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ON ELLIPTIC CURVES WITH COMPLEX

MULTIPLICATION AS FACTORS OF

THE JACOBIANS OF MODULAR

FUNCTION FIELDS
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1. As Hecke showed, every L-function of an imaginary quadratic field

K with a Grossen-character λ is the Mellin transform of a cusp form f{z)

belonging to a certain congruence subgroup Γ of SL2(Z). We can normalize

λ so that

χ((a)) = a" for a(=K, a = 1 mod x c

with a positive integer v9 where c is the conductor of λ, and modx c means

the multiplicative congruence modulo c. Then f(z) is of weight y+1, i.e..

)/( ) f({z + dy+ι for

and Γ is given by

Γ = ( β rf]eSL2(Z)|α = rf = l, CΞO mod (D N(t))},

where — D is the discriminant of K. If v — 1, f{z)dz is a differential form

of the first kind on the compactification {HIΓ)* of the quotient HjΓ, where

H denotes the upper half complex plane. Denote by Jac(/f/Γ) the jacobian

variety of (H/Γ)*9 and identify the tangent space of Jac {HIΓ) at the origin

with the space of all differential forms of the first kind on (HID*. Let A

be the smallest abelian subvariety of Jac {HID that has f{z)dz as a tangent

at the origin. Then the first main result of this paper can be stated as

follows:

The abelian variety A is a product of copies oj an elliptic curve whose endo-

morphism algebra is isomorphic to K.

Hecke [3] proved this fact in the case where K = Q(/H^) with a prime

3, Ξ 3 mod (4) and c = {-f^q). In the general case, he showed only that
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the periods of f{z)dz belong to a certain class field over K. His proof

requires rather deep arithmetic results of complex multiplication. Ours is

simpler, and based on the following

LEMMA 1. Let X be an abelian variety of dimension n defined over C, and

h an injective homomorpkism of K into EndQ(X). Suppose that the representation

of K, through h9 on the tangent space of X at the origin is equivalent to n copies

of the identity injection of K into C. Then X is isogenous to a product of n copies

of an elliptic curve E such that Endo(E) is isomorphic to K.

Here and henceforth we denote by End(Z) the ring of all endomor-

phisms of X over C, and put EndQ(X) — End (X)®Q.

Our next purpose is to show that every elliptic curve E defined over

Q with complex multiplication is isogenous over Q to a factor of Jac {HIΓ')

for some Γf in the following way. By virtue of Deuring's result [1], if K

is isomorphic to EndQ(£), the zeta-function of E over Q is exactly the L-

function of a certain Grossen-character λ of K. Then we obtain an abelian

variety A by the procedure described above, i.e..

elliptic curve E -> zeta-function with a Grossen-character λ

-> cusp form f{z) -* abelian subvariety A of Jac {HIΓ1).

In this situation, we shall prove:

A is an elliptic curve isogenous to E over Q.

This is an easy consequence of the results in the previous articles [7], [8].

If — D is the discriminant of K, and c is the conductor of λ, the group Γ'

is of the form

(B ϊ ϊ ] \ ^ 0 mod (£

2. Let us first prove the above lemma. Although it is a special case

of [6, Prop. 14], we give here a direct proof for the reader's convenience.

Identify X with a complex torus Cn\L with a lattice L. Let Q>L

denote the Q-linear span of L. Then K acts, through h, on Q L, so that

there exists a X-linear isomorphism p of Kn onto Q L, where Kn is the

submodule of Cn consisting of the vectors whose components belong to K.

Since Cn = KU®QR = (Q L)®QR, we can extend p to an i2-linear auto-

morphism of Cn, which we denote again by p. By our assumption, we
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may assume that the action of an element a of K on X is represented by

the complex linear transformation u—> au (u^Cn) of Cn. We can ίind

a real number r and an element a of K so that r a = /ΞΓ[. Now p is K-

linear and /^-linear, hence p commutes with the map u ->i/—l u9 i.e.,

p is C-linear. Take any free Z-submodule α of rank 2 in K. Then p gives

an isogeny of Cn/an = (C/α)n onto Cn/L. This proves the lemma, since C/a

is an elliptic curve with K as its endomorphism algebra.

3. For a function f(z) on # and £=jj | £ | e GL2(Λ) with det(f)>0,

we define a function /|[£]Λ on H by

eg + rf)"* / ( ( ^ + δ)/(c« + d)).

For an arbitrary positive integer N, put

Γ0(iV) = j g ^SL2(Z)\c^0 mod (iV)j,

Λ(iV) = ([^ ^]eΓ 0 ( iV) | β ^l mod (JV)).

Further, for a complex-valued character e of (Z/NZ)*, υ we denote by SΛ(Λ
τ,ε)

the vector space of all the cusp forms f(z) satisfying

for every r = [£

LEMMA 2. Z,*/ /(«) = Σ«=i«n^2Hn3 be an element of Sk{N,ε), r a positive

integer, M a common multiple of Nr and r2, and let

Then g^Sk{M,ε'), where ε' is the restriction of ε to (Z/MZ)*.

Proof Put ζ = e2*i/r, ηu = [£ ^] for u e Z, and Γ = Λ(iV). We see

easily that Γηu = Γ^y if and only if u = t? mod (r). We can find numbers

#u of Q(f) for ^ ε Z such that

xu = xv if M = v mod (r),

1 i f ( n ' r ) = l j

0 otherwise.
χ) If 61 is an associative ring with the identity element, Sx denotes the group of all invertible

elements in S.
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We see easily that g(z) = ΊllZ\xu f\\r)u\k. Further, it can be seen that

(1) xu = Xau iί (β,r) = l,

and xu is invariant under Gal (Q(f)/Q), hence a;tteQ, Now #(z) is a cusp

form of level Nr2 (see for example [7, Prop. 2.4, Lemma 3.9]). Therefore,

to prove our assertion, it is sufficient to check the behavior of g under an

element r = [a

Mc £] of ΓQ(M). We have

[r uTa bΆVaf b'Tr d2u]
lθ r±Mc d\ ~ YMC d'±0 r J

with a' = a + c&M/r, V = b + du(l - a'd)/r, d' = rf - cdHM\r. Note that

a' — a, d' = d mod (TV) Π (r), and α'd = αc? = 1 mod (r). Therefore, putting

v = d2u, we have f\[ηut\k = ε(c?) / | [ ^ ] Λ . In view of (1), we obtain flr|[r]* =

flr, q.e.d.

4. For our purpose, it is necessary to consider Grossen-characters

which are not necessarily c'primitive". To define them, let nx be an inte-

gral ideal in K, and Im the group of all fractional ideals in K prime to m.

Let Wm denote the group of all elements a of Kx such that α == 1 modx m,

i.e., a — 1 is p-integral and divisible by mp for all prime factors p of nt,

where mp is the p-closure of m. Further let Pm denote the subgroup of Im

consisting of all principal ideals {a) with a^Wm. For a positive integer v,

let Λv

m denote the set of all homomorphisms λ of Im into C* such that

λ((a)) = <xv for every αeW m . Such a ^ is called a Grossen-character of K

defined modulo m. Obviously, Λv

m is not empty if and only if the following

condition is satisfied:

(2) If ζ is a root of unity in K and ζ =Ξ 1 mod m, then ζv = 1.

For each Λe/ί^, there is a unique divisor c of m such that: (i) λ is the

restriction of an element of Λv

c; (ii) no proper divisor of c has the property

(i). Then c is called the conductor of λ. We call λ primitive if m is the

conductor of λ.

We can associate with every λ^Λv

m an L-function L(s,λ) and a function

/;(z) on # by

L(s,λ) =
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where each sum is taken over all integral ideals 5 in /m. Under the as-

sumption (2), let Vv

m be the vector space spanned by the fλ over C for all

λ^Λv

m. For λ, μ^Λv

m, we see easily that fλ = fμ if and only if λ = μ. More-

over, we shall see later that the fλ for λ^Λv

m are linearly independent over

C. Therefore Vv

m is of dimension [/m : Pm].

Fix any set S of representatives for Im modulo Pm, whose members are

prime to tπ, and put, for each α e 5 ,

(3) ga(z) = Σ ( α ) « v e™N^z<N™9

where the sum is taken over all ideals (<χ) such that α<=WmΠα. We have

then

so that the functions ga, for αeS, form a basis of Vv

m over C. Hecke [2]

proved that ga is a cusp form belonging to a certain congruence subgroup.

We can state this fact in the following form.

LEMMA 3. Let —D be the discriminant of K, and let λ<=Λv

m, M=D N(m).

Then fλ is an element of Sv+ΐ(M, ε), where ε is the character of (Z/MZ)X defined

by

e(a) = (-jp) ~p- (a^Z> (<*, M) = 1).

Proof. If I is primitive, our assertion can be proved by examining the

functional equations of L(s9λ) and

with primitive characters X of {ZjφZT for all rational primes p not dividing

M9 and applying the principle of Weil [9]. Although [9, Satz 2] is con-

cerned with Sk(M9ε) for real characters ε, the result can easily be extended

to the case of an arbitrary character ε. Let us now prove the general case

by induction on iV(c-1m), where c is the conductor of λ. Suppose that c"!in

has a prime factor p, and put n = p^m. Let μ be the element of A\ whose

restriction to Λv

m is λ. By the induction assumption, fμ belongs to Sv+ι{D N{n)9ε).

Put q = N($). Then
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hence

(4) fμ{z) - μ(p)fμ(qz) = Έ(,tm)=1

where we understand that μ($) = 0 if p divides n. Since we have

Γq OTfl bl_[a qbjq OΊ
Lθ l±qc dJ-Lc dlO l}

it can easily be verified that fμ(qz)^Sv+1(q'D'N(n)9ε). Therefore the equality

(4) implies that fλ(=Sv+ί(q D-N(n),e), q.e.d.

The symbols λ, M, and ε being as above, put fλ(z) = ^nane
2«inz. Then

the L-function L(s,λ) has an Euler product:

L(s,λ) = Up(l - app~s + ε(p)p-*Tι*

where the product is taken over all rational primes p ε(p) = 0 for every

prime factor p of M. Therefore, by Hecke [4, II, Satz 42] (see also [7,

Th. 3.43]), fλ must be a common eigen-function of all Hecke operators.

Thus the functions fl9 for λ&Λv

m, are distinct eigen-functions whose first

Fourier coefficients are 1. Therefore they are linearly independent over C.

5. Let us now consider a projective non-singular curve CM biregularly

isomorphic to the compactification of the quotient H\ΓX(M) for a positive

integer M. There is a "standard" way to define CM rational over Q, up to

biregular isomorphisms over Q. (One can define, for instance, the function

field of CM to be the field of all /^(M^invariant modular functions whose

Fourier expansions with respect to e2πiz have rational coefficients. See also

[5], [7, §6.7, §6.3].) Then the jacobian variety Jac(CM) of CM can naturally

be defined over Q. We denote by τn the endomorphism of Jac(C#) cor-

responding to the Hecke operator of degree n.

Let λ^Λι

m9 M=D-N(m\ and fλ{z) = J]nane
2Hnz. Further let kλ denote

the field generated over Q by the numbers an for all n. Since fλ is a

common eigen-function of all Hecke operators, we obtain, by virtue of [7,

Th. 7.14], a couple (Aλ9Θλ) satisfying the following three conditions:

(i) Λx is an abelian subvariety of Jac{CM) of dimension [kλ : Q].

(ii) θx is an isomorphism of kλ into EndQ(Aλ) such that θλ{an) is the restriction

of τn to Aλ for all n.

(iii) Aλ is rational over Q.

Moreover, (Ai9θλ) is unique for' fλ under the conditions (i) and (ii).
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For an automorphism σ of the algebraic closure of Q, we define an

element λo of Λλ

m* by λβ{$ = λ{f)\ If fλ(z) = Σmane
2πin\ we see that

fiσ(
z) — Ί]naσ

ne
2πinz. Now identify the tangent space of Jac(C,¥) at the origin

with the space of all cusp forms of weight 2 with respect to Γ{{M). Then

the proof of [7, Th. 7.14] shows that the tangent space of Aλ at the origin

can be identified with the vector space spanned by all distinct fλa. There-

fore our result mentioned at the beginning of this paper follows from the

following

T H E O R E M 1. The abelian variety Ax is isogenous to a product of copies of an

elliptic curve whose endomorphism algebra is isomorphic to K.

Proof (I) First let us assume that m is divisible by /H/7, and m = m\

where p denotes the complex conjugation. Put

Γ = Γι(M), δ =

We can let ΓδΓ act on the vector space of cusp forms with respect to Γ

(see [7, §3.4]). Denote the action by \_ΓδΓ\. Take a disjoint coset de-

composition ΓδΓ = ΌUiΓδTi with ΐι<=Γ. Let ga be as in (3). Then, by

definition,

If α, β<=WmΓia, we have

N{a)/N(a) = N(β)IN(a) mod (D),

so that, if ζD = ez*i/D,

9a\[δ]2=-ζSWNW'9a

with any fixed a contained in WmΠa. Therefore

(5) ga\[Γ3Fk = cζgw™-ga.

Thus [ΓδΓ]2 maps V^ onto itself. Let A! be the abelian subvariety of

Jac(CM) generated by the Aλ for all λ^Λx

m. Since m = mp, Vm can be

identified with the tangent space of A' at the origin. Let ω denote the

endomorphism of A obtained from \ΓδΓ\, The relation (5) shows that the

representation of ω on the tangent space has characteristic roots K ζg^/N^a\

where a must be fixed for each αe5. Put x(r) = (——\ Then we see that
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N(a)/N(a) is prime to Z), and x{N(a)/N(a)) = 1. We can define an embed-

ding h of Q(ζD) into EndoiA') by h(ζD) = κ~λω. If σ is an automorphism of

Q(ζD) such that ζa

D = f£ with χ(r) = 1, then the restriction of σ to X is the

identity map. Therefore applying Lemma 1 to Ar> we see that A' is iso-

genous to a product of copies of an elliptic curve with K as its endo-

morphism algebra.

(II) Next assume that λ is primitive, and put m' = mmp [-J—D),

M' = N(m')-D, ηu = [ ^ ^ ] for USΞZ. Then M ; = M2 and mr = m/p. De-

fine, as in the proof of Lemma 2, rational numbers xu so that

if (n, M) — 1,iAf-i f-wn __ [ 1 iί (n, M) = 1,

j«=o wς Λ/ - | Q otherwise.

where ^ = e2x%/M. Take a positive integer t so that ίajtt is an integer for

every u. Put ξ = XJJLV txu lηu\. For every

we have, by Lemma 2 and its proof,

Especially / ; | ί = ί //B if ^ is the restriction of λ to Imr. Let F^ be the

subspace of V^ + V^p spanned by all distinct fλσ with automorphisms σ of

the algebraic closure of Q. Since λ is primitive, we see that ζ maps Vi

injectively into V /̂. (This is not necessarily true if λ is not primitive.)

Since ηu •Γi(M/)?7ί:1cΓi(M), the action [27 J 2 defines a homomorphism of

Jac(CV) into Jac(CV), hence ξ defines a homomorphism ξ* of JacίC^) into

Jac(C t f0 Then the restriction of ί* to Aλ is an isogeny onto an abelian

subvariety of A", where A" is the sum of Aμ for all μ^Λ^, By the result

in the case (I), A' is isogenous to a product of copies of an elliptic curve

with K as its endomorphism algebra. Therefore Aλ has the same property.

(Ill) Finally let us consider the general case with no assumption on

m. Let c be the conductor of λ. To prove our assertion by induction on

N{ι~ιm), suppose that c^m has a prime factor p, and put n=p-1m, q=N($),

L = q~1M, β = [% 5]. Since βΓι{M)β"1(zΓι{L), \β}2 defines an endomorphism

ψ of Jac(Cc) into Jac(CΛ/). Let ψ be the natural map of JacίCJ into

Jac(C3/) corresponding to [1]2. If μ is the element of Λ\ whose restriction

to Im is λ, we have fλc = fμσ — s fμa\\β\ with a constant s, by virtue of (4),
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ίor every automorphism σ of the algebraic closure of Q. This shows that

Aλdψ{Aμ) + φ(Aμ). Therefore our assertion about Aλ follows from that about

Aμi which is ensured by induction.

Remark. We have thus shown that the center 8 of Endo(Ax) is iso-

morphic to K. It should be noted here that 3 is not contained in θλ(kx).

This follows from either of the following two facts:

(i) The elements of 0λ(kλ)f\End(Aλ) are rational over Q (see [7, pp.

182-183]), while K is the smallest field of definition for any generator of $

contained in End(Aλ).

(ii) The representation of kλ, through 0λi on the tangent space of Aλ

at the origin is equivalent to a regular representation over Q.

6. Let E be an elliptic curve defined over Q such that EndQ(E) is

isomorphic to K. (This can happen if and only if the class number of K

is one.) By the result of Deuring [1], the zeta-function of E over Q coin-

cides exactly with L{s,λ) with some primitive Grδssen-character I of K. Let

c be the conductor of λ, and M = D iV(c). Then we obtain an element

fx of S2(M, ε) as before. If fλ(z) = Y^nane
Uin\ we have

(β) L(s9λ) = Π p ( l - app~s

Since E is defined over Q, we see that an&Q, and ε is the trivial character,

so that fx is a cusp form invariant under Γ0{M). Therefore we can take

Jac (HlΓo(M)) (of course defined over Q) instead of Jac (H/Γ^M)) in the

above discussion, and define Aλ as an abelian subvariety of Jac (HIΓ0(M)).

Since kλ - Q, Aλ is an elliptic curve defined over Q.

T H E O R E M 2. The elliptic curve Aλ is isogenous to E over Q.

Proof. By [7, Th. 7.15], the zeta-function of Aλ over Q coincides, up

to finitely many Euler factors, with (6). On the other hand, by Theorem

1, Endo(Λϊ) is isomorphic to K, so that the zeta-function of Aλ over Q is

L{s,μ) with a primitive Grossen-character μ of K. Thus L{s,λ) coincides

with L(s9 μ) up to finitely many Euler factors. It follows that λ($) = μ(p)

or λ(ρ) — μ($p) for almost all prime ideals p in K. If m is a common multiple

of the conductors of λ and μ, we have λ((a)) — a — μ({a)) for a e K, a = l

modx m. Therefore we must have λ(p) = μ($)9 so that λ = μ. Thus E and
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Ax determine the same Grδssen-character of K. By [8, Th. 8], they must

be isogenous over Q.

It should be noted that E has good reduction modulo a rational prime

p if and only if p does not divide D N{c). This is due to Deuring [1, IV]

(see also [8] for a simpler proof).
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