ON ELLIPTIC GURVES WITH COMPLEX MULTIPLICATION AS FACTORS OF THE JACOBIANS OF MODULAR FUNCTION FIELDS

GORO SHIMURA

1. As Hecke showed, every L-function of an imaginary quadratic field K with a Grössen-character λ is the Mellin transform of a cusp form $f(z)$ belonging to a certain congruence subgroup Γ of $S L_{2}(\boldsymbol{Z})$. We can normalize λ so that

$$
\lambda((\alpha))=\alpha^{\nu} \quad \text { for } \quad \alpha \in K, \quad \alpha \equiv 1 \bmod ^{\times} \mathrm{c}
$$

with a positive integer ν, where c is the conductor of λ, and $\bmod ^{x} c$ means the multiplicative congruence modulo c. Then $f(z)$ is of weight $\nu+1$, i.e.,

$$
f((a z+b) /(c z+d))=f(z)(c z+d)^{v+1} \text { for }\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma,
$$

and Γ is given by

$$
\Gamma=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in S L_{2}(\boldsymbol{Z}) \right\rvert\, a \equiv d \equiv 1, c \equiv 0 \bmod (D \cdot N(\mathfrak{c}))\right\},
$$

where $-D$ is the discriminant of K. If $\nu=1, f(z) d z$ is a differential form of the first kind on the compactification $(H / \Gamma)^{*}$ of the quotient H / Γ, where H denotes the upper half complex plane. Denote by $\mathrm{Jac}(H / \Gamma)$ the jacobian variety of $(H / \Gamma)^{*}$, and identify the tangent space of $\mathrm{Jac}(H / \Gamma)$ at the origin with the space of all differential forms of the first kind on $(H / \Gamma)^{*}$. Let A be the smallest abelian subvariety of $\mathrm{Jac}(H / \Gamma)$ that has $f(z) d z$ as a tangent at the origin. Then the first main result of this paper can be stated as follows:

The abelian variety A is a product of copies of an elliptic curve whose endomorphism algebra is isomorphic to K.

Hecke [3] proved this fact in the case where $K=\boldsymbol{Q}(\sqrt{-q})$ with a prime $q>3$, $\equiv 3 \bmod (4)$ and $\mathfrak{c}=(\sqrt{-q})$. In the general case, he showed only that
the periods of $f(z) d z$ belong to a certain class field over K. His proof requires rather deep arithmetic results of complex multiplication. Ours is simpler, and based on the following

Lemma 1. Let X be an abelian variety of dimension n defined over \boldsymbol{C}, and h an injective homomorphism of K into Enda (X). Suppose that the representation of K, through h, on the tangent space of X at the origin is equivalent to n copies of the identity injection of K into \boldsymbol{C}. Then X is isogenous to a product of n copies of an elliptic curve E such that $\operatorname{End}(E)$ is isomorphic to K.

Here and henceforth we denote by $\operatorname{End}(X)$ the ring of all endomorphisms of X over \boldsymbol{C}, and put $\operatorname{End} \boldsymbol{Q}(X)=\operatorname{End}(X) \otimes \boldsymbol{Q}$.

Our next purpose is to show that every elliptic curve E defined over \boldsymbol{Q} with complex multiplication is isogenous over \boldsymbol{Q} to a factor of $\mathrm{Jac}\left(H / \Gamma^{\prime}\right)$ for some Γ^{\prime} in the following way. By virtue of Deuring's result [1], if K is isomorphic to $\operatorname{End} \boldsymbol{Q}(E)$, the zeta-function of E over \boldsymbol{Q} is exactly the L function of a certain Grössen-character λ of K. Then we obtain an abelian variety A by the procedure described above, i.e.,
elliptic curve $E \rightarrow$ zeta-function with a Grössen-character λ \rightarrow cusp form $f(z) \rightarrow$ abelian subvariety A of $\mathrm{Jac}\left(H / \Gamma^{\prime}\right)$.

In this situation, we shall prove:
A is an elliptic curve isogenous to E over \boldsymbol{Q}.
This is an easy consequence of the results in the previous articles [7], [8]. If $-D$ is the discriminant of K, and \mathfrak{c} is the conductor of λ, the group Γ^{\prime} is of the form

$$
\Gamma^{\prime}=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in S L_{2}(\boldsymbol{Z}) \right\rvert\, c \equiv 0 \bmod (D \cdot N(\mathfrak{c}))\right\} .
$$

2. Let us first prove the above lemma. Although it is a special case of [6, Prop. 14], we give here a direct proof for the reader's convenience.

Identify X with a complex torus C^{n} / L with a lattice L. Let $\boldsymbol{Q} \cdot L$ denote the \boldsymbol{Q}-linear span of L. Then K acts, through h, on $\boldsymbol{Q} \cdot L$, so that there exists a K-linear isomorphism p of K^{n} onto $\boldsymbol{Q} \cdot L$, where K^{n} is the submodule of \boldsymbol{C}^{n} consisting of the vectors whose components belong to K. Since $\boldsymbol{C}^{n}=K^{n} \otimes_{\boldsymbol{Q}} \boldsymbol{R}=(\boldsymbol{Q} \cdot L) \otimes_{\boldsymbol{Q}} \boldsymbol{R}$, we can extend p to an \boldsymbol{R}-linear automorphism of \boldsymbol{C}^{n}, which we denote again by p. By our assumption, we
may assume that the action of an element α of K on X is represented by the complex linear transformation $u \longrightarrow \alpha u\left(u \in \boldsymbol{C}^{n}\right)$ of \boldsymbol{C}^{n}. We can find a real number r and an element α of K so that $r \cdot \alpha=\sqrt{-1}$. Now p is K linear and \boldsymbol{R}-linear, hence p commutes with the map $u \rightarrow \sqrt{-1} \cdot u$, i.e., p is \boldsymbol{C}-linear. Take any free \boldsymbol{Z}-submodule \mathfrak{a} of rank 2 in K. Then p gives an isogeny of $\boldsymbol{C}^{n} / \mathfrak{a}^{n}=(\boldsymbol{C} / \mathfrak{a})^{n}$ onto \boldsymbol{C}^{n} / L. This proves the lemma, since $\boldsymbol{C} / \mathfrak{a}$ is an elliptic curve with K as its endomorphism algebra.
3. For a function $f(z)$ on H and $\xi=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in G L_{2}(\boldsymbol{R})$ with $\operatorname{det}(\xi)>0$, we define a function $f\left[[\xi]_{k}\right.$ on H by

$$
\left(f\left[[\xi]_{k}\right)(z)=\operatorname{det}(\xi)^{k / 2} \cdot(c z+d)^{-k} \cdot f((a z+b) /(c z+d))\right.
$$

For an arbitrary positive integer N, put

$$
\begin{aligned}
& \Gamma_{0}(N)=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in S L_{2}(\boldsymbol{Z}) \right\rvert\, c \equiv 0 \bmod (N)\right\}, \\
& \Gamma_{1}(N)=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in \Gamma_{0}(N) \right\rvert\, a \equiv 1 \bmod (N)\right\} .
\end{aligned}
$$

Further, for a complex-valued character ε of $(\boldsymbol{Z} / N \boldsymbol{Z})^{\times},{ }^{1)}$ we denote by $S_{k}(N, \varepsilon)$ the vector space of all the cusp forms $f(z)$ satisfying

$$
f \mid[r]_{k}=\varepsilon(d) \cdot f
$$

for every $\gamma=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \Gamma_{0}(N)$.
Lemma 2. Let $f(z)=\sum_{n=1}^{\infty} a_{n} e^{2 \pi i n z}$ be an element of $S_{k}(N, \varepsilon), r$ a positive integer, M a common multiple of Nr and r^{2}, and let

$$
g(z)=\sum_{(n, r)=1} a_{n} e^{2 \pi i n z} .
$$

Then $g \in S_{k}\left(M, \varepsilon^{\prime}\right)$, where ε^{\prime} is the restriction of ε to $(\boldsymbol{Z} / M \boldsymbol{Z})^{\times}$.
Proof. Put $\zeta=e^{2 \pi i / r}, \eta_{u}=\left[\begin{array}{ll}r & u \\ o & r\end{array}\right]$ for $u \in Z$, and $\Gamma=\Gamma_{1}(N)$. We see easily that $\Gamma \eta_{u}=\Gamma \eta_{v}$ if and only if $u \equiv v \bmod (r)$. We can find numbers x_{u} of $\boldsymbol{Q}(\zeta)$ for $u \in \boldsymbol{Z}$ such that

$$
\begin{aligned}
& x_{u}=x_{v} \quad \text { if } \quad u \equiv v \bmod (r), \\
& \sum_{u=0}^{r-1} x_{u} \zeta^{u n}=\left\{\begin{array}{lll}
1 & \text { if } \quad(n, r)=1, \\
0 & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

[^0]We see easily that $g(z)=\sum_{u=0}^{r-1} x_{u} \cdot f\left[\left[\eta_{u}\right]_{k}\right.$. Further, it can be seen that

$$
\begin{equation*}
x_{u}=x_{a u} \quad \text { if } \quad(a, r)=1, \tag{1}
\end{equation*}
$$

and x_{u} is invariant under $\operatorname{Gal}(\boldsymbol{Q}(\zeta) / \boldsymbol{Q})$, hence $x_{u} \in \boldsymbol{Q}$. Now $g(z)$ is a cusp form of level $N r^{2}$ (see for example [7, Prop. 2.4, Lemma 3.9]). Therefore, to prove our assertion, it is sufficient to check the behavior of g under an element $r=\left[\begin{array}{ll}a & b \\ M c & d\end{array}\right]$ of $\Gamma_{0}(M)$. We have

$$
\left[\begin{array}{ll}
r & u \\
0 & r
\end{array}\right]\left[\begin{array}{ll}
a & b \\
M c & d
\end{array}\right]=\left[\begin{array}{ll}
a^{\prime} & b^{\prime} \\
M c & d^{\prime}
\end{array}\right]\left[\begin{array}{cc}
r & d^{2} u \\
0 & r
\end{array}\right]
$$

with $\quad a^{\prime}=a+c u M / r, \quad b^{\prime}=b+d u\left(1-a^{\prime} d\right) / r, \quad d^{\prime}=d-c d^{2} u M / r$. Note that $a^{\prime} \equiv a, d^{\prime} \equiv d \bmod (N) \cap(r)$, and $a^{\prime} d \equiv a d \equiv 1 \bmod (r)$. Therefore, putting $v=d^{2} u$, we have $f \mid\left[\eta_{u}\lceil]_{k}=\varepsilon(d) \cdot f \mid\left[\eta_{v}\right]_{k}\right.$. In view of (1), we obtain $g \mid[r]_{k}=$ $\varepsilon(d) \cdot g$, q.e.d.
4. For our purpose, it is necessary to consider Grössen-characters which are not necessarily "primitive". To define them, let \mathfrak{m} be an integral ideal in K, and I_{m} the group of all fractional ideals in K prime to $\mathfrak{n t}$. Let W_{m} denote the group of all elements α of K^{\times}such that $\alpha \equiv 1 \bmod ^{\times} \mathfrak{m}$, i.e., $\alpha-1$ is \mathfrak{p}-integral and divisible by $\mathfrak{m}_{\mathfrak{p}}$ for all prime factors \mathfrak{p} of \mathfrak{m}, where $\mathfrak{m}_{\mathfrak{p}}$ is the \mathfrak{p}-closure of \mathfrak{m}. Further let P_{m} denote the subgroup of I_{m} consisting of all principal ideals (α) with $\alpha \in W_{\mathrm{m}}$. For a positive integer ν, let $\Lambda_{\mathrm{m}}^{\nu}$ denote the set of all homomorphisms λ of I_{m} into C^{\times}such that $\lambda((\alpha))=\alpha^{\nu}$ for every $\alpha \in W_{\mathfrak{m}}$. Such a λ is called a Grössen-character of K defined modulo \mathfrak{m}. Obviously, $\Lambda_{\mathfrak{m}}^{v}$ is not empty if and only if the following condition is satisfied:
(2) If ζ is a root of unity in K and $\zeta \equiv 1 \bmod \mathfrak{m}$, then $\zeta^{\nu}=1$.

For each $\lambda \in \Lambda_{\mathfrak{m}}^{v}$, there is a unique divisor \mathfrak{c} of \mathfrak{m} such that: (i) λ is the restriction of an element of Λ_{c}^{ν}; (ii) no proper divisor of \mathfrak{c} has the property (i). Then \mathfrak{c} is called the conductor of λ. We call λ primitive if \mathfrak{m} is the conductor of λ.

We can associate with every $\lambda \in \Lambda_{\mathrm{m}}^{\nu}$ an L-function $L(s, \lambda)$ and a function $f_{k}(z)$ on H by

$$
\begin{array}{rlrl}
L(s, \lambda) & =\sum_{\varepsilon} \lambda(\mathfrak{x}) N(\mathfrak{q})^{-s} & (s \in \boldsymbol{C}), \\
f_{\lambda}(z) & =\sum_{\varepsilon} \lambda(\mathfrak{y}) e^{2 \pi i N(\varepsilon) z} & & (z \in H),
\end{array}
$$

where each sum is taken over all integral ideals \mathfrak{x} in $I_{\mathfrak{m}}$. Under the assumption (2), let $V_{\mathfrak{m}}^{\nu}$ be the vector space spanned by the f_{λ} over \boldsymbol{C} for all $\lambda \in \Lambda_{\mathrm{m}}^{\nu}$. For $\lambda, \mu \in \Lambda_{\mathrm{m}}^{\nu}$, we see easily that $f_{\lambda}=f_{\mu}$ if and only if $\lambda=\mu$. Moreover, we shall see later that the f_{λ} for $\lambda \in \Lambda_{\mathrm{m}}^{\nu}$ are linearly independent over C. Therefore V_{m}^{ν} is of dimension [$\left.I_{\mathrm{m}}: P_{\mathrm{m}}\right]$.

Fix any set S of representatives for I_{m} modulo P_{m}, whose members are prime to \mathfrak{m}, and put, for each $\mathfrak{a} \in S$,

$$
\begin{equation*}
g_{\mathrm{a}}(z)=\sum_{(\alpha)} \alpha^{\nu} \cdot e^{2 \pi i N(\alpha) z / N(\alpha)}, \tag{3}
\end{equation*}
$$

where the sum is taken over all ideals ($\boldsymbol{\alpha}$) such that $\alpha \in W_{\mathrm{m}} \cap \mathfrak{a}$. We have then

$$
f_{\lambda}=\Sigma_{a \in S} \lambda(\mathfrak{a})^{-1} \cdot g_{a}
$$

so that the functions $g_{\mathfrak{a}}$, for $\mathfrak{a} \in S$, form a basis of $V_{\mathfrak{m}}^{\nu}$ over \boldsymbol{C}. Hecke [2] proved that g_{a} is a cusp form belonging to a certain congruence subgroup. We can state this fact in the following form.

Lemma 3. Let $-D$ be the discriminant of K, and let $\lambda \in \Lambda_{\mathrm{m}}^{\nu}, M=D \cdot N(\mathfrak{n t)}$. Then f_{λ} is an element of $S_{\nu+1}(M, \varepsilon)$, where ε is the character of $(\boldsymbol{Z} / M \boldsymbol{Z})^{\times}$defined by

$$
\varepsilon(a)=\left(\frac{-D}{a}\right) \cdot \frac{\lambda((a))}{a^{\nu}} \quad(a \in \boldsymbol{Z},(a, M)=1) .
$$

Proof. If λ is primitive, our assertion can be proved by examining the functional equations of $L(s, \lambda)$ and

$$
L(s, \lambda, \chi)=\sum_{\varepsilon} \lambda(\mathfrak{x}) \chi(N(\mathfrak{x})) N(\mathfrak{x})^{-s}
$$

with primitive characters χ of $(\boldsymbol{Z} / p \boldsymbol{Z})^{\times}$for all rational primes p not dividing M, and applying the principle of Weil [9]. Although [9, Satz 2] is concerned with $S_{k}(M, \varepsilon)$ for real characters ε, the result can easily be extended to the case of an arbitrary character ε. Let us now prove the general case by induction on $N\left(\mathfrak{c}^{-1} \mathfrak{m}\right)$, where \mathfrak{c} is the conductor of λ. Suppose that $\mathfrak{c}^{-1} \mathfrak{m}$ has a prime factor \mathfrak{p}, and put $\mathfrak{n}=\mathfrak{p}^{-1} \mathfrak{m}$. Let μ be the element of $\Lambda_{\mathfrak{n}}^{\nu}$ whose restriction to $\Lambda_{\mathrm{m}}^{\nu}$ is λ. By the induction assumption, f_{μ} belongs to $S_{\nu+1}(D \cdot N(\mathfrak{n}), \varepsilon)$. Put $q=N(p)$. Then

$$
f_{\mu}(q z)=\sum_{(\tilde{f}, \mathrm{n})=1} \mu(\mathfrak{y}) e^{2 \pi i N(\mathfrak{p}) z},
$$

hence

$$
\begin{equation*}
f_{\mu}(z)-\mu(\mathfrak{p}) f_{\mu}(q z)=\sum_{(\varepsilon, m)=1} \mu(\mathfrak{y}) e^{2 \pi i N(g) z}=f_{\lambda}(z), \tag{4}
\end{equation*}
$$

where we understand that $\mu(\mathfrak{p})=0$ if \mathfrak{p} divides \mathfrak{n}. Since we have

$$
\left[\begin{array}{ll}
q & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
q c & d
\end{array}\right]=\left[\begin{array}{cc}
a & q b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
q & 0 \\
0 & 1
\end{array}\right],
$$

it can easily be verified that $f_{\mu}(q z) \in S_{\nu+1}(q \cdot D \cdot N(\mathfrak{n}), \varepsilon)$. Therefore the equality (4) implies that $f_{\lambda} \in S_{\nu+1}(q \cdot D \cdot N(\mathfrak{n}), \varepsilon)$, q.e.d.

The symbols λ, M, and ε being as above, put $f_{\lambda}(z)=\sum_{n} a_{n} e^{2 \pi i n z}$. Then the L-function $L(s, \lambda)$ has an Euler product:

$$
L(s, \lambda)=\Pi_{p}\left(1-a_{p} p^{-s}+\varepsilon(p) p^{\nu-2 s}\right)^{-1},
$$

where the product is taken over all rational primes $p ; \varepsilon(p)=0$ for every prime factor p of M. Therefore, by Hecke [4, II, Satz 42] (see also [7, Th. 3.43]), f_{2} must be a common eigen-function of all Hecke operators. Thus the functions f_{λ}, for $\lambda \in \Lambda_{\mathrm{m}}^{\nu}$, are distinct eigen-functions whose first Fourier coefficients are 1 . Therefore they are linearly independent over \boldsymbol{C}.
5. Let us now consider a projective non-singular curve C_{M} biregularly isomorphic to the compactification of the quotient $H / \Gamma_{1}(M)$ for a positive integer M. There is a "standard" way to define C_{M} rational over \boldsymbol{Q}, up to biregular isomorphisms over \boldsymbol{Q}. (One can define, for instance, the function field of C_{M} to be the field of all $\Gamma_{1}(M)$-invariant modular functions whose Fourier expansions with respect to $e^{2 \pi i z}$ have rational coefficients. See also [5], [7, \&6.7, §6.3].) Then the jacobian variety $\mathrm{Jac}\left(C_{M}\right)$ of C_{M} can naturally be defined over \boldsymbol{Q}. We denote by τ_{n} the endomorphism of $\mathrm{Jac}\left(C_{\boldsymbol{m}}\right)$ corresponding to the Hecke operator of degree n.

Let $\lambda \in \Lambda_{\mathrm{m}}^{1}, M=D \cdot N(\mathfrak{m})$, and $f_{\lambda}(z)=\sum_{n} a_{n} e^{2 \pi i n z}$. Further let k_{λ} denote the field generated over \boldsymbol{Q} by the numbers a_{n} for all n. Since f_{2} is a common eigen-function of all Hecke operators, we obtain, by virtue of [7, Th. 7.14], a couple ($A_{\lambda}, \theta_{\lambda}$) satisfying the following three conditions:
(i) A_{λ} is an abelian subvariety of $J a c\left(C_{M}\right)$ of dimension $\left[k_{\lambda}: Q\right]$.
(ii) θ_{λ} is an isomorphism of k_{λ} into $\operatorname{End} d_{Q}\left(A_{\lambda}\right)$ such that $\theta_{\lambda}\left(a_{n}\right)$ is the restriction of τ_{n} to A_{λ} for all n.
(iii) A_{2} is rational over \boldsymbol{Q}.

Moreover, $\left(A_{2}, \theta_{2}\right)$ is unique for f_{2} under the conditions (i) and (ii).

For an automorphism $\boldsymbol{\sigma}$ of the algebraic closure of \boldsymbol{Q}, we define an element λ_{0} of $\Lambda_{\mathrm{m}}^{1} \circ$ by $\lambda_{o}(\underline{y})=\lambda\left(\mathfrak{y}^{\sigma}\right)^{\sigma}$. If $f_{\lambda}(z)=\sum_{n} a_{n} e^{2 \pi i n z}$. we see that $f_{\lambda_{0}}(z)=\Sigma_{n} a_{n}^{\sigma} e^{2 \pi i n z}$. Now identify the tangent space of $\mathrm{Jac}\left(C_{M}\right)$ at the origin with the space of all cusp forms of weight 2 with respect to $\Gamma_{1}(M)$. Then the proof of [7, Th. 7.14] shows that the tangent space of A_{2} at the origin can be identified with the vector space spanned by all distinct $f_{2_{\sigma}}$. Therefore our result mentioned at the beginning of this paper follows from the following

Theorem 1. The abelian variety A_{2} is isogenous to a product of copies of an elliptic curve whose endomorphism algebra is isomorphic to K.

Proof. (I) First let us assume that \mathfrak{m} is divisible by $\sqrt{-D}$, and $\mathfrak{m}=\mathfrak{m}^{\rho}$, where ρ denotes the complex conjugation. Put

$$
\Gamma=\Gamma_{1}(M), \quad \delta=\left[\begin{array}{rr}
1 & 1 / d \\
0 & 1
\end{array}\right] .
$$

We can let $\Gamma \dot{\delta} \Gamma$ act on the vector space of cusp forms with respect to Γ (see $[7, \S 3.4]$). Denote the action by $[\Gamma \bar{o} \Gamma]_{2}$. Take a disjoint coset decomposition $\Gamma \delta \Gamma=\cup_{i=1}^{i} \Gamma \delta \gamma_{i}$ with $\gamma_{i} \in \Gamma$. Let g_{a} be as in (3). Then, by definition,

$$
g_{\mathrm{a}}\left|[\Gamma \delta \Gamma]_{2}=\cup_{i=1}^{i} g_{\mathrm{a}}\right|\left[\delta \partial r_{i}\right]_{2}
$$

If $\alpha, \beta \in W_{\mathrm{m}} \cap \mathfrak{a}$, we have

$$
N(\alpha) / N(\mathfrak{a}) \equiv N(\beta) / N(\mathfrak{a}) \bmod (D)
$$

so that, if $\zeta_{D}=e^{2 \pi i / D}$,

$$
g_{\mathrm{a}} \mid[\grave{\delta}]_{2}=\zeta_{D}^{N(\alpha) / N(a)} \cdot g_{\mathrm{a}}
$$

with any fixed α contained in $W_{\mathrm{m}} \cap \mathfrak{a}$. Therefore

$$
\begin{equation*}
g_{a} \mid[\Gamma \bar{\delta} \Gamma]_{2}=\kappa \cdot \zeta_{D}^{N(\alpha) / N(a)} \cdot g_{a} \tag{5}
\end{equation*}
$$

Thus $[\Gamma \delta \Gamma]_{2}$ maps $V_{\mathfrak{m}}^{1}$ onto itself. Let A^{\prime} be the abelian subvariety of $\mathrm{Jac}\left(C_{\boldsymbol{M}}\right)$ generated by the A_{λ} for all $\lambda \in \Lambda_{\mathfrak{m}}^{1}$. Since $\mathfrak{m}=\mathfrak{m}^{\rho}, V_{\mathfrak{m}}^{1}$ can be identified with the tangent space of A^{\prime} at the origin. Let ω denote the endomorphism of A^{\prime} obtained from $[\Gamma \bar{\partial} \Gamma]_{2}$. The relation (5) shows that the representation of ω on the tangent space has characteristic roots $\kappa \cdot \zeta_{D}^{N(\alpha) / N(\alpha)}$, where α must be fixed for each $\mathfrak{a} \in S$. Put $\chi(r)=\left(\frac{-D}{r}\right)$. Then we see that
$N(\boldsymbol{\alpha}) / N(\mathfrak{a})$ is prime to D, and $\chi(N(\alpha) / N(\mathfrak{a}))=1$. We can define an embedding h of $\boldsymbol{Q}\left(\zeta_{D}\right)$ into End $\boldsymbol{Q}\left(A^{\prime}\right)$ by $h\left(\zeta_{D}\right)=\kappa^{-1} \omega$. If σ is an automorphism of $\boldsymbol{Q}\left(\zeta_{D}\right)$ such that $\zeta_{D}^{o}=\zeta_{D}^{r}$ with $\chi(r)=1$, then the restriction of σ to K is the identity map. Therefore applying Lemma 1 to A^{\prime}, we see that A^{\prime} is isogenous to a product of copies of an elliptic curve with K as its endomorphism algebra.
(II) Next assume that λ is primitive, and put $\mathfrak{m}^{\prime}=\mathfrak{m m}^{\rho} \cdot(\sqrt{-D})$, $M^{\prime}=N\left(\mathfrak{m}^{\prime}\right) \cdot D, \quad \eta_{u}=\left[\begin{array}{ll}M & u \\ 0 & M\end{array}\right]$ for $u \in \boldsymbol{Z}$. Then $M^{\prime}=M^{2}$ and $\mathfrak{m}^{\prime}=\mathfrak{m}^{\prime \rho}$. Define, as in the proof of Lemma 2, rational numbers x_{u} so that

$$
\sum_{u=0}^{M-1} x_{u} \zeta_{M}^{u n}= \begin{cases}1 & \text { if } \quad(n, M)=1 \\ 0 & \text { otherwise }\end{cases}
$$

where $\zeta_{M}=e^{2 \pi \imath / M}$. Take a positive integer t so that $t x_{u}$ is an integer for every u. Put $\xi=\sum_{u=0}^{M-1} t x_{u} \cdot\left[\eta_{u}\right]_{2}$. For every

$$
f(z)=\sum_{n} a_{n} e^{2 \pi i n z} \in S_{2}(M, \varepsilon)
$$

we have, by Lemma 2 and its proof,

$$
f \mid \xi=t \cdot \sum(n, M)=1 a_{n} e^{2 \pi i n z} \in S_{2}\left(M^{\prime}, \varepsilon\right)
$$

Especially $f_{\lambda} \mid \xi=t \cdot f_{\mu}$ if μ is the restriction of λ to $I_{m^{\prime}}$. Let V_{λ} be the subspace of $V_{\mathfrak{m}}^{1}+V_{\mathfrak{m} \rho}^{1}$ spanned by all distinct $f_{\lambda_{\sigma}}$ with automorphisms σ of the algebraic closure of \boldsymbol{Q}. Since λ is primitive, we see that ξ maps V_{λ} injectively into $V_{\mathfrak{m}^{\prime}}^{1}$. (This is not necessarily true if λ is not primitive.) Since $\eta_{u} \cdot \Gamma_{1}\left(M^{\prime}\right) \eta_{u}^{-1} \subset \Gamma_{1}(M)$, the action $\left[\eta_{u}\right]_{2}$ defines a homomorphism of $\mathrm{Jac}\left(C_{M}\right)$ into $\mathrm{Jac}\left(C_{M^{\prime}}\right)$, hence ξ defines a homomorphism ξ^{*} of $\mathrm{Jac}\left(C_{M}\right)$ into $\mathrm{Jac}\left(C_{M^{\prime}}\right)$. Then the restriction of ξ^{*} to A_{λ} is an isogeny onto an abelian subvariety of $A^{\prime \prime}$, where $A^{\prime \prime}$ is the sum of A_{μ} for all $\mu \in \Lambda_{\mathfrak{m}^{\prime}}^{1}$. By the result in the case (I), $A^{\prime \prime}$ is isogenous to a product of copies of an elliptic curve with K as its endomorphism algebra. Therefore A_{λ} has the same property.
(III) Finally let us consider the general case with no assumption on \mathfrak{m}. Let \mathfrak{c} be the conductor of λ. To prove our assertion by induction on $N\left(\mathfrak{c}^{-1} \mathfrak{m}\right)$, suppose that $\mathfrak{c}^{-1} \mathfrak{m}$ has a prime factor p, and put $\mathfrak{n}=\mathfrak{p}^{-1} \mathfrak{m}, q=N(\mathfrak{p})$, $L=q^{-1} M, \beta=\left[\begin{array}{ll}q & 0 \\ 0 & 1\end{array}\right]$. Since $\beta \Gamma_{1}(M) \beta^{-1} \subset \Gamma_{1}(L),[\beta]_{2}$ defines an endomorphism ψ of $\mathrm{Jac}\left(C_{L}\right)$ into $\mathrm{Jac}\left(C_{M}\right)$. Let φ be the natural map of $\mathrm{Jac}\left(C_{L}\right)$ into $\mathrm{Jac}\left(C_{M}\right)$ corresponding to [1] $]_{2}$. If μ is the element of $\Lambda_{\mathfrak{n}}^{1}$ whose restriction to $I_{\mathfrak{m}}$ is λ, we have $f_{\lambda_{\sigma}}=f_{\mu_{\sigma}}-s \cdot f_{\mu_{\sigma}} \mid[\beta]_{2}$ with a constant s, by virtue of (4),
for every automorphism σ of the algebraic closure of \boldsymbol{Q}. This shows that $A_{\lambda} \subset \varphi\left(A_{\mu}\right)+\psi\left(A_{\mu}\right)$. Therefore our assertion about A_{λ} follows from that about A_{μ}, which is ensured by induction.

Remark. We have thus shown that the center 3 of $\operatorname{End}\left(A_{\lambda}\right)$ is isomorphic to K. It should be noted here that 8 is not contained in $\theta_{\lambda^{\prime}}\left(k_{k}\right)$. This follows from either of the following two facts:
(i) The elements of $\theta_{\lambda}\left(k_{k_{\lambda}}\right) \cap \operatorname{End}\left(A_{\lambda}\right)$ are rational over \boldsymbol{Q} (see [7, pp. 182-183]), while K is the smallest field of definition for any generator of 3 contained in $\operatorname{End}\left(A_{\mathrm{k}}\right)$.
(ii) The representation of k_{λ}, through θ_{λ}, on the tangent space of A_{λ} at the origin is equivalent to a regular representation over \boldsymbol{Q}.
6. Let E be an elliptic curve defined over \boldsymbol{Q} such that $\operatorname{End} \boldsymbol{Q}(E)$ is isomorphic to K. (This can happen if and only if the class number of K is one.) By the result of Deuring [1], the zeta-function of E over \boldsymbol{Q} coincides exactly with $L(s, \lambda)$ with some primitive Grössen-character λ of K. Let c be the conductor of λ, and $M=D \cdot N(\mathfrak{c})$. Then we obtain an element f_{2} of $S_{2}(M, \varepsilon)$ as before. If $f_{2}(z)=\sum_{n} a_{n} e^{2 \pi i n z}$, we have

$$
\begin{equation*}
L(s, \lambda)=\Pi_{p}\left(1-a_{p} p^{-s}+\varepsilon(p) p^{1-2 s}\right)^{-1} \tag{6}
\end{equation*}
$$

Since E is defined over \boldsymbol{Q}, we see that $a_{n} \in \boldsymbol{Q}$, and ε is the trivial character, so that f_{2} is a cusp form invariant under $\Gamma_{0}(M)$. Therefore we can take $\mathrm{Jac}\left(H / \Gamma_{0}(M)\right)$ (of course defined over \boldsymbol{Q}) instead of $\mathrm{Jac}\left(H / \Gamma_{1}(M)\right)$ in the above discussion, and define A_{2} as an abelian subvariety of $\operatorname{Jac}\left(H \mid \Gamma_{0}(M)\right)$. Since $k_{\lambda}=\boldsymbol{Q}, A_{\lambda}$ is an elliptic curve defined over \boldsymbol{Q}.

Theorem 2. The elliptic curve A_{λ} is isogenous to E over \boldsymbol{Q}.
Proof. By [7, Th. 7.15], the zeta-function of A_{2} over \boldsymbol{Q} coincides, up to finitely many Euler factors, with (6). On the other hand, by Theorem 1 , $\operatorname{End} \boldsymbol{Q}\left(A_{\lambda}\right)$ is isomorphic to K, so that the zeta-function of A_{λ} over \boldsymbol{Q} is $L(s, \mu)$ with a primitive Grössen-character μ of K. Thus $L(s, \lambda)$ coincides with $L(s, \mu)$ up to finitely many Euler factors. It follows that $\lambda(\mathfrak{p})=\mu(\mathfrak{p})$ or $\lambda(\mathfrak{p})=\mu\left(p^{\rho}\right)$ for almost all prime ideals \mathfrak{p} in K. If \mathfrak{m} is a common multiple of the conductors of λ and μ, we have $\lambda((\alpha))=\alpha=\mu((\alpha))$ for $\alpha \in K, \alpha \equiv 1$ $\bmod ^{\times} \mathfrak{m}$. Therefore we must have $\lambda(\mathfrak{p})=\mu(\mathfrak{p})$, so that $\lambda=\mu$. Thus E and
A_{λ} determine the same Grössen-character of K. By [8, Th. 8], they must be isogenous over \boldsymbol{Q}.

It should be noted that E has good reduction modulo a rational prime p if and only if p does not divide $D \cdot N(\mathfrak{c})$. This is due to Deuring [1, IV] (see also [8] for a simpler proof).

References

[1] M. Deuring, Die Zetafunktion einer algebraischen Kurve vom Geschlecht Eins, I, II, III, IV, Nachr. Akad. Wiss. Göttingen, (1953) 85-94, (1955) 13-42, (1956) 37-76, (1957) 55-80.
[2] E. Hecke, Zur Theorie der elliptischen Modulfunktionen, Math. Ann., 97 (1926), 210242 (=Math. Werke, 428-460).
[3] E. Hecke, Bestimmung der Perioden gewisser Integrale durch die Theorie der Klassenkörper, Math. Zeitschr., 28 (1928), 708-727 (=Math. Werke, 505-524).
[4] E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher Produktentwicklung I, II, Math. Ann., 114 (1937), 1-28, 316-351 (=Math. Werke, 644707).
[5] G. Shimura, Correspondances modulaires et les fonctions ζ de courbes algébriques, J. Math. Soc. Japan, 10 (1958), 1-28.
[6] G. Shimura, On analytic families of polarized abelian varieties and automorphic functions, Ann. of Math., 78 (1963), 149-192.
[7] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Publ. Math. Soc. Japan, No. 11, 1971.
[8] G. Shimura, On the zeta-function of an abelian variety with complex multiplication, to appear.
[9] A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann., 168 (1967), 149-156.

Princeton University

[^0]: 1) If S is an associative ring with the identity element, S^{\times}denotes the group of all invertible elements in S.
