pm 4 / 2^{\delta}$ is square-free then, for $D=\Delta\left(m^{2} \Delta \pm 4 / 2^{8}\right)$,

$$
\begin{equation*}
\varepsilon_{D}<2^{\delta} D \tag{5}
\end{equation*}
$$

holds, where $\bar{\delta}=0,1$ or 2 and $2+\Delta$ for $\delta=0,1$.

2. Types of D and Proof of Theorem.

Lemma. (A) (I) If $D \equiv 1(\bmod 4)$ then there exist ℓ, m and Δ (=squarefree >0) such that D is one of the following two forms

$$
D=\Delta\left(m^{2} \Delta+4 / 2^{\delta}\right) / \iota^{2}
$$

where $\bar{o}=0$ or 2 and $2 \not+m, 2 \nmid \Delta$ for $\dot{\delta}=0$. Then we have

$$
\varepsilon_{D} \leqslant\left\{\left(2^{\delta} m^{2} \Delta+2\right)+2^{\delta} \iota m \sqrt{D}\right\} / 2
$$

(II) If $D \equiv 2,3(\bmod 4)$ then there exist ℓ, m and $\Delta(=$ square-free $>0)$ such that D is one of the following two forms

$$
D=\Delta\left(m^{2} \Delta+4 / 2^{6}\right) / \ell^{2}
$$

where $\delta=1$ or 2 and $2 \nmid \Delta$ for $\delta=1$. Then we have

$$
\varepsilon_{D} \leqslant\left\{\left(2^{\delta} m^{2} \Delta+2\right)+2^{\delta}<m \sqrt{D}\right\} / 2
$$

(B) Let $\Delta=$ square-free >0 and $m>0$ then, for $\boldsymbol{Q}(\sqrt{D})=\boldsymbol{Q}\left(\sqrt{\Delta\left(m^{2} \Delta \pm 4 / 2^{\delta}\right)}\right)$ ($m^{2} \Delta \pm 4 / 2^{\circ}$ is not necessary square-free),

$$
\begin{equation*}
\varepsilon_{D} \leqslant \frac{1}{2}\left\{2^{\delta} m^{2} \Delta \pm 2+2^{\delta} m \sqrt{\Delta\left(m^{2} \Delta \pm 4 / 2^{\circ}\right)}\right\} \tag{6}
\end{equation*}
$$

holds, where $\delta=0,1$ or 2 and $2+\Delta$ for $\delta=0,1$.
Proof. (A) (I) Pell's equation

$$
\begin{equation*}
t^{2}-d u^{2}=4 \tag{7}
\end{equation*}
$$

becomes $D u^{2}=(t+2)(t-2)$, hence we have

$$
D=D_{1} D_{2} \text { such that }\left(D_{1}, D_{2}\right)=1, D_{1}\left|t+2, D_{2}\right| t-2 .
$$

If we write

$$
\begin{equation*}
t+2=m_{1} D_{1}, t-2=m_{2} D_{2} \tag{8}
\end{equation*}
$$

then a relation

$$
\begin{equation*}
m_{1} D_{1}=m_{2} D_{2}+4 \tag{9}
\end{equation*}
$$

holds. From (7) we have

$$
\begin{equation*}
u^{2}=m_{1} m_{2} . \tag{10}
\end{equation*}
$$

If m_{1} and m_{2} have a common divisor, from (9) it must be 1,2 or 4. Let $\left(m_{1}, m_{2}\right)=2^{\delta}(\delta=0,1$ or 2$), m_{1}=2^{\delta} m_{1}^{\prime}$ and $m_{2}=2^{\delta} m_{2}^{\prime}$ then (10) becomes

$$
\begin{equation*}
u^{2}=\left(2^{\delta}\right)^{2} m_{1}^{\prime} m_{2}^{\prime}, \quad\left(m_{1}^{\prime}, m_{2}^{\prime}\right)=1 . \tag{11}
\end{equation*}
$$

Hence m_{1}^{\prime} and m_{2}^{\prime} are both square-numbers. Let $m_{1}^{\prime}=\ell^{2}, m_{2}^{\prime}=m^{2}$ and $D_{2}=\Delta$ (resp. $D_{1}=\Delta$), then, from (8) and (13), we have

$$
\begin{aligned}
& \begin{cases}t=2^{\delta} m^{2} \Delta+2 & \left(\text { resp. } t=2^{\delta} \iota^{2} \Delta-2\right) \\
u=2^{\delta} \iota m & \left(\text { resp. } u=2^{\delta} \iota m\right)\end{cases} \\
& \left.D_{1}=\left(m^{2} \Delta+4 / 2^{\delta}\right) / \iota^{2} \quad \text { (resp. } D_{2}=\left(\iota^{2} \Delta-4 / 2^{\delta}\right) / m^{2}\right) .
\end{aligned}
$$

But $\grave{\delta}=1$ does not happen. In fact if $D=\Delta\left(m^{2} \Delta+2\right) / \iota^{2}$, we have

$$
\begin{equation*}
\Delta\left(m^{2} \Delta+2\right) \equiv \iota^{2} \quad\left(\bmod 4 \iota^{2}\right) \tag{12}
\end{equation*}
$$

Then (i) when $(m, 2)=1$ eq.(12) becomes $1+2 \Delta \equiv \iota^{2}(\bmod 4)$. Hence $\iota=$ odd and $\Delta \equiv 2(\bmod 4)$ and so

$$
D=\Delta\left(m^{2} \Delta+2\right) / \iota^{2} \equiv 2\left(m^{2} \Delta+2\right) / \iota^{2} \not \equiv 1(\bmod 4)
$$

On the other hand (ii) when $(m, 2)=2$ let $m=2 m^{\prime}$ then from (9) ℓ is even and this contradicts $(\ell, m)=1$.
(II) Let $t=2 s$ then the Pell's equation becomes

$$
\begin{equation*}
D u^{2}=(s+1)(s-1) . \tag{13}
\end{equation*}
$$

Hence we have $D=D_{1} D_{2}$ such that $\left(D_{1}, D_{2}\right)=1, D_{1} \mid s+1$ and $D_{2} \mid s-1$. If we write

$$
\begin{equation*}
s+1=m_{1} D_{1}, s-1=m_{2} D_{2} \tag{14}
\end{equation*}
$$

then, for m_{1} and $m_{2}, m_{1} D_{1}=m_{2} D_{2}+2$ holds. From (13) we have

$$
\begin{equation*}
u^{2}=m_{1} m_{2} . \tag{15}
\end{equation*}
$$

Let $\left(m_{1}, m_{2}\right)=2^{\delta}(\delta=0$ or 1$), m_{1}=2^{\delta} m_{1}^{\prime}$ and $m_{2}=2^{\delta} m_{2}^{\prime}$, then m_{1}^{\prime} and m_{2}^{\prime} are both square numbers. Therefore let $m_{1}^{\prime}=\iota^{2}, m_{2}^{\prime}=m^{2}$ and $D_{2}=\Delta$ (resp. $D_{1}=\Delta$), then from (14) and (15) we have

$$
\begin{aligned}
& \begin{cases}t=2\left(2^{\delta} m^{2} \Delta+1\right) & \left(\text { resp. } t=2\left(2^{\delta} \iota^{2} \Delta-1\right)\right) \\
u=2^{\delta} \iota m & \left(\text { resp. } u=2^{\delta} \iota m\right)\end{cases} \\
& D_{1}=\left(m^{2} \Delta+2 / 2^{\delta}\right) / \iota^{2} \quad \text { (resp. } D_{2}=\left(\iota^{2} \Delta-2 / 2^{\delta}\right) / m^{2} .
\end{aligned}
$$

(B) Since $2 \nless \Delta$ for $\delta=0$ and 1 , the biggest square-factor ℓ^{2} of $\Delta\left(m^{2} \Delta \pm 4 / 2^{8}\right)$ is the biggest square-factor of $m^{2} \Delta \pm 4 / 2^{\delta}$. As Pell's equation $t^{2}-d u^{2}=4$ of $\boldsymbol{Q}(\sqrt{D})=\boldsymbol{Q}\left(\sqrt{\Delta\left(m^{2} \Delta \pm 4 / 2^{\circ}\right)}\right)$ has a solution

$$
\left\{\begin{array}{l}
t=2^{\delta} m^{2} \Delta \pm 2 \\
u=2^{\delta} / m,
\end{array}\right.
$$

we have (6). q.e.d.
Remark 1. Let $\varepsilon=(t+u \sqrt{p}) / 2$ be the fundamental unit of the real quadratic fields $\boldsymbol{Q}(\sqrt{p})(p \equiv 1(\bmod 4))$. . Then for primes $p=m^{2} \pm 4$ or $p=$ $4 m^{2} \pm 1$ we have

$$
u_{\neq \equiv} 0(\bmod p) .
$$

In fact when $p=m^{2}+4$, from lemma (B), we have $u<\sqrt{p}$. When $p=m^{2}-4$ or $4 m^{2} \pm 1$, from lemma (B), we have $u<4 \sqrt{p}$. If $4 \sqrt{p} \geqslant p$ i.e., $p=5$ or 13 then

$$
u=1 \not \equiv 0(\bmod p)
$$

holds.
Remark 2. Applying the method of the proof of lemma we see the following. Let p and q be primes ($\neq 2$) and let $D=$ square-free $>0, D \equiv 1$ $(\bmod 4)$. Suppose that $Q \sqrt{D})$ has not a unit of norm -1 . Then the necessary and sufficient conditions in order that $\boldsymbol{Q}(\sqrt{D})$ has a unit $\varepsilon=(t+u \sqrt{D}) / 2$ of $u=p q$ is that D is one of the following four forms
or

$$
D=m\left(m p^{2} \pm 4\right) / q^{2}
$$

$$
D=m\left(m p^{2} q^{2} \pm 4\right)
$$

where m is a square-free integer and $2 \nmid m$. The proof is easy.
Remark 3. There exist infinitely many fields $\boldsymbol{Q}(\sqrt{D})\left(D=\Delta\left(m^{2} \Delta \pm 4\right)=\right.$ square-free). There also exist infinitely many fields $\boldsymbol{Q}(\sqrt{D})\left(D=\Delta\left(m^{2} \Delta \pm 2\right)=\right.$ square-free or $D=\Delta\left(m^{2} \Delta \pm 1\right)=$ square-free). In fact from the prime number
theorem of arithmetic progression, for $m(\neq 1)$ with $(m, 4)=1$, there exist infinitely many primes p which satisfy

$$
p \equiv 4\left(\bmod m^{2}\right) .
$$

Then for primes p and q which satisfy

$$
\left\{\begin{array}{l}
p=m^{2} m_{1}^{2} \Delta_{1}^{\prime}+4>q=m^{2} m_{2}^{\prime} \Delta_{2}^{\prime}+4, \\
\Delta_{1}=m_{1}^{2} \Delta_{1}^{\prime}, \quad \Delta_{2}=m_{2}^{2} \Delta_{2}^{\prime} .
\end{array}\right.
$$

where $\Delta_{1}^{\prime}, \Delta_{2}^{\prime}$ are both square-free, if $p \Delta_{1}^{\prime}=q \Delta_{2}^{\prime}$ then

$$
1>\frac{\Delta_{2}^{\prime}}{p}=\frac{\Delta_{1}^{\prime}}{q}
$$

holds. This is a contradiction. For $D=\Delta\left(m^{2} \Delta \pm 2\right)$ and $D=\Delta\left(m^{2} \Delta \pm 1\right)$, the proofs are also similar.

Proof of theorem; For $D=\Delta\left(m^{2} \Delta \pm 4 / 2^{\delta}\right) / \iota^{2}$, from lemma(B) we have

$$
\begin{align*}
\varepsilon_{D} & \leqslant\left\{2^{\delta} m^{2} \Delta+2+2^{\delta} m \sqrt{\Delta\left(m^{2} \Delta+4 / 2^{\delta}\right)}\right\} / 2 \\
& =\frac{2^{\delta} \iota^{2}}{2}\left\{\frac{1}{\iota^{2}}\left(m^{2} \Delta+\frac{2}{2^{\delta}}\right)+\frac{m}{\iota} \sqrt{\Delta\left(m^{2} \Delta+\frac{4}{2^{\delta}}\right) / \iota^{2}}\right\} \tag{16}\\
& <\frac{2^{\delta} \iota^{2}}{2}(D+\sqrt{D} \sqrt{D})=2^{\delta} \iota^{2} D .
\end{align*}
$$

Inequalities (3) and (4) are evidence by (16).

Reference

[1] L.K. Hua, On the least solution of Pell's equation, Bull. Amer. Math. Soc. 48 (1942) 731-735.

