Vol. 43 (1971), 169-198

CHARACTERISTIC CLASSES FOR PL
 MICRO BUNDLES

AKIHIRO TSUCHIYA*

§ 0. Introduction.

Let $B S P L$ be the classifying space of the stable oriented $P L$ micro bundles. The purpose of this paper is to determine $H_{*}\left(B S P L: Z_{p}\right)$ as a Hopf algebra over Z_{p}, where p is an odd prime number. In this chapter, p is always an odd prime number.

The conclusions are as follows.
Theorem 2-22. As a Hopf algebra over $Z_{p}, H_{*}\left(B S P L: Z_{p}\right)=Z_{p}\left[\overline{\bar{b}_{1}}, \overline{\bar{b}_{2}}, \cdots\right]$ $\otimes Z_{p}\left[\sigma\left(\bar{x}_{I}\right)\right] \otimes \Lambda\left(\sigma\left(\bar{x}_{J}\right)\right) . \quad \Delta\left(\overline{\bar{b}}_{j}\right)=\sum_{i=0}^{j} \overline{\bar{b}}_{i} \otimes \overline{\bar{b}}_{j}, \quad b_{0}=1, \sigma\left(\bar{x}_{I}\right), \sigma\left(\bar{x}_{J}\right)$ are primitive.

Theorem 3-1. As a Hopf algebra over Z[1/2],
i) $H^{*}(B S P L: Z[1 / 2]) / T$ orsion $=Z[1 / 2]\left[R_{1}, R_{2}, \cdots\right]$
ii) $\Delta R_{j}=\sum_{i=0}^{3} R_{i} \otimes R_{j-i}, \quad R_{0}=1 . \quad \operatorname{deg} R_{j}=4 j$.
iii) In $H^{*}(B S P L: Q)=Q\left[p_{1}, p_{2}, \cdots\right], R_{j}$ are expressed as follows.

$$
R_{j}=2^{a_{j}}\left(2^{2 j-1}-1\right) \operatorname{Num}\left(B_{j} / 4 j\right) \cdot p_{j}+\operatorname{dec}, \text { for some } a_{j} \in Z .
$$

Let MSPL denote the spectrum defined by the Thom complex of the universal $P L$ micro bundle over $B S P L(n)$, and $A=A_{p}$ denote the $\bmod p$. Steenrod algebra. And $\phi: A \rightarrow H^{*}\left(M S P L: Z_{p}\right)$ is defined by $\phi(a)=a(u)$, where $u \in H^{0}\left(M S P L: Z_{p}\right)$ is the Thom class.

Theorem 4-1. The kernel of ϕ is $A\left(\underline{Q}_{0}, \underline{Q}_{1}\right)$, the left ideal generated by Milnor elements $\underline{\underline{Q}}_{0}, \underline{\underline{Q_{1}}}$.

This is the conjecture of Peterson [12].
Received October 8, 1970.
*) The author was partially supported by the Sakkokai Foundation.

The method is to compute the Serre spectral sequence associated to the fibering $F / P L \rightarrow B S P L \rightarrow B S F$. The structure of $H_{*}\left(B S F: Z_{p}\right)$ is determined in [9] and [16]. The homotopy type of $F / P L$ is the consequence of the deep results of Sullivan [15]. In $\S 1$ we study the H space structure of $F / P L$ and the inclusion map $S F \rightarrow F / P L$. The main tool is the result of Sullivan and its extention that tells the existence of the $K O_{P}^{*}$ theory Thom classes for oriented PL disk bundle.

Proposition 1-4. For a oriented PL disk bundle $\pi: E \rightarrow X$ over a finite $C W$ complex of fiber dim m. Then there is a Thom class $u(\pi) \in K O^{m}(E, \partial E)_{P}$ with the following properties.
i) functorial
ii) $\quad \varphi_{H}^{-1} p h u(\pi)=L(\pi)^{-1}$.
iii) $u(\pi \oplus 1)=\sigma u(\pi)$.
iv) Multiplicative mod Torsion i.e $u\left(\pi_{1} \oplus \pi_{2}\right)=u\left(\pi_{1}\right) \cdot u\left(\pi_{2}\right)$. mod torsions.

The proof of this is in $\S 6$.

§ 1. $\quad H$ space structure on $F / P L$.

1-1. Let $F / P L(N)$ denote the classifying space of $P L$ disk bundle of fiber $\operatorname{dim} N$ with homotopy trivialization. And $F / P L$ denote the limit space $\lim _{\rightarrow} F / P L(N)$. Denote by $B O$, the classifying space of stable real vector bundle. $F / P L$ and $B O$ are homotopy commutative H-spaces defined by Whitney products. $B O_{P}$ denotes the space obtained by localizing $B O$ at odd primes P i.e. the space which represents the functor $[, B O] \otimes_{Z} Z[1 / 2]$. Let C_{P} denote the class of abelian groups consisting of 2 -torsion group, i.e abelian group G with $G \otimes_{Z} Z[1 / 2]=0$. Then the following proposition is due to Sullivan [15].

Proposition 1-1. There exists a continuous map $\sigma: F / P L \rightarrow B O_{P}$, with the following properties.
i) σ is C_{P} homotopy equivalence.
ii) $\quad \sigma^{* *}\left(p h_{1}+p h_{2}+\cdots\right)=\frac{1}{8}\left(L_{1}+L_{2}+\cdots\right) \in H^{* *}(F / P L, Q)$, where $p h=1+p h_{1}+p h_{2}+\cdots \in H^{* *}\left(B O_{P}, Q\right)$ is the Pontrjagin character and $L=1+L_{1}+L_{2}+\cdots \in H^{* *}(F / P L, Q)$ is L-polynomial of Hirzebruch.
iii) The map σ is uniquely determined by the property ii) up to homotopy.

Since the C_{P} homotopy equivalence σ is not a H space map. We introduce another H space structure μ_{\otimes} on $B O . \mu_{\otimes}: B O \times B O \rightarrow B O$ is defined by the following diagram.

$$
\begin{align*}
\mu_{\otimes}: & B O \times B O \xrightarrow{\Delta \times \Delta}(B O \times B O) \times(B O \times B O) \xrightarrow{i d \times T \times i d} \tag{1-1}\\
& B O \times B O \times B O \times B O \xrightarrow{\mu_{\oplus} \times \mu_{\Lambda}} B O \times B O \xrightarrow{\mu_{\oplus}} B O .
\end{align*}
$$

where $\mu_{\wedge}: B O \times B O \rightarrow B O$ denotes the map representing $\left(\xi_{m}-m\right) \cdot\left(\xi_{n}-n\right)$ in $K O^{\circ}(B O(m) \times B O(n))$, where $\xi_{m} \rightarrow B O(m)$, and $\xi_{n} \rightarrow B O(n)$ denote the universal bundles. Then the H-space $\left(B O, \mu_{\otimes}\right)$ is a homotopy commutative H-space. We denote this H space by $B O_{\otimes}$ simply. Denote by $B O_{\otimes P}$, the localizing space of $B O_{\otimes}$ at odd primes P. Then identity map $i: B O \rightarrow B O_{\otimes}$ can be uniquely extended to the map $i_{P}: B O_{P} \rightarrow B O_{\otimes P}$, and i_{P} is a homotopy equivalence.

Define a continuous map $\bar{\sigma}: F / P L \rightarrow B O_{\otimes P}$ by the following diagram.

$$
\begin{equation*}
\bar{\sigma}: F / P L \xrightarrow{\sigma} B O_{P} \xrightarrow{8} B O_{P} \xrightarrow{i_{P}} B O_{\otimes_{P} .} . \tag{1-2}
\end{equation*}
$$

Proposition 1-2. The C_{P} homotopy equivalence $\bar{\sigma}$ is a H space map, and $\bar{\sigma}^{* *}\left(1+p h_{1}+p h_{2}+\cdots\right)=1+L_{1}+L_{2}+\cdots \in H^{* *}(F / P L ; Q)$.

Proof. Since $\bar{\sigma}^{* *}\left(1+p h_{1}+p h_{2}+\cdots\right)=1+L_{1}+L_{2}+\cdots$ follows easily from proposition $1-1$, ii) and (1-2), it is sufficient to prove that the following diagram is homotopy commutative.

But by proposition 1-1, any map $f: F / P L \times F / P L \rightarrow B O_{\otimes_{P}}$ is uniquely determined by $f^{* *}\left(1+p h_{1}+p h_{2}+\cdots\right) \in H^{* *}(F / P L \times F / P L ; Q)$. On the other hand, $\mu^{* *} \cdot \sigma^{* *}\left(1+p h_{1}+p h_{2}+\cdots\right)=\mu^{* *}\left(1+L_{1}+L_{2}+\cdots\right)=\left(1+L_{1}+L_{2}+\cdots\right)$ $\otimes\left(1+L_{1}+L_{2}+\cdots\right)$. And $(\bar{\sigma} \times \bar{\sigma})^{* *}\left(\mu_{\otimes P}\right)^{* *}\left(1+p h_{1}+p h_{2}+\cdots\right)=(\bar{\sigma} \times \bar{\sigma})^{* *} \times$ $(p h \otimes p h)=\left(1+L_{1}+\cdots\right) \otimes\left(1+L_{1}+\cdots\right) . \quad$ This showes the proposition.

1-2. Let $B O\langle 8 N\rangle$ denote the space obtained by killing the homotopy group $\pi_{i}(B O), i<8 N$. Let $f_{N}: S^{8 N} \rightarrow B O\langle 8 N\rangle$ be the canonical generator of $\left.\pi_{8 N}(B O<8 N\rangle\right) \cong Z$. Then by Bott periodicity, the map $S^{8(N-1)} \xrightarrow{i} \Omega^{8} S^{8 N} \xrightarrow{\Omega^{8} f_{N}}$
$\Omega^{8} B O\langle 8 N\rangle=B O\langle 8(N-1)\rangle$ coincide with f_{N-1}. So we can take a limit and obtain a map.

$$
\begin{equation*}
g=\Omega^{\infty} f_{\infty}: \lim _{\rightarrow} \Omega^{8 N} S^{8 N}=Q S^{0} \rightarrow \lim _{\rightarrow} \Omega^{8 N} B O\langle 8 N\rangle=Z \times B O . \tag{1-3}
\end{equation*}
$$

The spaces $B O\langle 8 N\rangle$ have product $\mu_{M, N}$.

$$
\begin{equation*}
\mu_{M, N}: B O\langle 8 M\rangle \times B O\langle 8 N\rangle \rightarrow B O\langle 8(M+N)\rangle . \tag{1-4}
\end{equation*}
$$

These products define product μ on $\Omega^{8 N} B O\langle 8 N\rangle=Z \times B O$, i.e. $\mu: \Omega^{8 M} \times$ $B O\langle 8 M\rangle \times \Omega^{8 N} B O\langle 8 N\rangle \rightarrow \Omega^{8(M+N)} B O\langle(M+N)\rangle$. By Bott periodicity, the following diagram is homotopy commutative.

And the reduced join product $\mu_{\wedge}: \Omega^{8 M} S^{8 M} \times \Omega^{8 N} S^{8 N} \rightarrow \Omega^{8(M+N)} S^{8(M+N)}$ is compatible with the product $\Omega^{8 M} B O\langle 8 M\rangle \times \Omega^{8 M} B O\langle 8 N\rangle \rightarrow \Omega^{8(M+N)} B O\langle 8(M+N)\rangle$. Passing to limit we obtain a product μ_{\wedge} on $Q S^{0}=\lim \Omega^{8 N} S^{8 N}$. And we have the following commutative diagram.

Consider the 1 component $Q_{1} S^{0}$ of $Q S^{0}$, then $\mu_{\wedge}: Q_{1} S^{0} \times Q_{1} S^{0} \rightarrow Q_{1} S^{0}$ $\subset Q S^{0}$ is the H space $S F$, where $S F=\lim _{\rightarrow} S G(n), S G(n)=\left\{f: S^{n-1} \rightarrow S^{n-1}\right.$, degree 1\}. And it is easy to show that 1 component $1 \times B O$ of $Z \times B O$ with product $\mu:(1 \times B O) \times(1 \times B O) \rightarrow 1 \times B O$ is the H space $\left(B O_{\otimes}, \mu_{\otimes}\right)$ defined in (1-1).
So that we have a H map $g_{1}: S F=Q_{1} S^{0} \rightarrow 1 \times B O=B O_{\otimes}$.
Proposition 1-3. The map $g_{1}: S F \rightarrow B O_{\otimes}^{\rightarrow} B O_{\otimes P}$, and $\bar{\sigma} \cdot k ; S F \xrightarrow{k} F / P L$ $\bar{\sigma}$
$\rightarrow B O_{\otimes_{P}}$ coincide.
Before proving this proposition, we prepare some results.
1-3. Let $K O^{*}()$ denote 8 graded cohomology theory defined by using Grothendieck group of real vector bundle. Construct a 4 graded cohomology theory $K O^{*}()_{P}$ by $K O^{q}()_{P}=K O^{q}() \otimes_{Z} Z[1 / 2]$. Consider the generator $\eta_{4} \in$
$K O^{-4}\left(S^{0}\right) \cong Z$, then $\eta_{4}^{2}=4 \eta_{8} \in K O^{-8}\left(S^{0}\right), \eta_{8} \in K O^{-8}\left(S^{0}\right) \cong Z$, generator. $\bar{\eta}_{4}$ is by definition $\bar{\eta}_{4}=\frac{1}{2} \eta_{4} \in K O^{-4}\left(S^{0}\right)_{P}$. And define Bott map $\beta: K O^{q}(X, A)_{P} \xrightarrow{\cong}$ $K O^{q-4}(X, A)_{P}$ by the following.

$$
\begin{equation*}
\beta: K O^{q}(X, A)_{P} \xrightarrow{\otimes \bar{\eta}_{4}} K O^{q}(X, A)_{P} \otimes K O^{-4}\left(S^{0}\right)_{P} \xrightarrow{\wedge} K O^{q-4}(X, A)_{P} . \tag{1-6}
\end{equation*}
$$

This Bott map makes $K O^{*}()_{P}, 4$ graded cohomology theory.
Let $\pi: E \rightarrow X$ be a oriented $P L$ disk bundle over finite complex X of fiber $\operatorname{dim} m$. Then we can define a fundamental Thom class $u(\pi) \in K O^{m}(E, \partial E)_{P}$ as the following proposition.

Proposition 1-4. There is a fundamental Thom class $u(\pi) \in K O^{m}(E, \partial E)_{P}$ with following properties.
i) functorial i.e. for $f: Y \rightarrow X, u(f!\pi)=f!(u(\pi))$.
ii) $\varphi_{H}^{-1} p h u(\pi)=L(\pi)^{-1} \in H^{*}(X, Q)$, where φ_{H} is Thom isomorphism, and $L(\pi)$ is the L polynomial of Hirzebruch for $\pi: E \rightarrow X$.
iii) $u(\pi \oplus 1)=\sigma(u(\pi))$, where $\sigma: K O^{m}(E, \partial E)_{P} \xrightarrow{\sigma} K O^{m+1}\left((E / \partial E) \wedge S^{1}\right)_{P}=$ $K O^{m+1}(E \oplus 1, \partial(E \oplus 1))_{P}$ is suspension isomorphism.
iv) Multiplicative mod torsion i.e $u\left(\pi_{1} \oplus \pi_{2}\right)=u\left(\pi_{1}\right) \cdot u\left(\pi_{2}\right)$ mod torsion elements, where $\pi_{1}: E_{1} \rightarrow X_{1}$, and $\pi_{2}: E_{2} \rightarrow X_{2}$.

We shall prove this proposition in the appendix.
1-4. Now we prove proposition 1-3. At first we analyse the map $g_{1}: Q_{1} S^{0} \rightarrow B O_{\otimes}$. Consider the following mapping $t: S G(N) \times\left(D^{N}, \partial D^{N}\right) \rightarrow$ $\left(D^{N}, \partial D^{N}\right)$ defined by $t(f, x)=c f(x)$, where $c f:\left(D^{N}, \partial D^{N}\right) \rightarrow\left(D^{N}, \partial D^{N}\right)$ be a map defined by cone of $f: \partial D^{N}=S^{N-1} \rightarrow \partial D^{N}=S^{N-1}$. Consider the case $N=8 M$. And consider the canonical generator $\eta_{8 M} \in K O^{8 M}\left(D^{8 M}, \partial D^{8 M}\right) \cong Z$, then $t^{*}\left(\gamma_{8 M}\right) \in K O^{8 M}\left(S G(8 M) \times\left(D^{8 M}, \partial D^{8 M}\right)\right) \cong K O^{\circ}(S G(8 M)) \otimes_{Z} K O^{8 M}\left(D^{8 M}, \partial D^{8 M}\right)$. So that there is unique element $l_{8 M} \in K O^{\circ}(S G(8 M))$ such that $l_{8 M} \otimes \eta_{8 M}=t^{*}\left(\eta_{8 M}\right)$. It is easy to show that for $i: S G(8 M) \rightarrow S G(8(M+1)), i^{*}\left(l_{8(M+1)}\right)=l_{8 M}$. And $\varepsilon\left(l_{B M}\right)=1$, where $\varepsilon: K O^{\circ}(S G(8 M)) \rightarrow K O^{\circ}(p . t) \cong Z$ be the augmentation. So. passing to the limit, we obtain $l \in K O^{\circ}(S G)=K O^{\circ}\left(Q_{1} S^{0}\right)$. And since $\varepsilon(l)=1$, l is represented by a map $l: S G=Q_{1} S^{0} \rightarrow 1 \times B O=B O_{\otimes} \subset Z \times B O$.

Lemma 1-5. The map l coincides with $g_{1}: Q_{1} S^{0} \rightarrow B O_{\otimes}$ defined in 1-2.
It is easy to prove this lemma so we omit its proof.

Proof of proposition 1-3. Let $\pi: E \rightarrow X$ be a PL disk bundle of fiber dimension $8 N$ over a finite complex X with homotopy trivialization $t:(E, \partial E)$ $\rightarrow\left(D^{8 N}, \partial D^{8 N}\right)$. Consider the element $t^{*}\left(\eta_{8 N}\right) \in K O^{8 N}(E, \partial E)_{P}$. By proposition 1-4, there is a Thom isomorphism $\varphi_{K \theta_{P}}: K O^{\circ}(X)_{P} \rightarrow K O^{8 N}(E, \partial E)_{P}$ defined by $\varphi_{K O_{P}}(x)=i^{*}(x) \cdot u(\pi), \quad i: X \rightarrow E$. Then $\bar{l}(E)$ is by definition $\varphi_{K}^{-1} O_{P}\left(t^{*}\left(\eta_{8_{N}}\right)\right) \in$ $K O^{0}(X)_{P}$. It is easy to see $\bar{l}(E \oplus 8)=\bar{l}(E)$. Since $K O^{0}(F / P L(8 N))_{P}=$ $\underset{\alpha}{\lim } K O^{\circ}\left(X_{\alpha}\right)_{P}$, where X_{α} runs through all finite subcomplexes of $F / P L(8 N)$, the universal bundle $\pi_{8 N}: E_{8 N} \rightarrow F / P L(8 N)$, with $t_{8 N}:\left(E_{8 N}, \partial E_{8 N}\right) \rightarrow\left(D^{8 N}, \partial D^{8 N}\right)$ defines the element $\bar{l}\left(E_{8 N}\right) \in K O^{\circ}(F / P L(8 N))_{P}$. It is easy to see $i^{*}\left(\bar{l}\left(E_{8(N+1)}\right)\right)=$ $\bar{l}\left(E_{8 N}\right)$, where $i: F / P L(8 N) \rightarrow F / P L(8(N+1))$. Passing to limit, we obtain the element $\bar{l} \in K O^{0}(F / P L)_{P}$. The natural inclusion $k_{8 N}: S G(8 N) \rightarrow F / P L(8 N)$ is defined by the classifying map for the $F / P L$ bundle over $S G(8 N)$ defined by $t: S G(8 N) \times\left(D^{8 N}, \partial D^{8 N}\right) \rightarrow\left(D^{8 N}, \partial D^{8 N}\right)$. Since the fundamental Thom class of this bundle is $1 \otimes \eta_{8 N} \in K O^{8 N}\left(S G(8 N) \times\left(D^{8 N}, \partial D^{8 N}\right)\right)_{P}=K O^{0}(S G(8 N))_{P}{ }_{Z[1 / 2]}^{\otimes} K O^{8 N}$ $\left(D^{\delta N}, \partial D^{8 N}\right)_{P}$. So that $k_{8 N}^{*}\left(\bar{l}\left(E_{8 N}\right)\right)=\bar{l}_{8 M} \in K O^{\circ}(S G(8 N))_{P}$. So that to prove the proposition, it is sufficient to prove $\bar{l}=\bar{\sigma}$ as elements $K O^{0}(F / P L)_{P}$. By proposition 1-2, it is sufficient to prove $p h(\bar{l})=p h(\bar{\sigma})$. This follows from proposition 1-4, ii).

§ 2. Determination of $\boldsymbol{H}_{*}\left(B S P L: \boldsymbol{Z}_{p}\right)$.

2-1. At first we determine the Hopf algebra over $Z_{p}, H_{*}\left(F / P L: Z_{p}\right)$. By proposition 1-2, $H_{*}\left(F / P L: Z_{p}\right) \underset{\rightarrow}{\leftrightarrows} H_{*}\left(B O_{\otimes P}: Z_{p}\right)=H_{*}\left(B O_{\otimes}: Z_{p}\right)$, it is sufficient to determine $H_{*}\left(B O_{\otimes}: Z_{p}\right)$.

Proposition 2-1. As a Hopf algebra over $Z_{p}, H_{*}\left(B O_{\otimes}: Z_{p}\right)=Z_{p}\left[a_{1}, a_{2}, \cdots\right]$, for some $a_{j} \in H_{4 j}\left(B O_{\otimes}: Z_{p}\right)$. And $\Delta a_{j}=\sum_{i=0}^{j} a_{i} \otimes a_{j-i}, \quad a_{0}=1$.

Proof. It is sufficient to prove that for any non zero element $x \in H_{r}$ $\left\langle B O_{\otimes}: Z_{p}\right), x^{p} \neq 0$. By the same method as $\left(B O_{\otimes}, \mu_{\otimes}\right)$, c.f. (1-1), we obtain a H space $\left(B U_{\otimes}, \mu \otimes\right)$ as the 1 component of $Z \times B U$, where $Z \times B U$ is the representation space of complex K theory. Let $j: B O_{\otimes} \rightarrow B U_{\otimes}$ denote the natural H map defined by complexifying vector bundle. Since $j_{*}: H_{*}\left(B O_{\otimes}\right.$: $\left.Z_{p}\right) \rightarrow H_{*}\left(B U_{\otimes}: Z_{p}\right)$ is monomorphism, it is sufficient to prove $\left(j_{*}(x)\right)^{p} \neq 0$ for $x \in H_{r}\left(B O_{\otimes}: Z_{p}\right), x \neq 0$. Let $B=H_{*}\left(B U_{\otimes}: Z_{p}\right)$ and B^{*} denote dual Hopf algebra $\operatorname{Hom}_{Z_{p}}\left(B, Z_{p}\right)$, So that $B^{*}=H^{* *}\left(B U_{\otimes}: Z_{p}\right)=Z_{p}\left[\left[c_{1}, c_{2}, \cdots\right]\right], c_{i}$ is i-th Chern class. Let $\alpha: B \rightarrow B$ denote the Hopf algebra homomorphism
defined by $\alpha(x)=x^{p}$, and $\alpha^{*}: B^{*} \rightarrow B^{*}$ denote dual of α. We compute $\alpha^{*}\left(1+c_{1}+c_{2}+\cdots\right)$. Let $\xi \in K\left(B U_{\otimes}\right)=K(B U)$ denote the universal element with augmentation. $\quad \varepsilon(\xi)=0$. Then it is easy to show $\left[\alpha^{*}(c)\right]^{p}=c\left((1+\hat{\xi})^{p}\right)$ $=c(\xi)^{p} \cdot c\left(\xi^{2}\right)^{\binom{p}{2}} \cdots c\left(\xi^{p-1}\right)\left(\begin{array}{l}p-1\end{array}\right) c\left(\xi^{p}\right)$ in $H^{* *}\left(B U_{\otimes}: Z_{p}\right)$. So that $\alpha^{*}(c)=c(\xi) \cdot c\left(\xi^{2}\right)^{\frac{1}{p}\binom{p}{2}}$ $\left.\cdots c\left(\xi^{p-1}\right)^{\frac{1}{p}\left(p^{p}-1\right.}\right) \cdot c\left(\xi^{p}\right)^{\frac{1}{p}}$. Using Chern character it is easy to show that $c\left(\xi^{j}\right)=1+$ decomposable in c_{r} in $H^{* *}\left(B U_{\otimes}: Z\right), j \geq 2$. And the same argument show that the coefficient of c_{n}^{p} in $c\left(\xi^{p}\right)$ is zero in $H^{* *}\left(B U_{\otimes}: Z_{p}\right)$, when $n \geq 2$. So that $\alpha^{*}(c)=1+c_{2}+c_{3}+\cdots, \bmod \left\{d e c o m p o s a b l e+c_{1}\right\}$. This shows that $\bar{\alpha}^{*}: H^{* *}\left(B U_{\otimes}: Z_{p}\right) /\left(c_{1}\right) \rightarrow H^{* *}\left(B U_{\otimes}: Z_{p}\right) /\left(c_{1}\right)$ is onto mapping, where $\left(c_{1}\right)$ denote the ideal generated by c_{1}, and as $\alpha^{*}\left(c_{1}\right)=0, \bar{\alpha}^{*}$ is well defined. Since $j^{* *}\left(c_{1}\right)=0$ where $j^{*}: H^{* *}\left(B U_{\otimes}: Z_{p}\right) \rightarrow H^{*}\left(B U_{\otimes}: Z_{p}\right)$, this shows that for any $x \neq 0,\left[j_{*}(x)\right]^{p} \neq 0$.

Remark 2-2. Indeed we can show that $H_{*}\left(B U_{\otimes}: Z_{p}\right) \cong \Gamma_{p}\left[b_{1}\right] \otimes Z_{p}\left[b_{2}^{\prime}, b_{3}^{\prime}\right.$, $\cdots]$, where $\operatorname{deg} b_{1}=2, \operatorname{deg} b_{j}^{\prime}=2 j$.

2-2. Now we study the map $k_{*}: H_{*}\left(S F: Z_{p}\right) \rightarrow H_{*}\left(F / P L: Z_{p}\right)$. By proposition 1-3 it is sufficient to study $g_{1 *}: H_{*}\left(Q_{1} S^{0}: Z_{p}\right) \rightarrow H_{*}\left(B O_{\otimes}: Z_{p}\right)$. Since $g: Q S^{0} \rightarrow Z \times B O$ is a infinite loop map, g is a H_{p}^{∞} map in the sense of Dyer-Lashof [8]. So that the following diagram is commutative, where $W\left(\pi_{p}\right)=W$ is a acyclic free $\pi_{p} C W$ complex, and π_{p} is the cyclic group of order p.

At first we analyes the map $\theta: W \times(Z \times B O)^{p} \rightarrow Z \times B O$ defined by infinite loop structure $Z \times B O=\lim _{\rightarrow} \Omega^{8 n} B O\langle 8 n\rangle$. ${ }^{\pi_{p}}$ Let X be a finite $C W$ complex, for any element $x \in K O(X)$, we define a element $P(x) \in K O\left(W \times(X)^{p}\right)$ as follows. Represent x as $x=\xi-\eta$ where ξ and η are vector bundles over X, and define $P(x)=P(\xi)-P(\eta)$. Where $P(\xi)$ and $P(\eta)$ are defined by $P(\xi): W \times$ $E_{\xi}^{p} \rightarrow \underset{\pi_{p}}{W} \times X^{p}, P(\eta): \underset{\pi_{p}}{\times} E_{\eta}^{p} \rightarrow \underset{\pi_{p}}{W} \times X^{p}$. Then $P(x)$ is independent to the expression $x=\xi-\eta$. And the construction P has the following properties.
$(2-2) \quad$ i) $P: K O(X) \rightarrow K O\left(W \underset{\pi_{p}}{\times X^{p}}\right)$ is abelian group homomorphism.
ii) P is natural, i.e. for a map $f: X \rightarrow Y$ the following diagram is commutative.

iii) Let $L_{p}=W / \pi_{p}$ be the $\bmod p$ lens space. And $N \in K O\left(L_{p}\right)$ denote the element defined by regular representation $\widetilde{\pi}_{p} \rightarrow S O(p)$. Then $\Delta^{*} P(x)=\underset{\approx}{N} \otimes x$ in $K O\left(L_{p} \times X\right)$ where $\Delta: L_{p} \times X \rightarrow W \underset{\pi_{p}}{W} X^{p}$.
Since $K O\left(W \underset{\pi_{p}}{W} \times(Z \times B O)^{p}\right)=\lim _{\overleftarrow{\alpha}} K O\left(W \underset{\pi_{p}}{ } \times X_{\alpha}^{p}\right)$, where X_{α} runs all finite complexes of $Z \times B O$, the above construction P define a map $P: \underset{\pi_{p}}{W \times B O)^{p}}$ $\rightarrow Z \times B O$.

Conjecture 2-3. The two maps θ and $P: \underset{\pi_{p}}{W}(Z \times B O)^{p} \rightarrow Z \times B O$ coincide.
Since we can not prove this conjecture, we can prove more weak form of the conjecture.

Proposition 2-4. $\quad \theta(1)=P(1)$ as an element of $K O\left(L_{p}\right)=K O\left(W \times(*)^{p}\right)$, where $1 \in K O((*))$.

Proof. The Dyer-Lashof map $\theta: W^{(n-1)} \times\left(\Omega^{n} X\right)^{p} \rightarrow \Omega^{n} X$ is reconstructed in [18] as follows. Let S_{p}^{n} denote $S_{p}^{n}=S^{n} \vee \stackrel{\pi}{p}^{\pi_{p}} \vee \vee S^{n}$, the one point union of p sheres. Define $\mu: \Omega^{n} S_{p}^{n} \times\left(\Omega^{n} X\right)^{p} \rightarrow \Omega^{n} X$ by $\mu\left(\omega, l_{1}, \cdots, l_{p}\right)=\left(l_{p} \vee \cdots \vee l_{p}\right)$ $\omega: S^{n} \xrightarrow{\omega} S^{n} \vee \cdots \vee S^{n} \xrightarrow{l_{1} \vee \cdots \vee l_{p}} X$. The cyclic group π_{p} operates on $\Omega^{n} S_{p}^{n}$, by induced action of π_{p} on S_{p}^{n}, defined by $\sigma((x, i))=\left(x, \sigma((i)), \sigma \in \pi_{p}, \quad(x, i) \in S_{p}^{n}\right.$. And π_{p} acts on $\left(\Omega^{n} X\right)^{p}$ by permutation. Then μ is a π_{p} equivariant map and define $\mu: \Omega^{n} S_{p}^{n} \times\left(\Omega_{p}^{n} X\right)^{p} \rightarrow \Omega^{n} X$. On the other hand, there is a π_{p} equivariant map $\theta_{n}: W^{n}{ }^{[(n-1)(p-1)]} \rightarrow \Omega^{n} S_{p}^{n}$, such that the image is in the connected component represented by $1+\cdots+1 \in \pi_{0}\left(\Omega^{n} S_{p}^{n}\right) \cong Z+\cdots Z, n \geq 2$. The Dyer-Lashof map $\theta: W^{[(n-1)(p-1)]} \times\left(\Omega^{n} X\right)^{p} \rightarrow \Omega^{n} X$ is defined by $\mu \cdot\left(\theta_{n} \times i d\right)$: $W \underset{\left.{ }^{[(n-1)(p-1)}\right]}{\pi_{p}} \times\left(\Omega^{n} X\right)^{p} \rightarrow \Omega^{n} S_{p}^{n} \times\left(\Omega^{n} X\right)^{p} \rightarrow \stackrel{\pi_{p}}{\Omega^{n}} X$.

Now consider the element $\theta(1) \in K O\left(L_{p}\right)$. Let $\eta_{8 N} \in K \widetilde{O}^{8 N}\left(S^{3 N}\right)$, and $\bar{\eta}_{8 N} \in$ $K \widetilde{O}^{0}\left(S^{8 N}\right)$ be the canonical generators. Then $\theta(1) \otimes \eta_{8 N} \in K \widetilde{O}^{8 N}\left(L_{p} \ltimes S^{8 N}\right)$ is, by Bott periodicity, defined by the adjoint map of $\theta(1): L_{p} \rightarrow Z \times B O=\Omega^{8 N} B O\langle 8 N\rangle$, where $X \ltimes Y=X \times Y / X \times(*)$. By the definition of $\theta(1)$, on $(8 N-1)(p-1)$ skelton of $L_{p}, \theta(1) \otimes \eta_{8 N}$ is defined by the following π_{p} equivariant map.

$$
W^{[8 N-1)(p-1)} \ltimes S^{s N} \xrightarrow{\theta_{8 N}} S^{8 N} V \cdots \vee S^{8 N} \xrightarrow{\eta_{8 N} V \cdots \vee \eta_{8 A}} B O\langle 8 N\rangle .
$$

On the other hand the mapping $P: W \ltimes(0 \times B O)^{p} \rightarrow(0 \times B O)$ can be diftable on $P: W \ltimes(B O\langle 8 N\rangle)^{p} \rightarrow B O\langle 8 N\rangle$. And denfie a π_{p} equivariant map $P: W \ltimes(B O\langle 8 N\rangle\rangle^{\pi_{p}} \rightarrow B O\langle 8 N\rangle$. Then the following diagram is π_{p} equivariantly homotopy commutative.

where $\bar{i}: S^{8 N} \bigvee \cdots \vee S^{8 N} \rightarrow W \ltimes\left(S^{8 N}\right)^{p}$ is defined by $\bar{i}((x, j))=\left(\sigma^{j}\left(\omega_{0}\right) ; * \times \cdots \times * \times x\right.$ $\times * \cdots \times *)$, where $\sigma \in \pi_{p}$: generator $s, t \sigma(i)=\sigma(i+1) \bmod p$, and $\omega_{0} \in W:$ fixed element.

On the other hand, by equivariant cohomology theory due to Bredon [4], the following diagram is π_{p} equivariantly homotopy commutative, c.f. the argument in [18].

So that $\pi \cdot\left(\theta(1) \otimes \eta_{8 N}\right): L_{p}^{[8 N]} \bowtie S^{8 N} \rightarrow B O\langle 8 N\rangle \rightarrow 0 \times B O$ is by Bott periodicity $\theta(1) \otimes \bar{\eta}_{8 N}$ in $K \widetilde{O}^{0}\left(L_{n}^{[8 N]} \ltimes S^{8 N}\right)$ on the other hand the above two commutative diagrams show that $\pi \cdot\left(\theta(1) \otimes \eta_{8 N}\right)$ is represented by $\Delta^{*}\left(P\left(\bar{\eta}_{8 N}\right)\right)$ in $K \widetilde{O}^{0}\left(L_{p}^{[8 N]} \bowtie S^{8 N}\right)$. On the other hand by (2-2) iii) shows that $\Delta^{*}\left(P\left(\bar{\eta}_{8 N}\right)\right)=N \otimes \bar{\eta}_{8 N}$. This shows $\theta(1)=\underset{\approx}{N}$ in $K O^{\circ}\left(L_{p}^{\lfloor 8 N\rceil}\right)$, so limiting to $N \rightarrow \infty$ we obtain $\theta(1)=\underset{\approx}{N}$ in $K O^{\circ}\left(L_{p}\right)$. On the other hand $P(1)=\underset{\approx}{N}$ in $K O^{0}\left(L_{p}\right)$. This shows the proposition.

Proposition 2-5. The Dyer Lashof operations on $H_{*}\left(Z \times B O: Z_{p}\right)$ defined by θ and P coincide.

Proof. Let $\mu:(Z \times B O) \times(Z \times B O) \rightarrow Z \times B O$ denote the product defined by tensor product. Then the two diagrams are homotopy commutative.

On the other hand any element of $H_{*}\left(W \times(Z \times B O)^{p}: Z_{p}\right)$ of the form $e_{i} \otimes(x)^{p}$ is in the image of $\left(i d \times \Delta_{p}\right)_{*}: H_{*}\left(W / \pi_{p} \times(Z \times B O): Z_{p}\right) \rightarrow H_{*}\left(W \times(Z \times B O)^{p}: Z_{\pi_{p}}^{\pi} Z_{p}\right)$, c.f. Lemma 2-1 of [17]. This proves the proposition.
2.3. Now we determine the map $g_{1 *}: H_{*}\left(Q_{1} S^{0}: Z_{p}\right) \rightarrow H_{*}\left(B O_{\otimes}: Z_{p}\right)$. We remember the result of [17] about the Pontrjagin ring $H_{*}\left(Q_{1} S^{0}: Z_{p}\right)=$ $H_{*}\left(S F: Z_{p}\right)$. Let $H=\left\{J=\left\langle\varepsilon_{1}, j_{1}, \varepsilon_{2}, j_{2}, \cdots, \varepsilon_{r}, j_{r}\right)\right\}$ be the set of sequences J satisfying,
i) $r \geq 1$
ii) $j_{i} \equiv 0 \bmod (p-1), \quad i=1, \cdots, r$.
iii) $j_{r} \equiv 0 \bmod 2(p-1)$.
iv) $(p-1) \leq j_{1} \leq \cdots \leq j_{r}$.
v) $\varepsilon_{i}=0$ or 1 .
vi) if $\varepsilon_{i+1}=0$, then $j_{i} /(p-1)$ and $j_{i+1} /(p-1)$ are even parity. if $\varepsilon_{i+1}=1$, then $j_{i} /(p-1)$ and $j_{i+1} /(p-1)$ are odd parity.
And $h: L_{p} \rightarrow Q_{p} S^{0}$ is defined by $h: W / \pi_{p} \rightarrow \underset{\pi_{p}}{W} \times(i d)^{p} \rightarrow \underset{\pi_{n}}{W}\left(Q_{1} S^{0}\right)^{p} \xrightarrow{\theta} Q_{p} S^{0}$ And $h_{0}: L_{p} \rightarrow Q_{0} S^{0}$ is by definition $h_{0}=h \vee(-p i d)$. Then $x_{j}=h_{0 *}\left(e_{2 j(p-1)}^{\pi_{p}}\right)$, $\in H_{2 j(p-1)}\left(Q_{0} S^{0}: Z_{p}\right)$. And for $J=\left(\varepsilon_{1}, j_{1}, \cdots, \varepsilon_{r}, j_{r}\right) \in H, x_{J}$ is by definition $x_{J}=\beta_{p}^{s_{1}} Q_{j_{1}} \cdots \beta_{p^{\circ}-1}^{Q_{j_{r-1}}} \beta_{p}^{\delta} x_{j_{r} / 2(p-1)} \in H_{*}\left(Q_{0} S^{0}: Z_{p}\right)$. And $\tilde{x}_{J}=i_{*}\left(x_{J}\right) \in H_{*}\left(S F: Z_{p}\right)_{\text {, }}$. $i: Q_{0} S^{0} \rightarrow S F$. Then Theorem I of [17] is as follows,
(2-4) $H_{*}\left(S F: Z_{p}\right)$ is free commutative algebra generated by $\tilde{x}_{J}, J \in H$.
Lemma 2-6. For $J=\left(\varepsilon_{1}, j_{1}, \cdots, \varepsilon_{r}, j_{r}\right) \in H$ with $\varepsilon_{i}=1$ for some i, $g_{1 *}\left(\tilde{x}_{J}\right)=0$.
Proof. Since the following diagram is commutative.
 the other hand in $H_{*}\left(B O: Z_{p}\right)$, the Bockstein map β_{p} is zero map, so the lemma follows.

Proposition 2-7. The elements $g_{1 *}\left(\tilde{x}_{j}\right)$ are indecomposable in $H_{*}\left(B O_{\otimes}: Z_{p}\right)$. And the image of $H_{*}\left(S F: Z_{p}\right)$ by $g_{1 *}$ coincides with the subalgebra generated by $g_{1 *}\left(\tilde{x}_{j}\right)$.

Proof. Since $j_{*}: H_{*}\left(B O_{\otimes}: Z_{p}\right) \rightarrow H_{*}\left(B U_{\otimes}: Z_{p}\right)$ is monomorphism of Hopf algebra, it is sufficient to prove analog proposition for $\bar{g}_{1 *}=\left(j \cdot g_{1}\right)_{*}: H_{*}\left(Q_{1} S^{0}: Z_{p}\right)$ $\rightarrow H_{*}\left(B U_{\otimes}: Z\right)$. By lemma 2-6, the kernel of \bar{g}_{1}^{*} contains ideal generated by $c_{j}, j \neq 0(p-1)$. Let $A=Z_{p}\left[\tilde{x}_{1}, \tilde{x}_{2}, \cdots\right] \subseteq H_{*}\left(Q_{1} S^{0}: Z_{p}\right)$ denote the subalgebra generated by \tilde{x}_{i}, then this is a subHopf algebra. A^{*} denotes the dual Hopf algebra of A, and $\bar{i}: H^{*}\left(Q_{1} S: Z_{p}\right) \rightarrow A^{*}$ denotes the dual of inclusion. Then to prove the proposition, it is sufficient to prove $\bar{i} \circ \bar{g}_{1}^{*}: H^{*}$ $\left(B U_{\otimes}: Z_{p}\right) \rightarrow A^{*}$ is onto. We construct A^{*} and $i \circ \bar{g}_{1}^{*}$ concretely as follows. Let $\quad h_{1}=h_{0} \vee i d: L_{p} \rightarrow Q_{1} S^{0}$, and consider $\bar{h}_{1}: L_{p} \rightarrow Q_{1} S^{0} \rightarrow B U_{\otimes} \rightarrow B U_{\otimes}$. Then, by Proposition 2-4, \bar{h}_{1} determines the element $1+\tilde{N} \in K\left(L_{p}\right)$, where $\underline{\underline{N}}$ is the element determined by regular representation, and $\underline{\underline{N}}=\underline{\underline{N}}-p$. For large l consider $H_{l}: L_{p}^{l}=L_{p} \times \cdots \times L_{p} \xrightarrow{\bar{h} \times \cdots \times \bar{h}_{1}} B U_{\otimes} \times \cdots \times B U_{\otimes} \xrightarrow{\mu_{\otimes}} B U_{\otimes}$. And consider $H_{l}^{*}: H^{*}\left(B U_{\otimes}: Z_{p}\right) \rightarrow H^{*}\left(L_{p}^{l}: Z_{p}\right)=Z_{p}\left[\beta_{1}, \cdots, \beta_{l}\right] \otimes \Lambda\left(\alpha_{1}, \cdots, \alpha_{l}\right)$. Then the image of H_{i}^{*} is contained in $S Z_{p}\left[\beta_{1}^{p-1}, \cdots, \beta_{l}^{p-1}\right]$, where $S Z_{p}\left[\beta_{1}^{p-1}\right.$, $\left.\cdots, \beta_{l}^{p-1}\right]$ means invariant subHopf algebra of $Z_{p}\left[\beta_{1}^{p-1}, \cdots, \beta_{l}^{p-1}\right]$ by the action of permutation group $\Sigma_{l} . \quad S Z_{p}\left[\beta_{1}^{p-1}, \cdots, \beta_{l}^{p-1}\right]=Z_{p}\left[\sigma_{1}, \cdots, \sigma_{l}\right]$, where σ_{i} is the i-th elementary symmetric function of $\beta_{1}^{p-1}, \cdots, \beta_{l}^{p-1}$. And up to dim $2 l(p-1), A^{*}$ and $\bar{i} \cdot \bar{g}_{i}^{*}$ is represented by $S Z_{p}\left[\beta_{1}^{p-1}, \cdots, \beta_{l}^{p-1}\right]=Z_{p}\left[\sigma_{1}, \cdots, \sigma_{l}\right]$ and H_{i}^{*}. Consider the element $H_{l}^{*}\left(1+c_{1}+\cdots\right)$, and we shall show, for $1 \leq s \leq l$, the coefficient of σ_{s} in $H_{i}^{*}\left(1+c_{1}+\cdots\right)$ is $(-1)^{s}$. Then this shows the proposition, since H_{l}^{*} is algebra homomorphism, and $\left\{c_{i}\right\}$ and $\left\{\sigma_{\nu}\right\}$ are algebra generator of $H^{*}\left(B U_{\otimes}: Z_{p}\right)$ and $S Z_{p}\left[\beta_{1}^{p-1}, \cdots \beta_{l}^{p-1}\right]$. By definition $H_{i}^{*}\left(1+c_{1}+\cdots\right)=c\left(\left(1+\underline{\underline{N}}_{1}\right) \cdots\left(1+\underline{\underline{N}}_{n}\right)\right)$, where $\tilde{\underline{N}}_{i} \in K\left(L_{p}^{l}\right)$ is the element defined by $1 \otimes \cdots \otimes 1 \otimes \underline{\underline{N}} \otimes 1 \otimes \cdots \otimes 1 \in K\left(L_{p}^{l}\right)=K\left(L_{p}\right) \otimes \cdots \otimes K\left(L_{p}\right)$, where $\underline{\underline{N}}$ is in the i-th factor.

$$
\begin{aligned}
& c\left(\left(1+\underline{\tilde{N}_{1}}\right) \cdots\left(1+\underline{\underline{N}}_{l}\right)\right) \\
& =\Pi_{i} c\left(\underline{\underline{N}}_{i}\right) \cdot \prod_{i<j} c\left(\underline{\underline{\tilde{N}_{i}}} \underline{\underline{N}}_{j}\right) \cdots \Pi c\left(\tilde{\underline{N}}_{1} \cdots \underline{\underline{N}}_{i}\right) .
\end{aligned}
$$

And

$$
\begin{aligned}
\prod_{i} c\left(\tilde{N}_{i}\right) & =\prod_{i}\left(1-\beta_{i}^{p-1}\right) \\
& =1-\sigma_{1}+\cdots+(-1)^{l} \sigma_{l} .
\end{aligned}
$$

Then the following lemma show the proposition.
Lemma 2-8. In the above situation, for $2 \leq t \leq l$, the coefficient of $\sigma_{s}, 1 \leq s \leq l$, in $\prod_{1 \leq i_{1}<\cdots<i_{t} \leq l} c\left(\widetilde{\underline{N}}_{i_{1}} \cdots \underline{\underline{N}}_{i_{i}}\right)$ is zero.

Proof. We prove in the case $t=2$, since proof is analog for the case $t>2$, since it is tediously long.

$$
\begin{aligned}
& \prod_{1 \leq i<j \leq l} c\left(\underline{\underline{N_{i}}} \underline{=} \tilde{\underline{N}}_{j}\right)=\prod_{1 \leq i<j \leq l} c\left(\left(\underline{\underline{N_{i}}}-p\right)\left(N_{j}-p\right)\right) \\
& =\left[\prod_{1 \leq i<j \leq l} c\left(\underline{\underline{N_{N}}} \underline{\underline{\tilde{N}_{j}}}\right)\right] \cdot\left[\prod_{1 \leq i<j \leq l}\left(c\left(\underline{\underline{\tilde{N}_{i}}}\right) c\left(\underline{\underline{\left(\tilde{N}_{j}\right.}}\right)\right)\right]^{-p} \\
& \equiv \prod_{1 \leq i<j \leq l} c\left(\tilde{\underline{N}}_{i} \tilde{N}_{j}\right) \bmod \text { decomposable } \\
& =\left[\prod_{\substack{i=1 \\
j=1 \cdots . l}} c\left(\tilde{N}_{i} \stackrel{\tilde{N}_{j}}{=}\right)\right]^{1 / 2} \cdot\left[\prod_{i=1 \cdots l} c\left(\tilde{N}_{i} \stackrel{\tilde{N}_{i}}{=}\right)\right]^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\prod_{\substack{i=1 \ldots l \\
a_{i}=0 \ldots p-1}} \prod_{i=1}\left(\left(1+a_{i} \beta_{i}\right)^{p}-\beta_{j}^{p-1}\left(1+a_{i} \beta_{i}\right)\right)\right]^{1 / 2}\left[\prod_{i=1 \cdots l} \prod_{a=0 \ldots p-l}\left(1+a \beta_{i}\right)\right]^{-p} \\
& \equiv\left[\prod_{\substack{i=1 \cdots, l \\
a_{i}=\cdots \cdots p-1}}\left(\left(1+a_{i} \beta_{i}\right)^{p l}-\sigma_{1}\left(1+a_{i} \beta_{i}\right)^{p(t-1)+1}+\cdots+(-1)^{l} \sigma_{l} \cdot\left(1+a_{i} \beta_{i}\right)^{l}\right]^{1 / 2}\right. \\
& \text { mod dec. } \\
& \equiv\left[\prod_{\substack{i=1, \ldots l \\
a_{i}=0 \cdots p-1}}\left(\left(1+a_{i} \beta_{i}\right)^{p l}-\sigma_{i}+\cdots+(-1)^{l} \sigma_{l}\right)\right]^{1 / 2} \bmod \operatorname{dec} \text {. } \\
& \equiv\left[\left(\prod_{\substack{i=1, \cdots l \\
a_{i}=0 \cdots, p-1}}\left(1+a_{i} \beta_{i}\right)^{p l}\right)+p l\left(-\sigma_{1}+\cdots+(-1)^{l} \sigma_{l}\right)\right]^{1 / 2}, \bmod \operatorname{dec} . \\
& \equiv 1 \bmod \operatorname{dec} \text {. }
\end{aligned}
$$

where mod decomposable means in $S Z_{p}\left[\beta_{1}^{p-1}, \cdots, \beta_{l}^{p-1}\right]=Z_{p}\left[\sigma_{1}, \cdots, \sigma_{l}\right]$. This proves the lemma.
2.4. Let $y_{j} \in H_{2 j(p-1)-1}\left(S O: Z_{p}\right)$ denote the unique element defined by the following conditions, $j=1,2, \cdots$, i) $\left\langle\sigma\left(q_{j}\right), y_{j}\right\rangle=1$, ii) y_{j} is a primitive element. Denote $i_{*}\left(y_{j}\right)$ by \tilde{y}_{j} for $i_{*}: H_{*}\left(S O: Z_{p}\right) \rightarrow H_{*}\left(S F: Z_{p}\right)$.

Conjecture 2-9. $\quad \tilde{y}_{j}$ is contained in the subalgebra of $H_{*}\left(S F: Z_{p}\right)$ generated by $\tilde{x}_{k}, \beta_{p} \tilde{x}_{k}, k=1,2, \cdots$.

Since we can not prove this conjecture, we prepare the following two lemmas, which are proved in $\S 5$.

Lemma 2-10. There are continuous maps, $f: L_{p} \rightarrow S F$ and $g: C P^{\infty} \rightarrow F / O$ with the following properties.
i) The following diagram is commutative.

ii) The map $L_{p} \rightarrow S F \rightarrow F / P L \xrightarrow{\bar{\sigma}} B O_{\otimes(p)}$ represents in $K O\left(L_{p}\right)_{(p)}$ the element $1+\frac{2}{p+1} \tilde{N}$, where $B O_{\otimes(p)}$ denote the localized space of $B O_{\otimes}$ at prime p and $K O\left(L_{p}\right)_{(p)}=K O\left(L_{p}\right) \otimes Z[1 / 2,1 / 3, \cdots, \widehat{1 / p}, \cdots]$.

Lemma 2-11. The following formula are valid, for some $c \neq 0$.

$$
\begin{align*}
& f_{*}\left(e_{2 j(p-1)}\right)=c x_{j}+a_{j}, \quad a_{j} \in G_{2}, \quad j=1,2, \cdots \tag{2-5}\\
& f_{*}\left(e_{2 j(p-1)-1}\right)=c \beta_{p} x_{j}+b_{j}, \quad b_{j} \in G_{2}, \quad j=1,2, \cdots .
\end{align*}
$$

Now we define the subsets of H as follows.

$$
\begin{align*}
\text { i) } & H_{2}^{+}=\{J=(0, p-1,1,2 j(p-1)) \in H, j=1,2, \cdots\} \tag{2-6}\\
\text { ii) } & H_{2}^{-}=\{J=(1, p-1,1,2 j(p-1)) \in H, \quad j=1,2, \cdots\} \\
\text { iii) } & H_{1,1}^{+}=\left\{J=\left(0, j_{1}, 0, \jmath_{2}, \cdots, 0, j_{r}\right) \in H, r \geq 2\right\} \\
\text { iv) } & H_{1,1}^{-}=\left\{J=\left(1, j_{1}, 0, j_{2}, \cdots 0, j_{r}\right) \in H, r \geq 2\right\} \\
\text { v) } & H_{1,2}^{+}=\left\{J=\left(\varepsilon_{1}, j_{1}, \varepsilon_{2}, j_{2}, \cdots, \varepsilon_{r}, j_{r}\right) \in H, r \geq 2,\right. \\
& \\
& \left.j_{1} \neq p-1, \operatorname{deg} x_{J}=\text { even, } J \oplus H_{1,1}^{+}\right\}
\end{align*}
$$

vi) $H_{1,2}^{-}=\left\{J=\left(\varepsilon_{1}, j_{1}, \cdots, \varepsilon_{r}, j_{r}\right) \in H, r \geq 2\right.$, $j_{1} \neq p-1, \quad \operatorname{deg} x_{J}=$ odd, $\left.J \notin H_{1,1}^{-}\right\}$.

Now we define the element $x_{j}^{\prime} \in H_{2 j(p-1)-1}\left(Q_{0} S^{0}: Z_{p}\right), j=1,2, \cdots$, by $x_{j}^{\prime}=f_{0 *}\left(e_{2 j(p-1)}\right)$ for $f_{0}: L_{p} \rightarrow Q_{0} S^{0}$, where $L_{0}: L_{p} \rightarrow Q_{0} S^{0}$ is defined by $f_{0}=f \vee(-i d)$ for $f: L_{p} \rightarrow S F$ defined in lemma 2-10.

For $J=\left(\varepsilon_{1}, j_{1}, \cdots, \varepsilon_{r}, j_{r}\right) \in H$, we define $\bar{x}_{J} \in H_{*}\left(S F: Z_{p}\right)$ by $i_{*}\left(\beta_{p}^{\varepsilon_{1}} Q_{j_{1}} \cdots\right.$ $\beta_{p^{\prime}}^{\left.{ }^{\prime} x_{j, 2(p-1)}^{j}\right)}$, where $i_{\infty}: H_{\infty}\left(Q_{0} S^{0}: Z_{p}\right) \rightarrow H_{\infty}\left(S F: Z_{p}\right)$.

Lemma 2-12. As the algebraic generators for $H_{*}\left(S F: Z_{p}\right)$, we can choose the following elements.
i) $\bar{x}_{j}, \beta_{p} \bar{x}_{j}, j=1,2, \cdots$
ii) $\bar{x}_{I}, I \in H_{1,1}^{+} \cup H_{1,2}^{+} \cup H_{2}^{+}$.
iii) $\bar{Q}_{p-1} \cdots \bar{Q}_{p-1}\left(\bar{x}_{I}\right), I \in H_{1,1}^{-} \cup H_{\overline{1}, 2} \cup H_{2}^{-}$.
iv) $\bar{Q}_{p-2} \bar{Q}_{p-1} \cdots \bar{Q}_{p-1}\left(\bar{x}_{I}\right), \quad I \in H_{1,1}^{-} \cup H_{1,2}^{-} \cup H_{2}^{-}$.

Where \bar{Q}_{p-2}, and \bar{Q}_{p-1} are the Dyer-Lashof operations on $H_{*}\left(S F: Z_{p}\right)$ defined in [17].

Proof of this lemma is analog of that of proposition 6-8 of [17], so we omit the proof.

Proposition 2-13. The elements \tilde{y}_{j} are in the subalgebra of $H_{*}\left(S F: Z_{p}\right)$ generated by $\bar{x}_{k}, \beta_{p} \bar{x}_{k}, k=1,2, \cdots$. And $\tilde{y}_{j} \equiv c_{j} \beta_{p} x_{j} \bmod \operatorname{dec}, c_{j} \neq 0$.

Proof. Since \tilde{y}_{j} is non decomposable element, $\tilde{y}_{j} \equiv c_{j} \beta_{p} \bar{x}_{j}+\sum c_{k, I} \bar{Q}_{p-1}^{k}\left(\bar{x}_{I}\right)$, in $Q H_{*}\left(S F: Z_{p}\right)^{1)}$ the vector space of indecomposable elements. Now consider \tilde{y}_{j} in $Q H_{*}\left(F / O: Z_{p}\right)$. By lemma $2-10, \beta_{p} \bar{x}_{j}$ is zero in $H_{*}\left(F / O: Z_{p}\right)$. Since kernel of $Q H_{2 j(p-1)-1}\left(S F: Z_{p}\right) \rightarrow Q H_{2 j(p-1)-1}\left(F / O: Z_{p}\right)$ is 1 dimensional, other elements $\bar{Q}_{p-1}^{k}\left(\bar{x}_{I}\right)$ are linear independent. On the other hand, $\tilde{y}_{j}=0$ in $H_{*}\left(F / O: Z_{p}\right)$, this shows that $\tilde{y}_{j}=c_{j} \beta_{p} \bar{x}_{j}, c_{j} \neq 0$, in $Q H_{2 j(p-1)-1}\left(S F: Z_{p}\right)$. On the other hand since \tilde{y}_{j} is a primitive element, and $0 \rightarrow P H_{2 j(p-1)-1}\left(S F: Z_{p}\right)$ $\rightarrow Q H_{2 J(p-1)-1}\left(S F: Z_{p}\right) \rightarrow 0$, and the subalgebra of $H_{*}\left(S F: Z_{p}\right)$ generated by $\bar{x}_{k}, \beta_{p} \bar{x}_{k}, k=1,2, \cdots$, is subHopf algebra, so that \tilde{y}_{j} belongs to the subalgebra generated by $\bar{x}_{k}, \beta_{p} \bar{x}_{k}$.

Remark 2-14. By lemma 2-10, $g_{1 *}\left(\bar{x}_{j}\right)=c g_{1 *}\left(x_{j}\right), j=1,2, \cdots$, for $g_{1 *}$: $H_{*}\left(S F: Z_{p}\right) \rightarrow H_{*}\left(B O_{\otimes}: Z_{p}\right)$, for $c \neq 0$.

For $J \in H_{1,1}^{o}$, consider $g_{1 *}\left(x_{J}\right)$, by proposition 2-7 and remark 2-14, there is a unique element $\bar{u}_{J} \in Z_{p}\left[\bar{x}_{1}, \bar{x}_{2}, \cdots\right] H_{*}\left(S F: Z_{p}\right)$ such that $g_{1 *}\left(\bar{x}_{J}\right)=g_{1 *}\left(\bar{u}_{J}\right)$.

[^0]Define $\bar{x}_{J}^{\prime} \equiv \bar{x}_{J}-\bar{u}_{J}$. And for $J=\left(1, j_{1}, 0, j_{2}, \cdots, 0, j_{r}\right) \in H_{1,1}^{-}$, define $\bar{x}_{J}^{\prime}=\beta_{p} \tilde{x}_{J}^{\prime}$, where $J^{\prime}=\left(0, j_{1}, 0, j_{2}, \cdots, 0, j_{r}\right) \in H_{1,1}^{+}$.

Proposition 2-15. As algebraic generators for $H_{*}\left(S F: Z_{p}\right)$, we can choose following elements.
i) $\bar{x}_{j}, \tilde{y}_{j}, j=1,2, \cdots$.
ii) $\bar{x}_{I}, I \in H_{1,2}^{+} \cup H_{2}^{+} \quad$ and $\quad \bar{x}_{I}^{\prime}, \quad I \in H_{1,1}^{+}$.
iii) $\bar{Q}_{p-1} \cdots \bar{Q}_{p-1}\left(\bar{x}_{I}\right), \quad I \in H_{1,2}^{-} \cup H_{2}^{-}$and $\bar{Q}_{p-1} \cdots \bar{Q}_{p-1}\left(\bar{x}_{I}^{\prime}\right), \quad I \in H_{1,1}^{-}$.
iv) $\bar{Q}_{p-2} \bar{Q}_{p-1} \cdots \bar{Q}_{p-1}\left(\bar{x}_{I}\right), \quad I \in H_{1,2}^{-} \cup H_{2}^{-}$ and $\bar{Q}_{p-2} \bar{Q}_{p-1} \cdots \bar{Q}_{p-1}\left(\bar{x}_{I}^{\prime}\right), I \in H_{1,1}^{-}$.

Proof. For a basis of $Q H_{*}\left(S F: Z_{p}\right)$, we can choose elements in lemma 2-12. By proposition 2-13, $\tilde{y}_{j}=c_{j} \beta_{p} \bar{x}_{j}, c_{j} \neq 0$, in $Q H_{*}\left(S F: Z_{p}\right)$. For $I \in H_{1,1}^{-}, \quad \bar{x}_{I}^{\prime}=\bar{x}_{I}+c_{I} y_{|I|}$, in $Q H_{*}\left(S F: Z_{p}\right)$, where $|I|=\left(\operatorname{deg} \bar{x}_{I}\right)+1 / 2(p-1)$, by definition of \bar{x}_{I}^{\prime} and by proposition 2-13. Since the construction of $\S 4$ of [17], defining the H_{p}^{∞} structure on $S F$ can be extended on $S O$, and define the H_{p}^{∞} structure on $S O$ with the following commutative diagram.

So that we can define the operations \bar{Q}_{j} on $H_{*}\left(S O: Z_{p}\right)$ compatible with the operations \bar{Q}_{j} on $H_{*}\left(S F: Z_{p}\right)$. So by proposition 2-13 and by the fact that the image of $H_{*}\left(S O: Z_{p}\right) \rightarrow H_{*}\left(S F: Z_{p}\right)$ is the subalgebra generated by \tilde{y}_{j}, $j=1,2, \cdots$, we can easily show that $\bar{Q}_{p-1}^{k}\left(\tilde{y}_{j}\right)$ are in $Z_{p}\left[\bar{x}_{1}, \bar{x}_{2}, \cdots\right] \otimes$ $\Lambda\left(\beta_{p} \bar{x}_{1}, \beta_{p} \bar{x}_{2}, \cdots\right)$ and $\bar{Q}_{p-2} \bar{Q}_{p-1}^{k}\left(y_{j}\right)=0$. So that for $I \in H_{1,1}^{-}, \bar{Q}_{p-1}^{k}\left(\bar{x}_{I}^{\prime}\right) \equiv$ $\bar{Q}_{p-1}^{k}\left(\bar{x}_{I}\right)+c_{(p, I)} y_{(p, I)}$ in $Q H_{*}\left(S F: Z_{p}\right)$, where $y_{(p, I)}=y_{j}$, for $2 j^{\prime}(p-1)-1=\operatorname{deg}$ $\left(\bar{Q}_{p-1}^{k}\left(\bar{x}_{I}\right)\right)$, and $\bar{Q}_{p-2} \bar{Q}_{p-1}^{k}\left(\bar{x}_{I}^{\prime}\right) \equiv \bar{Q}_{p-2} \bar{Q}_{p-1}^{k}\left(\bar{x}_{I}\right)$ in $Q H_{*}\left(S F: Z_{p}\right)$. This shows the proposition.

2-5. At first we consider the homology spectral sequence associated to $S P L \rightarrow S F \rightarrow F / P L$, and determine the Pontrjagin ring $H_{*}\left(S P L: Z_{p}\right)$.

Proposition 2-16. As a Hopf algebra over $Z_{p}, H_{*}\left(\Omega(F / P L): Z_{p}\right) \cong \Lambda\left(d_{1} d_{2}\right.$, $\cdots), \operatorname{deg} d_{j}=4 j-1, j=1,2, \cdots . d_{j}$ are primitive elements.

Proposition 2-17. There are elements $\bar{x}_{J} \in H_{*}\left(S P L: Z_{p}\right)$ for $J \in H_{1,1}^{ \pm} \cup H_{1,2}^{ \pm}$ $\cup H_{2}^{\llcorner }$, such that $j_{*}\left(\bar{x}_{J}\right)=\bar{x}_{J}+$ dec, for $J \in H_{1,2}^{ \pm} \cup H_{2}^{ \pm}$, and $j_{*}\left(\bar{x}_{J}\right)=\bar{x}_{J}^{\prime}+$ dec, for $J \in H_{1,1}^{ \pm}$. Where $j_{*}: H_{*}\left(S P L: Z_{p}\right) \rightarrow H_{*}\left(S F: Z_{p}\right)$.

Proof. Since $i_{*}\left(\bar{x}_{J}\right)=0$, for $J \in H_{1,2}^{ \pm} \cup H_{2}^{ \pm}$, and $i_{*}\left(\bar{x}_{J}^{\prime}\right)=0$ for $J \in H_{1,1}^{ \pm}$, where $i_{*}: H_{*}\left(S F: Z_{p}\right) \rightarrow H_{*}\left(F / P L: Z_{p}\right)$. Proposition follows from the homology spectral sequences associated to the following two fibering.

Remark 2-18. For $\bar{x}_{I}, I \in H_{1,1}^{ \pm} \cup H_{1,2}^{ \pm} \cup H_{2}^{ \pm}$, we can choose the pair \bar{x}_{J} and $\beta_{p} \bar{x}_{J}$.

As in the proof of proposition $2-15$, the H_{p}^{∞} structure on $S O$ and $S F$ can be extended on SPL with the following commutative diagram

Next define elements $\overline{\bar{d}}_{j} \in H_{4 j-1}\left(S P L: Z_{p}\right)$ by $j_{*}\left(d_{j}\right)$ for $j_{*}: H_{*}\left(\Omega(F / P L): Z_{p}\right)$ $\rightarrow H_{*}\left(S P L: Z_{p}\right)$, for $j \neq 0(p-1) / 2$. And define $\bar{y}_{j} \in H_{2 j(p-1)-1}\left(S P L: Z_{p}\right)$ by $j_{*}\left(y_{j}\right), j_{*}: H_{*}\left(S O: Z_{p}\right) \rightarrow H_{*}\left(S P L: Z_{p}\right)$.

Proposition 2-19. $\quad H_{*}\left(S P L: Z_{p}\right)$ is a free commutative algebra generated by the following elements.
i) $\overline{\bar{y}}_{j}, j=1,2, \cdots \quad \bar{d}, j \neq 0(p-1) / 2$.
ii) $\bar{x}_{I}, I \in H_{1,1}^{+} \cup H_{1,2}^{+} \cup H_{2}^{+}$.
iii) $\bar{Q}_{p-1}^{k}\left(\bar{x}_{I}\right) . \quad I \in H_{1,1}^{-} \cup H_{1,2}^{-} \cup H_{2}^{-}$.
iv) $\bar{Q}_{p-2} \bar{Q}_{p-1}^{k}\left(\bar{x}_{I}\right), I \in H_{1,1}^{-} \cup H_{1,2}^{-} \cup H_{2}^{-}$.

Proof of this proposition is by using homology spectral sequence associated to $S P L \rightarrow S F \rightarrow F / P L$.

2-6. Next we define the elements of $H_{*}\left(B S P L: Z_{p}\right)$.
Let $\underline{\underline{N}}: L_{p} \rightarrow B S O$ denote the map defined by the regular representation of π_{p}. Define $z_{j}=\overline{\underline{N}}_{*}\left(e_{2 j(p-1)}\right) \in H_{2 j(p-1)}\left(B S O: Z_{p}\right)$. Then z_{j} are non decom-
posable elements, $j=1,2, \cdots$. Define the element $\overline{\bar{z}}_{j} \in H_{2 j(p-1)}\left(B S P L: Z_{p}\right)$ by $\overline{\bar{z}}_{j}=j_{*}\left(z_{j}\right), j_{*}: H_{*}\left(B S O: Z_{p}\right) \rightarrow H_{*}\left(B S P L: Z_{p}\right)$.

And define $\bar{a}_{j} \in H_{4 j}\left(B S P L: Z_{p}\right), \quad j \neq 0(p-1) / 2$, by $\bar{a}_{j}=i_{*}\left(a_{j}\right), i_{*}: H_{*}$ $\left(F / P L: Z_{p}\right) \rightarrow H_{*}\left(B S P L: Z_{p}\right)$.

Our main proposition is as follows.
Proposition 2-20. $H_{*}\left(B S P L: Z_{p}\right)$ is a free commutative algebra generated by the following elements.
i) $\overline{\bar{z}}_{j}, j=1,2, \cdots$
ii) $\quad \bar{a}_{j}, j \neq 0(p-1) / 2$
iii) $\sigma\left(\bar{x}_{J}\right), J \in H_{1,1}^{ \pm} \cup H_{1,2}^{ \pm} \cup H_{2}^{ \pm}$.

Proof. In the spectral sequence $E_{* *}^{2} \cong H_{*}\left(F / P L: Z_{p}\right) \otimes H_{*}\left(\Omega F / P L: Z_{p}\right)$, $E_{* *}^{\infty} \cong Z_{p}$, the following relations hold.

$$
\begin{aligned}
& d_{4 j p^{k}}\left(a_{j}^{p k}\right)=c_{j} d_{p^{k} j}, \quad c_{j} \neq 0, \quad(j, p)=1, \quad r \geq 0 . \\
& d_{4 j p^{k-1}(p-1)}\left(a_{j p^{k}}\right)=c_{j p^{k}}\left(a_{j}\right)^{p k-1} \otimes d_{j p^{k-1}}, \quad(j, p)=1, \quad k \geq 1, \quad c_{j p^{k}} \neq 0 .
\end{aligned}
$$

And in the spectral sequence $E_{* *}^{2} \cong H_{*}\left(B S O: Z_{p}\right) \otimes H_{*}\left(S O: Z_{p}\right), E_{* *}^{\infty} \cong Z_{p}$, the following relations hold.

$$
\begin{aligned}
& d_{2 j(p-1) p^{k}\left(z_{i}^{k}\right)}=c_{j} y_{p^{k} j}, \quad c_{j} \neq 0, \quad\binom{j}{p}=1, \quad k \geq 0 . \\
& d_{2 j(p-1) p^{k-1}(p-1)}\left(z_{j p^{k}}\right)=c_{j p^{k}}\left(z_{j}\right)^{p^{k-1}(p-1)} \otimes y_{j p^{k-1}}, \quad(j p)=1, k \geq 1, \quad c_{j p^{k}} \neq 0 .
\end{aligned}
$$

And since H_{p}^{∞} structure on $S P L$ can be extended on the fibering $S P L \rightarrow$ $E S P L \rightarrow B S P L$ as that of $S F \rightarrow E S F \rightarrow B S F$, c.f. (4-15) of [17]. So that Kudo's transgresion theorem holds on the spectral sequence $E_{* *}^{2}=H_{*}\left(B S P L: Z_{p}\right) \otimes$ $H_{*}\left(S P L: Z_{p}\right)$, c.f. proposition 6-1 of [17]. These date determine the differential of the spectral sequence for $E_{* *}^{2} \cong H_{*}\left(B S P L: Z_{p}\right) \otimes H_{*}\left(S P L: Z_{p}\right)$. And we obtain the proposition by the same method of the proof of Theorem 2 in [17].

Corollary 2-21. Kernel of the $i_{*}: H_{*}\left(F / P L: Z_{p}\right) \rightarrow H_{*}\left(B S P L: Z_{p}\right)$ is ideal generated by $j_{*}\left(\bar{x}_{j}\right), j=1,2, \cdots$, for $j_{*}: H_{*}\left(S F: Z_{p}\right) \rightarrow H_{*}\left(F / P L: Z_{p}\right)$.

By corollary 2-21, the subalgebra $Z_{p}\left[\bar{a}_{j}\right], j \neq 0(p-1) / 2$ of $H_{*}\left(B S P L: Z_{p}\right)$ is the image of $i_{*}: H_{*}\left(F / P L: Z_{p}\right) \rightarrow \dot{H}_{*}\left(B S P L: Z_{p}\right)$, so that this subalgebra is subHopf algebra. And dual algebra of this subHopf algebra is a polynomial algebra, since this subalgebra is realized as a subalgebra of $H^{*}\left(F / P L: Z_{p}\right)$.

By definition of $\bar{z}_{j}, \Delta\left(\bar{z}_{j}\right)=\sum_{i=0}^{3} \bar{z}_{i} \otimes \bar{z}_{j-i}, \bar{z}_{0}=1$. These two remarks show that subalgebra generated by $\overline{\bar{z}}_{j}$, and \bar{a}_{j} of $H_{*}\left(B S P L: Z_{p}\right)$ is a subHopf algebra and there are elements $\overline{\bar{b}}_{k} \in Z_{p}\left[\overline{\bar{z}}_{1}, \overline{\bar{z}}_{2}, \cdots\right] \otimes Z_{p}\left[\bar{a}_{j}\right], j \neq 0(p-1) / 2$, deg $b_{k}=4 k$, such that

$$
Z_{p}\left[\bar{z}_{1}, \bar{z}_{2}, \cdots\right] \otimes Z_{p}\left[\bar{a}_{j}\right]=Z_{p}\left[\bar{b}_{1}, \bar{b}_{2}, \cdots\right]
$$

and

$$
\Delta\left(\overline{\bar{b}}_{j}\right)=\sum_{i=0}^{j} \overline{\bar{b}}_{i} \otimes \overline{\bar{b}}_{j-i}, \quad \overline{\bar{b}}_{0}=1
$$

Theorem 2-22. As a Hopf algebra
i) $\quad H_{*}\left(B S P L: Z_{p}\right) \cong Z_{p}\left[\bar{b}_{j}\right] \otimes Z_{p}\left[\sigma\left(\bar{x}_{I}\right)\right] \otimes \Lambda\left(\sigma\left(\bar{x}_{J}\right)\right)$, where

$$
I \in H_{1,1}^{-} \cup H_{1,2}^{-} \cup H_{2}^{-}, \quad J \in H_{1,1}^{+} \cup H_{1,2}^{+} \cup H_{2}^{+} .
$$

ii) $\Delta\left(\overline{\bar{b}}_{j}\right)=\sum_{i=0}^{3} \overline{\bar{b}}_{i} \otimes \overline{\bar{b}}_{j-i}, \sigma\left(\overline{\bar{x}}_{I}\right), \sigma\left(\overline{\bar{x}}_{J}\right)$ are primitive elements.
§ 3. $H^{*}(B S P L: Z[1 / 2] /$ Torsion.
3-1. The purpose of this section is to prove the following theorem.
Theorem 3-1. As a Hopf algebra over Z[1/2],
i) $H^{*}(B S P L: Z[1 / 2]) /$ Torsion $=Z[1 / 2]\left[R_{1}, R_{2}, \cdots\right]$
ii) $\Delta R_{j}=\sum_{i=0}^{j} R_{i} \otimes R_{j-i}, \quad R_{0}=1, \quad \operatorname{deg} R_{j}=4 j$.
iii) In $H^{*}(B S P L, Q)=Q\left[p_{1}, p_{2}, \cdots\right], R_{j}$ are expressed as follows.

$$
R_{j}=2^{a_{j}}\left(2^{2 j-1}-1\right) \text { Num }\left(B_{j} / 4 j\right) \cdot p_{j}+\text { decomposable for some } a_{j} \in Z .
$$

At first we study the Bockstein spectral sequence.
Proposition 3-2. In the Bockstein homology spectral sequence, $E^{1}=H_{*}(B S P L$: $\left.Z_{p}\right), \quad E^{\infty}=\left(H_{*}(B S P L: Z) /\right.$ Torsion $) \otimes Z_{p}$, the following formula holds.

If $x \in E_{2 n}^{r}, y \in E_{2 n-1}^{r}$ are such that $d^{r}(x)=y$, then $d^{r+1}\left(x^{p}\right)=x^{p-1} y$.
Proof. For $r>1$, this is theorem 5-3 of [5], and using H_{∞}^{p} structure $\theta: \underset{\pi_{p}}{W \times(B S P L)^{p} \rightarrow B S P L, ~ i t ~ i s ~ e a s y ~ t o ~ s h o w ~ t h a t ~ t h i s ~ h o l d s ~ f o r ~} r=1$.

Remark 3-3. The above spectral sequence is a Hopf algebra spectral sequence over Z_{p}.

Proposition 3-4. As a Hopf algebra over $Z_{p}, E^{\infty}=\left(H_{*}(B S P L: Z) /\right.$ Torsion $)$ $\left.=Z_{p}\left[\left(\overline{\bar{b}}_{1}\right),\left(\overline{\bar{b}_{2}}\right), \cdots\right], \Delta\left(\left(\overline{\bar{b}}_{1}\right)\right)=\Sigma\left(\overline{\bar{b}}_{i}\right) \otimes \overline{\bar{b}}_{j-i}\right)$, where $\left(\overline{\bar{b}}_{i}\right)$ is the class which is represented by $\overline{\bar{b}}_{i}$ in Theorem 2-22.

Proof. By Theorem 2-22, as a Hopf algebra over $Z_{p}, H_{*}\left(B S P L: Z_{p}\right)=$ $Z_{p}\left[\bar{b}_{j}\right] \otimes Z_{p}\left(\sigma\left(\bar{x}_{I}\right)\right) \otimes \Lambda\left(\sigma\left(\bar{x}_{J}\right)\right)$. By remark 2-18, in $\sigma\left(\bar{x}_{I}\right)$ and $\sigma\left(\bar{x}_{J}\right)$, if $\sigma\left(\bar{x}_{J}\right)$ appears then $\alpha\left(\beta_{p} \bar{x}_{J}\right)=\beta_{p} \sigma\left(\bar{x}_{J}\right)$ also appears. So that $Z_{p}\left[\sigma\left(\bar{x}_{I}\right)\right] \otimes \Lambda\left[\sigma\left(\bar{x}_{J}\right)\right]$ is decomposed following two types of Hopf algebras. $Z_{p}\left[\sigma\left(\bar{x}_{I}\right)\right] \otimes \Lambda\left(\beta_{p} \sigma\left(\bar{x}_{I}\right)\right)$ and $Z_{p}\left[\beta_{p} \sigma\left(\bar{x}_{J}\right)\right] \otimes \Lambda\left(\sigma\left(\bar{x}_{J}\right)\right)$. So that the proposition follows from proposition 3-2, remark 3-3, and the fact that $d^{1}=\beta_{p}$.

Proof of Theorem 3-1. Since p is any odd prime, proposition 3-4 shows that $H^{*}\left(B S P L: Z[1 / 2] /\right.$ Torsion $=Z[1 / 2]\left[R_{1}, R_{2}, \cdots\right], \quad \Delta\left(R_{j}\right)=\sum_{i=0}^{j} R_{i} \otimes R_{j-\imath}$, for some R_{j}. Since $P\left(H_{4 j}(B S P L: Z) / \text { Torsion } \otimes Z_{p}\right)^{1)}$ is 1-dimensional, over Z_{p}, and spanned by the image of $P H_{4 j}\left(B S O: Z_{p}\right)$ and $P H_{4 j}\left(F / P L: Z_{p}\right)$, so that $P\left(H_{4 j}(B S P L: Z[1 / 2] /\right.$ Torsion $) \cong Z[1 / 2]$ and spanned over $Z[1 / 2]$ by the image of $P H_{4 j}(B S O: Z) \cong Z$, and $P H_{4 j}(F / P L: Z[1 / 2]) \cong Z[1 / 2]$. On the other hand there is a generator $m_{j} \in P H_{4 j}(B S O: Z) \cong Z$, such that $\left\langle p_{j}, m_{j}\right\rangle=1$, and $\tilde{m}_{j} \in P H_{4 j}(F / P L, Z[1 / 2]) \cong Z[1 / 2]$ such that $\left\langle L_{j}, \tilde{m}_{j}\right\rangle=\frac{1}{(2 j-1)!}$. But since $L_{j}=$ $\frac{2^{2 j+1}\left(2^{2 j-1}-1\right) \operatorname{Num}\left(B_{j} / 4 j\right)}{(2 j-1)!\operatorname{denom}\left(B_{j} / 4 j\right)} p_{j}+\operatorname{dec}$, so that $\left\langle p_{j}, \tilde{m}_{j}\right\rangle=\frac{\operatorname{denom}\left(B_{j} / 4 j\right)}{2^{2 j+1}\left(2^{2 j-1}-1\right) \operatorname{Num}\left(B_{j} / 4 j\right)}$. So that in $P H_{4 j}(B S P L: Q), P\left(H_{4 j}(B S P L, Z[1 / 2] /\right.$ Torsion $\left.)\right) \cong Z[1 / 2]$ is generated over $Z[1 / 2]$ by m_{j} and $\frac{\operatorname{denom}\left(B_{j} / 4 j\right)}{2^{2 j+1}\left(2^{2 j-1}-1\right) \text { Num }\left(B_{j} / 4 j\right)} m_{j}$. But odd prime factor of denom $\left(B_{j} / 4 j\right)$ and $\left(2^{2 j-1}-1\right) \operatorname{Num}\left(B_{j} / 4 j\right)$ are relatively prime, so that $P\left(H_{4 j}(B S P L: Z[1 / 2]) /\right.$ Torsion $)$ is spanned over $Z[1 / 2]$ by $\frac{m_{j}}{\left(2^{2 j-1}-1\right) \operatorname{Num}\left(B_{j} / 4 j\right)}$. So that we can take R_{j} by $R_{j}=2^{a_{j}}\left(2^{2 j-1}-1\right) \operatorname{Num}\left(B_{j} / 4 j\right) p_{j}+\operatorname{dec}$ in H^{*} ($B S P L: Q$), for some $a_{j} \in Z$.
§4. Determination of $\phi: \boldsymbol{A} \rightarrow \boldsymbol{H}^{*}\left(\boldsymbol{M S P L}: \boldsymbol{Z}_{p}\right)$.
4-1. Let $A=A_{p}$ denote the $\bmod p$ Steenrod algebra over Z_{p}, and $\phi: A \rightarrow H^{*}\left(M S P L: Z_{p}\right)$ is defined by the following, where $u \in H^{\circ}\left(M S P L: Z_{p}\right)$ is the Thom class.

$$
\begin{equation*}
\phi(a)=a(u) . \tag{4-1}
\end{equation*}
$$

The object of this section is to prove the following theorem.
Theorem 4-1. The kernel of ϕ is the left ideal generated by $\underline{\underline{Q}}_{0}, \underline{\underline{Q}}_{1}$. Where $\underline{\underline{Q}}_{3}$ is the element defined by Milnor.

The following lemma is proved in $4-2$.

[^1]Lemma 4-2. $\quad \phi\left(\underline{\underline{Q}}_{j}\right) \neq 0$ for $j \geq 2$.
Proof of the Theorem. Since $\phi\left(\underline{\underline{Q_{0}}}\right)=\phi\left(\underline{\underline{Q_{1}}}\right)=0, \operatorname{ker} \phi \supseteq A\left(\underline{\underline{Q_{0}}}, \underline{\underline{Q_{1}}}\right)$, where $A\left(\underline{Q}_{0}, \underline{\underline{Q}}_{1}\right)=$ the left ideal generated by \underline{Q}_{0}, and $\underline{\underline{Q}}_{1} . M S P L$ has the product $\mu: M S P L \wedge M S P L \rightarrow M S P L$, defined by Whitney sum. So that $H^{*}(M S P L:$ Z_{p}) has the coalgebra structure over Z_{p}. And it is well known that ϕ is a coalgebra homomorphism. Let $\chi: A \rightarrow A$ denote the canonical anti-automorphism of A. And define $\bar{\phi}: A \rightarrow H^{*}\left(M S P L: Z_{p}\right)$ by $\bar{\phi}(a)=\chi(a) \cdot u$. To prove the theorem, it is sufficient to prove that, kernel of $\bar{\phi}$ is the right ideal generated by $\chi\left(\underline{Q}_{0}\right)=-\underline{\underline{Q}}_{0}, \chi\left(\underline{\underline{Q_{1}}}\right)=-\underline{\underline{Q}}_{1}$. Let A_{*} denote the dual algebra of A, then by Milnor $A_{*}=Z_{p}\left[\xi_{1}, \xi_{2}, \cdots\right] \otimes \Lambda\left(\tau_{0}, \tau_{1}, \cdots\right)$. It is easy to show the following.

$$
\left(\chi\left(A / A\left(Q_{0}, Q_{1}\right)\right)^{*}=Z_{p}\left[\xi_{1}, \xi_{2}, \cdots\right] \otimes \Lambda\left(\tau_{2}, \tau_{3}, \cdots\right) \subset A_{*}\right.
$$

Consider the algebra homomorphism, $\bar{\phi}_{*}: H_{*}\left(M S P L: Z_{p}\right) \rightarrow A_{*}$. Since dual
 sufficient to prove $\bar{\phi}\left(P^{R}\right) \neq 0$, and $\bar{\phi}\left(\underline{Q}_{j}\right) \neq 0$ for $j \geq 2$. But since in H^{*} $\left(M S O: Z_{p}\right), \quad \bar{\phi}\left(P^{R}\right)=\phi\left(\chi\left(P^{R}\right)\right)=\chi\left(P^{R}\right)(u) \neq 0$. And by lemma $4-2, \bar{\phi}\left(Q_{j}\right)=$ $\left.\phi\left(\chi \underline{\underline{Q_{j}}}\right)\right)=-\phi\left(\underline{\underline{Q}}_{j}\right)=-\underline{\underline{Q}}_{j}(u) \neq 0$ for $j \geq 2$. This proves the theorem.
4.2. Proof of lemma 4-2. Let K is a CW complex of the form.

$$
K=S^{p r-1} \bigcup_{p} e^{p r} \bigcup_{\alpha_{1}} e^{(p+1) r}{\underset{p}{ }}^{\left(e^{(p+1) r+1}, \quad r=2(p-1) .\right.}
$$

And let $f: K \rightarrow B S P L$ be the map which represents β_{1} in $j \circ f \circ i: S^{p r-1} \rightarrow K$ $\rightarrow B S P L \rightarrow B S F$. Then f is represented by a $P L$ disk bundle E_{f} over K of fiber $\operatorname{dim} N, N \gg 0$. And $X=X_{N}$ denotes the Thom complex of E_{f}. Then X_{N} is the following form,

$$
X_{N}=S_{\beta_{1}}^{\bigcup_{\beta^{N}}^{N+p r-1}} \bigcup_{p} e^{N+p r}{\underset{\alpha}{1}}^{e^{N+(p+1) r}} \underset{p}{\cup} e^{N+(p+1) r+1} .
$$

Then the action of A on $H^{*}\left(X_{N}: Z_{p}\right)$ is the following, for $s \in H^{N}\left(X_{N}\right)$, $e_{p r-1} \in H^{N+p r-1}\left(X_{N}\right), \quad e_{p r} \in H^{N+p_{r}}\left(X_{N}\right), \quad e_{(p+1) r} \in H^{N+(p+1) r}\left(X_{N}\right)$ and $e_{(p+1) r+1} \in$ $H^{N+(p+1) r+1}\left(X_{N}\right)$.
i) $\quad P^{p}(s)=e_{p r}$
ii) $\quad P^{1} P^{p}(s)=P^{p+1}(s)=e_{(p+1) r}, P^{p} P^{1}(s)=0$
iii) $\quad \delta P^{p+1}(s)=\delta P^{1} P^{p}(s)=e_{(p+1) r+1}$.

$$
P^{p+1} \hat{\delta}(s)=P^{p} P^{1} \hat{\delta}(s)=\grave{\delta} P^{p} P^{1}(s)=P^{p} \delta P^{1}(s)=0 .
$$

$$
P^{1} \delta P^{p}(s)=0
$$

iv) $\delta\left(e_{p r-1}\right)=e_{p r}$,
v) $P^{1}\left(e_{p r}\right)=e_{(p+1) r}, \delta P^{1}\left(e_{p r}\right)=e_{(p+1) r+1}$
vi) $\quad \bar{\partial}\left(e_{(p+1) r}\right)=e_{(p+1) r+1}$.

So that the Milnor homomorphism $\lambda: H^{*}\left(X_{N}: Z_{p}\right) \rightarrow H^{*}\left(X_{N}: Z_{p}\right) \otimes A_{*}$ is given by the following.
i) $\lambda(s)=e \otimes 1+e_{p r} \otimes \xi_{1}^{p}+e_{(p+1) r} \otimes\left(\xi^{p+1}-\xi_{2}\right)$

$$
+e_{(p+1) r+1} \otimes\left(\xi_{1}^{p+1} \tau_{0}-\xi_{2} \tau_{0}-\xi_{1}^{p} \tau_{1}+\tau_{2}\right) .
$$

ii) $\quad \lambda\left(e_{p r-1}\right)=e_{p r-1} \otimes 1+e_{p r} \otimes \tau_{0}+e_{(p+1) r} \otimes \tau_{1}+e_{(p+1) r+1} \otimes \tau_{1} \tau_{0}$
iii) $\lambda\left(e_{p r}\right)=e_{p r} \otimes 1+e_{(p+1) r} \otimes \xi_{1}+e_{(p+1) r+1} \otimes \xi_{1} \tau_{0}$
iv) $\lambda\left(e_{(p+1) r}\right)=e_{(p+1) r} \otimes 1+e_{(p+1) r+1} \otimes \tau_{0}$
v) $\lambda\left(e_{(p+1) r+1}\right)=e_{(p+1) r+1} \otimes 1$.

Now consider the following construction. Let $\pi: W \rightarrow B$ be a oriented $P L$
 bundle of fiber $\operatorname{dim} p N$. Then the Thom complex of this bundle is of the form,

$$
\underset{\pi_{p}}{W}\left(M E \wedge .^{p} \cdot \wedge M E\right)=\underset{\pi_{p}}{W} \times(M E \wedge \cdots \wedge M E) / W \underset{\pi_{p}}{\times} *
$$

where $M E$ is the Thom complex of $\pi: E \rightarrow X$. If $u \in H^{N}\left(M E: Z_{p}\right)$ is the Thom class of $\pi: E \rightarrow X$, then $P(u) \in H^{p_{N}}\left(W \underset{\pi_{p}}{\propto}(M E)^{(p)}: Z_{p}\right)$ is the Thom class of $W \underset{\pi_{p}}{\times(E)^{p} \xrightarrow{p}} \underset{\substack{\pi_{p}}}{\times} X^{p}$, where $P(u)$ is the ${ }^{\pi_{p}}$ Steenrod construction of u, c.f. Steenrod cohomology operations, ch VII.

Now consider the case $\pi_{f}: E=E_{f} \rightarrow K$. And consider the twisted diagonal map,

Then by the definition of the Steenrod reduced powers,

$$
\Delta_{1}^{*}(P(s))=\sum_{j=0}(-1)^{N+j+m_{N(N+1) / 2}(m!)^{N} \beta^{\frac{(N-2 j)(p-1)}{2}} \otimes P^{i}(s), ~ ;, ~}
$$

$$
+\sum_{j}(-1)^{N+j+m_{N(N+1) / 2}(m!)^{N} \alpha \cdot \beta^{\frac{(N-2 j)(p-1)}{2}-1} \otimes \delta P^{j}(s) ~}
$$

where $\quad m=\frac{p-1}{2}, \alpha \in H^{1}\left(W / \pi_{p}: Z_{p}\right), \quad \beta \in H^{2}\left(W / \pi_{p}: Z_{p}\right)$.
By Milnor $\lambda(\alpha)=\alpha \otimes 1+\beta \otimes \tau_{0}+\cdots+\beta^{p r} \otimes r_{r}+\cdots . \lambda(\beta)=\beta \otimes 1+\beta^{p} \otimes \xi_{1}$
$+\cdots$ And $\Delta_{\mathrm{i}}^{*}(P(s))=\left((-1)^{N+m N(N+1) / 2}(m!)^{N}\right)\left[\beta^{\frac{1}{2} N(p-1)} \otimes s+\beta^{\frac{1}{2} N(p-1)-p(p-1)}\right.$ $\left.\otimes e_{p r}+\beta^{\frac{1}{2} N(p-1)-(p+1)(p-1)} \otimes e_{(p+1) r}+\alpha \beta^{\frac{1}{2} N(p-1)-(p+1)(p-1)-1} \otimes\left(e_{(p+1) r+1}\right)\right] . \quad$ Apply ing λ and using the fact that λ is a ring homomorphism we obtain,

$$
\begin{aligned}
& \lambda\left(\Delta_{1}^{*}(P(s))=(-1)^{N+m N(N+1) / 2}(m!)^{N}\right)\left[2 \beta^{\frac{1}{2} N(p-1)} \otimes e_{(p+1) r+1} \otimes \tau_{2}\right. \\
& \left.\quad+\sum_{j \geq 3} \beta^{p^{J}} \cdot \beta^{\frac{1}{2} N(p-1)-p^{2}} \otimes e_{(p+1) r+1} \otimes \tau_{j}\right] \\
& \quad \text { + other term with respect to the last term } \cdots \otimes \xi_{1}^{r} \cdots \xi_{s}^{r_{s}^{s}} \tau_{0}^{\varepsilon_{1}^{1} \tau_{1}^{\varepsilon_{1}} \cdots}
\end{aligned}
$$

So that $\underline{\underline{Q}}_{j}\left(\Delta_{1}^{*}(P(s)) \neq 0\right.$, so that $\underline{\underline{Q}}_{j} P(s) \neq 0$, for $j \geq 2$. Using naturality of Thom class, $\underline{\underline{Q}}_{j}(u) \neq 0$ for $u \in H^{0}\left(M S P L: Z_{p}\right)$. This proves the lemma.

§ 5. Proof of Lemma 2-10 and 2-11.

5-1. The main idea of this section is come from the work of Adames [1], and we use his results freely in this section.

Let $\pi: E \rightarrow X$ be a spin ($8 n$) bundle over a finite complex, then it is well known the existence of the fundamental Thom class in $K O$ theory in the following form, [3].
(5-1) There exists a Thom class $a(\pi) \in K O^{8 n}(E, E-X)$ with the following property.
i) functorial
ii) multiplicative.
iii) $\varphi_{H}^{-1} p h a(\pi)=A(\pi)^{-1}$, where $A(\pi)$ is the A polynomial of π.

Now consider $\pi: E \rightarrow X$, a oriented real vector bundle with homotopy trivialization, $t:(E, E-X) \rightarrow X \times\left(R^{8 n}, R^{8 n}-O\right)$. Consider the following element $\bar{\tau}(\pi) \in K O^{0}(X)$, defined by $\bar{\tau}(\pi) \otimes \eta_{3 n}=\left(t^{-1}\right)^{*}(a(\pi)) \in K O^{8 \pi}\left(X \times\left(R^{8 n}, R^{8 n}-O\right)\right)$ $=K O^{0}(X) \otimes K O^{8 n}\left(R^{8 n}, R^{8 n}-O\right)$. Then it is easy to show that i) $\varepsilon(\bar{\tau}(\pi))=$ $1 \in K^{0}(p, t) \quad$ ii) $\quad \bar{\tau}(\pi \oplus 8)=\bar{\tau}(\pi) \quad$ iii) $\bar{\tau}$ is functorial iv) $\operatorname{Ph}(\bar{\tau}(\pi))=A(\bar{u})$. And passing to the limit we obtain a universal element $\bar{\tau} \in K O^{\circ}(F / O), \varepsilon(\bar{\tau})=1$.

Now for any integer k, we define the H-map $\dot{\delta}^{k}: B O_{\otimes} \rightarrow B O_{\otimes}$ by the formula, $\dot{o}^{k}(1+\xi)=\Psi^{k}(1+\xi) / 1+\xi$, where $1+\xi \in 1+K \widetilde{O}\left(B O_{\otimes}\right)$ denotes the universal element.

Next for any integer k with $(k, p)=1$, we define a H-map $\varphi^{k}: B S O_{\oplus} \rightarrow$ $B O_{\otimes(p)}$ by the following way. The isomorphism,

$$
\begin{aligned}
P^{*}: K O^{8 n}(E S O(8 n), E S O(8 n)-B S O(8 n))_{P} \rightarrow & K O^{8 n}(E \operatorname{Spin}(8 n), \\
& E \operatorname{Spin}(8 n)-B \operatorname{Spin}(8 n))_{P} .
\end{aligned}
$$

define the Thom class $\left(p^{-1}\right)^{*}\left(a(E S O(8 n)) \in K O^{8 n}(E S O(8 n), E S O(8 n)-B S O(8 n))_{P}\right.$, and we also write this Thom class by $a(E S O(8 n))$. Then this element defines the Thom isomorphism $\varphi_{K o}: K O^{0}(B S O(8 n))_{P} \rightarrow K O^{8 n}(E S O(8 n)$, ESO $(8 n)$ $B S O(8 n))_{P}$ defined by $\varphi_{K o}(x)=\pi^{*}(x) \cdot a(E S O(8 n))$. Then define $\varphi_{8 n}^{k}: B S O(8 n)$ $\rightarrow B O_{\otimes(p)}$ by $\varphi_{8 n}^{k}=\frac{1}{4 n} \varphi_{K_{O}^{\prime} O}^{-1} \Psi^{k}\left(a(E S O(8 n))\right.$, then it is easy to show that $i^{*} \varphi_{8(n+1)}^{k}$ $=\varphi_{8 n}^{k}$ for $i: B S O(8 n) \rightarrow B S O(8(n+1))$. So passing to the limit we obtain $\varphi^{k}: B S O \rightarrow B O_{\otimes(p)}$. Then it is easy to show the following, cf Adames [1].

Proposition 5-2. The following two diagrams are homotopy commutative.
i)

ii)

Let $\gamma \rightarrow L_{p}$ and $\gamma \rightarrow C P^{\infty}$ denote the canonical complex line bundle and $\gamma_{R} \rightarrow L_{p}, \gamma_{R} \rightarrow C P^{\infty}$ denote the corresponding real vector bundle of $\operatorname{dim} 2$, and $\xi_{R} \in K O\left(L_{p}\right)$ or $K O\left(C P^{\infty}\right)$ is the element $\xi_{R}=\gamma_{R}-2$.

Proposition 5-2. In $K O\left(L_{p}\right)_{(p)}$, $\varphi^{p+1}\left(\xi_{R}\right)$ represent the element $1+\frac{2}{p+1} \underline{N}$, where $\underline{\underline{N}} \in K \tilde{O}\left(L_{p}\right)_{(p)}$ is the class corresponding the regular representation.

Proof of this is due to the Theorem 5-9 of [1].
5-2. Proof of lemma 2-10. For $\xi_{R} \in K O\left(C P^{\infty}\right)$, consider the element $\varphi^{p+1}\left(\xi_{R}\right) \in 1+K \widetilde{O}\left(C P^{\infty}\right)_{(p)}$. And consider $\left(\Psi^{p+1}-1\right)\left(\xi_{R}\right)$, then by Adames conjecture, there is a map $g: C P^{\infty} \rightarrow F / O$ with the following commutative diagram.

Since $\left[C P^{\infty}, B O_{\otimes(p)}\right] \xrightarrow{\delta^{p+1}}\left[C P^{\infty}, B O_{\otimes(p)}\right]$ is monomorphism, the above commutative diagram and the following commutative diagram

show that the two maps φ^{p+1}, ξ_{R} and $\bar{\tau} \circ g: C P^{\infty} \rightarrow B O_{\otimes(p)}$ is homotopic. So that $\bar{\tau} \circ g \circ \pi L_{p} \rightarrow C P^{\infty} \rightarrow F / O \rightarrow B O_{\otimes(p)}$ represents $1+\frac{2}{p+1} \underline{\underline{N}}$ by proposition 5-2. And since $L_{p} \xrightarrow{\pi} C P^{\infty} \xrightarrow{g} F / O \rightarrow B S O$ is homotopic to $L_{p} \xrightarrow{\pi} C P^{\infty} \xrightarrow{\xi_{R}} B S O \xrightarrow{\Psi^{p+1}-1}$ $B S O$, so that this map is trivial. So that $g \circ \pi: L_{p} \rightarrow F / O$ factors $L_{p} \xrightarrow{f} S F$ $\rightarrow F / O$. And it is easy to show the following commutative diagram.

So that $\bar{\sigma} \circ j \circ f: L_{p} \rightarrow B O_{\otimes(p)}$ is equal to $\bar{\tau} \circ i \circ f$, and $\bar{\tau} \circ i \circ f$ is equal to $\bar{\tau} \circ g \circ \pi$: $L_{p} \rightarrow C P^{\infty} \rightarrow F / O \rightarrow B O_{\otimes(p)}$ and this element represent $1+\frac{2}{p+1} \tilde{\underline{N}}$. This shows the lemma.

5-3. Proof of lemma 2-11. We prove this lemma by induction on j. For $j=1$. Since $\bar{\sigma} \circ j \circ f: L_{p} \rightarrow S F \rightarrow F / P L \rightarrow B O \otimes(p)$ represents $1+\underline{\underline{N}}$, so that $(\bar{\sigma} \circ j \circ f)^{*}\left(P_{\frac{p-1}{2}}\right) \neq 0$. So that $\left.f_{*}\left(e_{2(p-1)}\right)\right)=c x_{1}$ for some non zero $c \in Z_{p}$. So that $f_{*}\left(e_{2(p-1)-1}\right)=f_{*}\left(\beta_{p} e_{2(p-1)}\right)=c \beta_{p} x_{1}$. Suppose we can prove the lemma for $j<j_{0}, j_{0} \geq 2$, we prove the case of j_{0}. Put $f_{*}\left(e_{2 j_{0}(p-1)}\right)=c_{j_{0} x_{j_{0}}}+a_{j_{0}}$ and $f_{*}\left(e_{2 j_{0}(p-1)-1}\right)=c_{j_{0}} \beta_{p} x_{j_{0}}+b_{j_{0}}$ for some $c_{j_{0}} \in Z_{p}$ and $a_{j_{0}}, b_{j_{0}} \in G_{2}$. We prove $c_{j_{0}}=c=c_{1}=\cdots=c_{j_{0}-1}$. But the following lemma 5-4 shows that for some $1 \leq 1<j_{0}, \quad P_{*}^{k} e_{2 j_{0}(p-1)}=d e_{2\left(j_{0}-k\right)(p-1)}$, or $P_{*}^{k} e_{2 j_{0}(p-1)-1}=d e_{2\left(j_{0}-k\right)(p-1)-1}$ for some $0 \neq d \in Z_{p}$. Then for example $P_{*}^{k} f\left(e_{2 j_{0}(p-1)}\right)=c_{j_{0}} P_{*}^{k} x_{j_{0}}+P_{*}^{k}\left(a_{j_{0}}\right)=c_{j_{0}} d x_{j_{0}-k}$ $+P_{*}^{k}\left(a_{j_{0}}\right) \quad P_{*}^{k} f\left(e_{2 j_{0}(p-1)}\right)=f\left(P_{*}^{k}\left(e_{2 j_{0}(p-1)}\right)=f\left(d e_{2\left(j_{0}-k\right)(p-1)}\right)=d c x_{\left(j_{0}-k\right)}+d a_{j_{0}-k}\right.$.

But $P_{*}^{k}\left(a_{j_{0}}\right) \in G_{2}$ by definition of G_{2} in [17] and by Nishida [11], so that $c_{j_{0}} d=d c$ and $c_{j_{0}}=c$. This prove the lemma.

Lemma 5-3. In $H_{*}\left(L_{p}, Z_{p}\right)$ and for any $j_{0}>1$, there is a integer $1 \leq k<j_{0}$ such that $P_{*}^{k}\left(e_{2 j_{0}(p-1)}\right) \neq 0$ or $P_{*}^{k}\left(e_{2 j_{0}(p-1)-1}\right) \neq 0$.

Proof is easy.

§6. Appendix.

6-1. The object of this section is to prove propostion 1-4, the existence theorem for KO theory fundamental Thom class for oriented PL disk bundles. The essential idea of this section depends on the work of Sullivan [15].

At first we remember the result of Sullivan [15]. Let $\pi: E \rightarrow X$ be a oriented real vector bundle over a finite complex of fiber $\operatorname{dim} m$. Then there is a fundamental Thom class $u(\pi) \in K O^{m}\left(X^{E}, *\right)_{P}$ with the following properties, where X^{E} is Thom complex of $\pi: E \rightarrow X$.
$(6-1) \quad$ i) functorial.
ii) multiplicative.
iii) $\varphi_{H}^{-1} p h u(\pi)=L(\pi)^{-1} \in H^{*}(X, O)$.

Let $K O_{*}()_{P}$ denote the homology $K O$ theory localized at odd primes P, and make 4 -graded by the same method (1-6). And $\Omega^{*}()$, and $\Omega_{*}()^{\prime}$ denote the oriented real cobordism and bordism theory. Then above Thom class induces following multiplicative cohomology and homology operations.

$$
\begin{array}{ll}
u: \Omega^{+}(&) \rightarrow K O^{*}(\quad)_{P} \tag{6-2}\\
u: \Omega_{*}(\quad) \rightarrow K O_{*}(\quad)_{P}
\end{array}
$$

By (6-1) iii) and Index theorem of Hirzebruch. The map $u: \Omega_{*}(p, t)=$ $\Omega^{*}(p, t) \rightarrow K O_{*}(p, t)_{P}=K O^{*}(p, t)=Z[1 / 2]$ is the map defined by associating to each represented manifold its index. And we consider $Z[1 / 2]$ as a $\Omega_{*}=\Omega^{*}$ module by this map. Then the natural transformations in (6-2) define the following natural transformations.

$$
\begin{array}{ll}
u: \Omega^{*}(&)_{\Omega} \otimes_{2} Z[1 / 2] \rightarrow K O^{*}(\quad)_{P} . \tag{6-3}\\
u: \Omega_{*}(&) \otimes_{\Omega_{*}}^{\otimes} Z[1 / 2] \rightarrow K O_{*}(\quad)_{P} .
\end{array}
$$

Then the following proposition is due to Sullivan [15].

Proposition 6-1. The natural transformations in (6-3) give equivalence of functors.

Now let $\pi: E \rightarrow X$ be a oriented real vector bundle of fiber $\operatorname{dim} m$. Then we define the following map \bar{u} by taking Kronecher index $\langle, u(\pi)\rangle$.

$$
\begin{align*}
& \bar{u}: \Omega_{p}(E, \partial E) \xrightarrow{u} K O_{p}(E, \partial E)_{P} \xrightarrow{\langle, u(\pi)\rangle} K O_{p-m}\left(S^{0}\right)_{P} \tag{6-4}\\
& \text { where } K O_{p-m}\left(S^{0}\right)_{P}=\left\{\begin{array}{lll}
Z[1 / 2] & \text { if } & p-m \equiv 0(4) \\
0 & \text { if } & p-m \neq 0(4) .
\end{array}\right.
\end{align*}
$$

Another map $\overline{\bar{u}}$ is defined by the following

$$
\overline{\bar{u}}: \Omega_{p}(E, \partial E) \rightarrow \begin{cases}Z[1 / 2] & p-m \equiv 0(4) \tag{6-5}\\ 0 & p-m \neq 0(4) .\end{cases}
$$

If $x=\left(M^{p}, \partial M^{p}: f\right) \in \Omega_{p}(E, \partial E)$, we can take f satisfying the condition that f is t-regular to the zero section X of E. Then $\bar{u}(x)$ is by definition index of $\left(f^{-1}(X)\right)$. Then $\overline{\bar{u}}$ is well defined. And it is easy to prove the following proposition.

Proposition 6-2. The above two homomorphism \bar{u} and \bar{u} coincide
6-2. For any odd integer $q>0$ introduce the $\bmod q$ homology theories $\Omega_{*}\left(: Z_{q}\right)$ and $K O_{*}\left(: Z_{q}\right)$ as follows. Let $M_{q}=S^{1} \cup_{q} e^{2}$ be the $\bmod q$ Moore space, for a finite CW-pair (X, A), we define,

$$
\begin{align*}
& \Omega_{m}\left(X, A: Z_{q}\right)=\underset{N}{\lim \left[M_{q} \wedge S^{N+m-2},(X / A) \wedge M S O(N)\right]_{0} .} \tag{6-6}\\
& K O_{m}\left(X, A: Z_{q}\right)=\underset{N}{\lim \left[M_{q} \wedge S^{8 N+m-2},(X / A) \wedge(Z \times B O)\right]_{0} .}
\end{align*}
$$

As in the case of $K O_{*}()_{P}$, the homology theory $K O_{*}\left(: Z_{q}\right)$ is considered 4 -graded by $\bar{\eta}_{4} \in K O_{4}\left(S^{0}\right)_{P}$.

Since q is odd integer, by Araki-Toda [2], these modules $\Omega_{*}\left(X, A: Z_{q}\right)$ and $K O_{*}\left(X, A: Z_{q}\right)$ are Z_{q} modules.

And by the method of [2], the Bochstein homomorphism β_{q}, the reduction $\bmod q$ homomorphism φ_{q}, and for $\alpha: Z_{q} \rightarrow Z_{r}$, an abelian group. homomorphism, the reduction homomorphism φ_{α} can be defined.

$$
\begin{align*}
& \beta_{q}: \Omega_{m}\left(X, A: Z_{p}\right) \rightarrow \Omega_{m-1}(X, A), K O_{m}\left(X, A: Z_{q}\right) \rightarrow K O_{m-1}(X, A) . \tag{6-7}\\
& \varphi_{q}: \Omega_{m}(X, A) \rightarrow \Omega_{m}\left(X, A: Z_{q}\right), K O_{m}(X, A) \rightarrow K O_{m}\left(X, A: Z_{q}\right)
\end{align*}
$$

$$
\varphi_{\alpha}: \Omega_{m}\left(X, A: Z_{p}\right) \rightarrow \Omega_{m}\left(X, A: Z_{r}\right), K O_{m}\left(X, A: Z_{p}\right) \rightarrow K O_{m}\left(X, A: Z_{r}\right) .
$$

The homology operation u defined in 6-2 can be naturaly extendable to the following homology operation u_{q}.

$$
\begin{equation*}
u_{q}: \Omega_{*}\left(\quad: Z_{q}\right) \rightarrow K O_{*}\left(: Z_{q}\right) . \tag{6-8}
\end{equation*}
$$

And this homology operation u_{q} induces the following natural transformation.

$$
\begin{equation*}
u_{q}: \Omega_{*}\left(\quad: Z_{q}\right) \otimes \Omega_{*} Z[1 / 2] \rightarrow K O_{*}\left(\quad: Z_{q}\right) . \tag{6-9}
\end{equation*}
$$

Then proposition 6-1 induces,
Proposition 6-3. The natural transformation u_{q} in (6-9) is an equivalence of functors.

6-3. Now we show the geometric interpretation of the homotopically defined homology theory $\Omega_{*}\left(: Z_{q}\right)$.

For finite CW-pair (X, A), a singular Z_{q} manifold of dimension m for (X, A) means the following system $(Q, f)=\left(Q, f, \varphi, \bar{M}_{1}\right)$ satisfying the following condition.
$(6-10)$ i) $(Q, \partial Q)$ is a compact oriented differentiable manifold of $\operatorname{dim} m$.
ii) $\quad \partial Q=Q_{0} \cup Q_{1}$, where M_{0} and M_{1} are regular ($m-1$) submanifolds, and $Q_{0} \cap Q_{1}=\partial Q_{0}=\partial Q_{1}$.
iii) $\left(\bar{M}_{1}, \partial \bar{M}\right)$, compact oriented $(m-1)$ differentiable manifold, $\varphi:\left(\underset{q}{\cup} \bar{M}_{1}, \bigcup_{q} \partial \bar{M}_{1}\right) \rightarrow\left(Q_{1}, \partial Q_{1}\right)$ is an orientation preserving diffeomorphism. Where \cup_{q} means disjoint union of q elements.
iv) $f:\left(Q, Q_{0}\right) \rightarrow(X, A)$, continuous map
v) For any inclusion $i: \bar{M}_{1} \rightarrow \bigcup \bar{M}_{1}$, the composite map $f \circ \varphi \circ i$ is independent of this inclusion.

Then as in the usual case, the equivalence relation "bordant" can be defined. And we denote the set of equivalence classes of singular Z_{q} manifolds of $\operatorname{dim} m$ for (X, A) by $\Omega_{m}^{\prime}\left(X, A: Z_{q}\right)$. Then this becomes an abelian group, and $\Omega_{*}^{\prime}\left(X, A: Z_{q}\right)$ becomes a right $\Omega_{*}(p, t)$ module by defining the product of manifold.

Proposition 6-4. The functor $\Omega_{*}^{\prime}\left(: Z_{q}\right)$ constitutes a generalized homology theory, and $\Omega_{*}^{\prime}\left(p, t: Z_{p}\right) \cong \Omega_{*}(p, t) \otimes Z_{Z}$.

Then by the same method in the case of $\Omega_{*}()$, constructed in ConnerFloyd [7], we have the following.

Proposition 6-5. There is a natural equivalence, $\tau: \Omega_{*}^{\prime}\left(: Z_{q}\right) \rightarrow \Omega_{*}\left(: Z_{q}\right)$.
The reduction mod q homomorphism, $\varphi_{q}^{\prime}: \Omega_{m}^{\prime}(X, A) \rightarrow \Omega_{m}^{\prime}\left(X, A: Z_{q}\right)$ can be_defined by considering the ordinary singular manifolds as Z_{q} singular manifolds. And for the homomorphism $\alpha: Z_{q} \rightarrow Z_{q s}$ defined by $\alpha(1)=(s)$, the reduction homomorphism $\varphi_{\alpha}^{\prime}: \Omega_{m}^{\prime}\left(X, A: Z_{q}\right) \rightarrow \Omega_{m}^{\prime}\left(X, A: Z_{q s}\right)$ is defined by $\varphi_{a}^{\prime}((Q, f))=\left(\left(\cup_{s} Q, \cup_{s} f\right)\right)$. And the Bockstein homomorphism $\beta_{q}^{\prime}: \Omega_{m}^{\prime}\left(X, A: Z_{q}\right)$ $\rightarrow \Omega_{m-1}(X, A)$ is defined by $\beta_{q}\left(\left(Q, f, \varphi, \bar{M}_{1}\right)\right)=\left(\bar{M}_{1}, f \circ \varphi \circ i\right)$. Then φ_{q}^{\prime} and $\varphi_{\alpha}^{\prime}$ is compatible with φ_{q} and φ_{α} in (6-7), and β_{q}^{\prime} and β_{q} are compatible up to sign.

6-4. Now we define the mod q index homomorphism $I_{q}: \Omega_{*}\left(p, t: Z_{q}\right)$ $\rightarrow Z_{q}$ by the following way. Let $\left(M^{m}, \partial M\right)$ is a Z_{q} manifold, then we define $I_{q}\left(M^{m}\right)$ by

$$
I_{q}\left(M^{m}\right)=\left\{\begin{array}{lll}
0 & \text { if } & m \equiv 0(4) \tag{6-11}\\
p_{+}-p_{-}, & \bmod q & \text { if }
\end{array} \quad m \equiv 0(4) .\right.
$$

Where p_{+}and p_{-}are the following numbers. Consider the following symmetric pairing,

$$
H^{2 n}(M, \partial M: R) \otimes H^{2 n}(M, \partial M: R) \xrightarrow{u} H^{4 n}(M, \partial M: R) \xrightarrow{\left\langle, u_{M}\right\rangle} R .
$$

where $4 n=\operatorname{dim} M$. Then $p_{+}=$the number of the positive eigen values of the above pairing, and p_{-}is the number of the negative eigen values.

Proposition 6-6. I_{q} is not depend on the representative, and define a map $I_{q}: \Omega_{*}\left(p, t: Z_{q}\right) \rightarrow Z_{q}$ and has the following property.
i) $\quad I_{q}(x+y)=I_{q}(x)+I_{q}(y)$
ii) $\quad I_{q}(x, y)=I_{q}(x) \cdot I(y)$ for $x \in \Omega_{*}\left(p, t: Z_{q}\right), y \in \Omega_{*}(p, t)$.
iii) $\quad I_{q s}\left(\varphi_{\alpha}(x)\right)=\alpha I_{q}(x)$, for $x \in \Omega_{*}\left(p, t: Z_{q}\right)$ and $\alpha: Z_{q} \rightarrow Z_{q s}$ defined by $\alpha(1)=(s)$.

Let $\pi: E \rightarrow X$ be an oriented $P L$ disk bundle over a finite complex of fiber $\operatorname{dim} m$. We define the following homomorphism \bar{u}_{q}, \bar{u}, for odd integer $q>1$.

$$
\bar{u}: \Omega_{n}(E, \partial E) \rightarrow \begin{cases}Z & n-m \equiv 0(4) \tag{6-12}\\ 0 & n-m \equiv 0(4)\end{cases}
$$

$$
\bar{u}_{q}: \Omega_{n}\left(E, \partial E: Z_{q}\right) \rightarrow \begin{cases}Z_{q} & n-m \equiv 0(4) \\ 0 & n-m \neq 0(4) .\end{cases}
$$

Let $(Q, f) \in \Omega_{n}\left(E, \partial E: Z_{q}\right)$, we can suppose f is t-regular to the zero-section X of E. Then $f^{-1}(X)$ define a element of $\Omega_{n-m}\left(p, t: Z_{q}\right)$. Define $\overline{\bar{u}}_{q}((Q, f))=$ $I_{q}\left(f^{-1}(X)\right)$. The same for $\overline{\bar{u}}$. Then it is easy to show that $\bar{u}(x, y)=\bar{u}(x) \cdot I(y)$ for $x \in \Omega_{*}(E, \partial E), \quad y \in \Omega_{*}(p, t), \quad$ and $\quad \bar{u}_{q}(x, y)=\bar{u}_{q}(x) \cdot I(y), \quad x \in \Omega_{*}\left(E, \partial E: Z_{q}\right)$, $y \in \Omega_{*}(p, t)$. So that \bar{u}_{0} and \bar{u}_{q} define the following homomorphism.

$$
\begin{align*}
& \bar{u}: \Omega_{*}(E, \partial E) \otimes Z[1 / 2]=K O_{*}(E, \partial E)_{P} \rightarrow \begin{cases}Z[1 / 2] & *-m \equiv 0(4) \\
0 & *-m \equiv 0(4)\end{cases} \tag{6-13}\\
& \bar{u}_{q}: \Omega_{*}\left(E, \partial E: Z_{q}\right) \otimes \otimes_{\Omega_{*}} Z[1 / 2]=K O_{*}\left(E, \partial E: Z_{q}\right) \rightarrow \begin{cases}Z_{q} & *-m \equiv 0(4) \\
0 & *-m \equiv 0(4) .\end{cases}
\end{align*}
$$

Then these \bar{u} and \bar{u}_{q} satisfy the following relations.

$$
\begin{array}{ll}
\bar{u}_{q} \circ \varphi_{q}=\alpha_{q} \cdot \overline{\bar{u}} & \alpha_{q}: Z \rightarrow Z_{q}=Z \mid q Z \tag{6-14}\\
\bar{u}_{q s} \circ \varphi_{\alpha}=\alpha \cdot \bar{u}_{q} & \alpha: Z_{q} \rightarrow Z_{q s}, \alpha(1)=(s) .
\end{array}
$$

6-5. Now remember the following duality law for $K O^{*}()_{P}$ and $K O_{*}()_{P}$.
Proposition 6-7. For any finite CW-pair, There is a correspondence between the following set i) and ii)
i) $u \in K O^{m}(X, A)_{P}$
ii) $\overline{\bar{u}} \in \operatorname{Hom}_{Z[1 / 2]}\left(K O_{m}(X, A)_{P}, Z[1 / 2]\right)$,
$\bar{u}_{q} \in \operatorname{Hom}_{Z_{q}}\left(K O_{m}\left(X, A: Z_{q}\right), Z_{q}\right), q:$ odd integers satisfying the following relations.

$$
\begin{array}{ll}
\overline{\bar{u}}_{q} \circ \varphi_{q}=\alpha_{q} \circ \overline{\bar{u}}_{q} & \alpha_{q}: Z \rightarrow Z_{q}=Z / q Z \\
\bar{u}_{q s} \circ \varphi_{\alpha}=\alpha \cdot \bar{u}_{q} & \alpha: Z_{q} \rightarrow Z_{q s}, \alpha(1)=(s),
\end{array}
$$

And the correspondence is given by

$$
u \rightarrow\left\{\begin{array}{l}
\langle, u\rangle: K O_{m}(X, A)_{P} \rightarrow K O_{0}\left(S^{0}\right)_{P}=Z[1 / 2] \\
\langle, u\rangle: K O_{m}\left(X, A: Z_{q}\right) \rightarrow K O_{0}\left(S^{0}: Z_{q}\right)=Z_{q} .
\end{array}\right.
$$

And these correspondence is functorial.
Proof of proposition 1-4. For PL disk bundle $\pi: E \rightarrow X$ of fiber $\operatorname{dim} m$, consider $\overline{\bar{u}}$, and $\overline{\bar{u}}_{q}$ defined in (6-13). Then by (6-14) and proposition 6-7,
there is an unique element $u(\pi) \in K O^{m}(E, \partial E)_{P}$. This element is what we want.

References

[1] J.F. Adames, $J(X) I I$, Topology Vol. 3. p 137-171.
[2] S. Araki-H. Toda, Multiplicative structures in mod q cohomology theory I. Osaka Journal of Math. Vol. 2. p. 71-115.
[3] Atiyah-Hirzebruch, Riemann-Roch theorems for differentiable manifolds. Bull. Amer. Math. Soc. Vol. 65. p. 276-281.
[4] G.E. Bredon, Equivarient cohomology theory. Lecture note in Math. No. 34 Springer.
[5] W. Browder, Homotopy commutative H spaces. Ann. of Math. Vol. 75. p 283-311.
[6] G. Brumfiel, On integral PL characteric classes. Topology. Vol. 8. p. 39-46.
[7] Conner-Floyd. Differentiable periodic maps. Ergebnisse der Mathematik.
[8] Dyer-Lashof. Homologv of iterated loop spaces. Amer. J. Math. Vol. 84. p. 35-88.
[9] P. May, The homology of $F, F / O, B F$.
[10] J.W. Milnor. The Steenrod algebra and its dual. Ann. of Math. Vol. 67. p. 505-512.
[11] G. Nishida. Cohomology operations in iterated loop spaces. Proc. of the Japan Acad. Vol. 44. p 104-109.
[12] E.P. Peterson. Some results in PL cobordism. Jour. of Math. of Kyoto Univ. Vol. 9. p. 189194.
[13] E.P. Peterson-H. Toda. On the structure of $H^{*}\left(B S F, Z_{p}\right)$. Jour. of Math. of Kyoto Univ. Vol. 7. p. 113-121.
[14] D. Sullivan: Triangulating homotopy equivalence. These. Princeton Univ.
[15] D. Sullivan. Geometric Topology Seminar. mineographed. 1967.
[16] A. Tsuchiya: Characteristic classes for spherical fiber spaces. Proc. of the Japan Acad. Vol. 44. p. 617-622.
[17] A. Tsuchiya: Characteristic classes for spherical fiber spaces. Nagoya Math. Jour. Vol. 43.
[18] A. Tsuchiya: Homology operations in iterated loop spaces.

Mathematical Institute. Nagoya University.

[^0]: 1) $Q(\quad)$ denotes the space of indecomposable elements.
[^1]: 1) $P($) denote the space of primitive elements.
