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CHARACTERISTIC CLASSES FOR PL

MICRO BUNDLES

AKIHIRO TSUCHIYA*'

§ 0. Introduction.

Let BSPL be the classifying space of the stable oriented PL micro

bundles. The purpose of this paper is to determine H*{BSPL : Zp) as a

Hopf algebra over Zv, where p is an odd prime number. In this chapter,

p is always an odd prime number.

The conclusions are as follows.

THEOREM 2-22. As a Hopf algebra over ZP9 H*(BSPL : Zp) = ZP[SU b2, J

®Zp[σ{xI)](g)Λ(σ{Zj)). Δ{Bj) = Σ ϊ * ® ^ , b0 = 1, σ{%i), σ{Zj) are primitive.
£0

THEOREM 3-1. As a Hopf algebra over Z[l/2],

i) H*(BSPL : Ztlffll Torsion = ZHI2\RU R29 . ]

ii) ΔRj = ilRi®Rj-i9 Ro = 1. degRj = 4j.

iii) In H*(BSPL : Q) = Q[pu p2, ], Rj are expressed as follows.

Rj = 2aj (22'-1 — 1) Num (Bj/4j) Pj + dec, for some a^Z.

Let MSPL denote the spectrum defined by the Thorn complex of the

universal PL micro bundle over BSPL{n), and A = Ap denote the mod p

Steenrod algebra. And φ : A-+ H*(MSPL : Zp) is defined by φ(a) = a(u),

where u<=H°(MSPL : Zp) is the Thorn class.

THEOREM 4-1. The kernel of φ is A{QQ, QO, the left ideal generated by

Milnor elements QQ, QJ.

This is the conjecture of Peterson [12].

Received October 8, 1970.
*> The author was partially supported by the Sakkokai Foundation.

169



170 AKIHIRO TSUCHIYA

The method is to compute the Serre spectral sequence associated to

the fibering F/PL-+BSPL-+BSF. The structure of H*(BSF: Zp) is deter-

mined in [9] and [16], The homotopy type of F/PL is the consequence of

the deep results of Sullivan [15]. In § 1 we study the H space structure of

F/PL and the inclusion map SF-* F/PL. The main tool is the result of

Sullivan and its extention that tells the existence of the KO$ theory Thorn

classes for oriented PL disk bundle.

PROPOSITION 1-4. For a oriented PL disk bundle π : E -> X over a finite

CW complex of fiber dim m. Then there is a Thorn class u{π)^KOm{E,dE)P

with the following properties.

i) functorial

ii) φ-H

l/phu{π) = L(π)" 1.

iii) u(π® 1) = σu(π).

iv) Multiplicative mod Torsion i.e u{πx ®π 2) = #(JΓI) u{π2). mod torsions.

The proof of this is in § 6.

§1. H space structure on F/PL.

1-1. Let F/PL(N) denote the classifying space of PL disk bundle of

fiber dim N with homotopy trivialization. And F/PL denote the limit space

lim F/PL{N). Denote by BO, the classifying space of stable real vector

bundle. F/PL and BO are homotopy commutative //-spaces defined by

Whitney products. BOP denotes the space obtained by localizing BO at

odd primes P i.e. the space which represents the functor [ , £O](x)zZ[l/2].

Let CP denote the class of abelian groups consisting of 2-torsion group, i.e

abelian group G with G®^Z[l/2] = 0. Then the following proposition is due

to Sullivan [15].

PROPOSITION 1-1. There exists a continuous map σ : F/PL-+ BOP, with the

following properties.

i) σ is CP homotopy equivalence.

i i) * * * ( ? * ! + p h 2 + ) = 4 - ( i i + U + • • • ) € = H**(F/PL, Q), where
o

ph = 1 + phx + ph2 + e i J**(50 P , Q) is the Pontrjagin character and

L = 1 + L, + L2 + ei/**(F/PL, Q) is L-polynomial of Hirzebruch.

iii) The map σ is uniquely determined by the property ii) up to homotopy.
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Since the CP homotopy equivalence σ is not a H space map. We

introduce another H space structure μ® on BO. μ® : BO x BO -> BO is

defined by the following diagram.

ΔxΔ idxTxid
(1-1) μ®: BOx BO > {BO xBO)x {BO x BO) >

μ®xμA μ®
BOxBOxBOxBO >BOxBO—>BO.

where μA : BOxBO-+BO denotes the map representing {ξm — m) (ξn — ή) in

KOQ{BO{m)xBO{n)), where ξm-*BO{tn), and ξn-+BO{ή) denote the universal

bundles. Then the //-space {BO, μ®) is a homotopy commutative iJ-space.

We denote this H space by BO® simply. Denote by BO®p9 the localizing

space of BO® at odd primes P. Then identity map i : BO -> BO® can be

uniquely extended to the map iP : BOP-+BO®P, and iP is a homotopy

•equivalence.

Define a continuous map σ : F/PL -> BO®P by the following diagram.

σ 8 ip
(1-2) σ : F/PL > BOp > BOP > BO®P.

PROPOSITION 1-2. The CP homotopy equivalence σ is a H space map, and

***(1 + φhx + ph2 + - •) = 1 + U + U + &H**(F/PL Q).

/V00/. Since σ**(l + phi + p/*2 + ) = 1 + Lx + L2 + follows easily

from proposition 1-1, ii) and (1-2), it is sufficient to prove that the follow-

ing diagram is homotopy commutative.

σXσ
FjPL x FIPL > BO®P x BO®P

F/PL > BO®P

But by proposition 1-1, any map / : FjPLxFjPL^BO®P is uniquely de-

termined by /**(1 + phλ + ph2 + )<EH**{F/PLXFIPL Q). On the other

hand, μ** σ**(l + ph} + ph2 + . ) = i"**(l + L, + L2+ •) = (! + Li + ̂ 2+ •)

<g)(l+ L, + L 2 + •). And ( f f X 5 H ^ p Γ ( l + pAi + ph2 + .) = (*xά)**x

) pA) = (1 + Lλ + ) (x) (1 + Lj + )• This showes the proposition.

1-2. Let B0(8N} denote the space obtained by killing the homotopy

group πi(BO), i<8N. Let fN : S8N->B0<8N> be the canonical generator of

i ΩVN

π8N{BO(8N» = Z. Then by Bott periodicity, the map S8^^—>Ω8S8N—>
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Ω8BO<8N> = B0<8(N~ 1)> coincide with fN^. So we can take a limit and

obtain a map.

(1-3) g = β°% : limΩ8NS8N = QS° -> Vim Ω8NBO<8N> = ZxBO.

The spaces £0<8iV> have product μMtN.

(1-4) μMtN : B(K8M> XBO<βN> -± B0<8{M +

These products define product μ on Ω8NBO(8N> = ZxBO, i.e. μ :

BO<8M>XΩ8NB(K8N>-ΪΩ*(M+N)B(K(M+N)>. By Bott periodicity, the follow-

ing diagram is homotopy commutative.

Ω8NBCK8M> XΩ8NBO<8N> > Ω8^+N^BO<fi(M + N)>

i i
N+ 2)>

And the reduced join product μA : Ω8MS8MXΩ8NS8N -ΪΩ8W+N>S8W+N> is com-

patible with the product Ω8MBO<8M>xΩ8MBO<8N>-+Ω8(M+N)BO<8{M+N)>.

Passing to limit we obtain a product μA on QS° = \ϊmΩ8NS8N. And we

have the following commutative diagram.

gxg
(1-5) QS°xQS° >{ZxBO)x{ZxBO)

[μA [μ

QS° >ZxBO
9

Consider the 1 component Q^ of QS\ then μA : QίS* X QiS*-+Q1S»

(zQS° is the # space SF, where SF= lim SG(w), SG(n) = {/ : S71"1 -> S71"1,

degree 1}. And it is easy to show that 1 component lxBO of ZxBO with

product μ : {lxBO)x(lxBO) -+lxBO is the H space (BO®, μ®) defined in

(1-1).

So that we have a H map g{ : SF= Q^-ϊlxBO = BO®.

k
PROPOSITION 1-3. The map gx : SF->BO®->BO®P, and σ k; SF-+ F/PL

σ
->BO®p coincide.

Before proving this proposition, we prepare some results.

1-3. Let KO*{ ) denote 8 graded cohomology theory defined by using

Grothendieck group of real vector bundle. Construct a 4 graded cohomology

theory KO*( )P by KOq( )P = KO\ ) <g)zZ[l/2]. Consider the generator
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KO~4(S«)=Z, then η\ = Aη8 e KO~*(S0), ? 8etfO- 8(S 0)=Z, generator, η, is by

definition τj^ = ~η^KO~A{S")P. And define Bott map β : KOq(X, A)P-^>

KOq-\X,A)P by the following.

(1-6) β : KOq(X, A)P

 X j ? 4 ) KOq(X, A)P®KO-4(S°)P —>KOq-4(X, A)P.

This Bott map makes K0*( ) P , 4 graded cohomology theory.

Let π : E-+ X be a. oriented PL disk bundle over finite complex X of

fiber dim m. Then we can define a fundamental Thom class u{π)^KOm(E, dE)P

as the following proposition.

PROPOSITION 1-4. There is α fundamental Thom class u(π)^KOm(E,dE)P

with following properties.

i) functorial i.e. for f:Y-+X, u(f\π) = f\ (u(π)).

ϋ) φ~Hphu{π) = L{π)~ι^H*{X, Q), where ψH is Thom isomorphism, and L{π)

is the L polynomial of Hirzebruch for π : E -> X.

iii) u(π ® 1) = σ{u{π)), where σ : KOm {E, dE)P > KOm+1 {(E/dE) Λ Sι)P =

KOm+1 {E®1, d(E@l))P is suspension isomorphism.

iv) Multiplicative mod torsion i.e u{πx © τr2) = u{πι) u(π2) mod torsion ele-

ments^ where πx : EX-^XU and π2 : E2-+X2.

We shall prove this proposition in the appendix.

1-4. Now we prove proposition 1-3. At first we analyse the map

& : QiS°-*BO®. Consider the following mapping t : SG(N) x(DN,dDN) -»

{DN

9dDN) defined by t(f,x) = cf(x), where cf: {DN,dDN)^(DN,dDN) be a

map defined by cone of f :dDN = SN~X-+dDN = SN~ι. Consider the case

iV= 8M. And consider the canonical generator η8M^KO8M(D8M,dD8M)^Z, then

t*(r]8M)£ΞKO8M(SG(8M) x (D8M, dD8M)) = KO°(SG(8M)) ®ZKO8M{D8M, dD8M). So that

there is unique element 18M<ΞKO°{SG(8M)) such that lQM(g)VsM = t*(yBM). It

is easy to show that for i : SG{8M) -> SG(8(M+ 1)), i*(/8(Jf+1)) = leM. And

s(/8jf) = 1, where ε : K0°{SG{8M)) -+KO\<p. t) = Z be the augmentation. So

passing to the limit, we obtain IEEKO^SG) = KO^QiS0). And since ε(/) = l>

/ is represented by a map / : SG = Q^-^lxBO = BO®QZxBO.

LEMMA 1-5. The map I coincides with gλ : QjS0 -> BO® defined in 1-2.

It is easy to prove this lemma so we omit its proof.
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Proof of proposition 1-3. Let π : E ->• X be a PL disk bundle of fiber

dimension 8N over a finite complex X with homotopy trivialization ί : (E9 dE)

-+(D8N

9dD8N). Consider the element t*{ηSN)ςΞKO8N(E9dE)P. By proposition

1-4, there is a Thorn isomorphism φKOp : KO°{X)P ->KOZN(E9dE)P defined by

<PκoP(%) = i*(a) «M> i:X-+E. Then 7(2?) is by definition φ~κOp(t*(ηsN)) e

KOΰ(X)P. It is easy to see Ϊ(E@8) = Ϊ(E). Since K0°{F/PL(8N))P =

Hm/iίO0(Xβ)p, where Xα runs through all finite subcomplexes of F/PL{8N)9

the universal bundle π8iV : £ 8 ^ -> F/PL(8N)9 with ^ : (£8 i V, d£8iV) -> (£>8iV, d£>8*)

defines the element Ϊ(E8N)<=KO°{F!PL(8N))P. It is easy to see i*(I(E8iN+ί))) =

Ϊ(ESN)9 where t : F/PL{8N) ->FIPL(8(N+ 1)). Passing to limit, we obtain the

element IEΞKO0{FIPL)P. The natural inclusion kQN : SG(8N)-ϊ F/PL{8N) is

defined by the classifying map for the J^/PL bundle over SG(8N) defined by

t : SG(8N)x(D8N,dDSN)~>(D8N

9 dD8N). Since the fundamental Thorn class of

this bundle is 1®7)8N^KO8N(SG{8N)X {D8N

9dD8N))P = K0°(SG(8N))P <g) KO8ΛΓ

(D8N

9dD8N)P. So that ktN(HE8N)) = Ϊ8MGKO0(SG{8N))P. SO that to prove the

proposition, it is sufficient to prove / = σ as elements KO°{FjPL)P. By pro-

position 1-2, it is sufficient to prove φh(ϊ) = #Λ(tf). This follows from pro-

position 1-4, ii).

§ 2. Determination of H*{BSPL : Zp).

2-1. At first we determine the Hopf algebra over Zp9 H*{FjPL : Zp).

By proposition 1-2, H*{FfPL : Zp) ^ H*(BO®P : Zp) = H*{BO$ : Zp)9 it is

sufficient to determine H*(BO® : Zp).

PROPOSITION 2-1. As a Hopf algebra over Zp9 H*(BO® : Zp)=Zp[ai9a29 •],

for some aj&H4j{BO® : Zp). And Δa5 = Σj#i®β./-ΐ> βo = l
t = 0

It is sufficient to prove that for any non zero element

(BO® : Zp)9 xp ψ 0. By the same method as {BO®, μ®), c.f. (1-1), we obtain

a H space {BU®, μ<g>) as the 1 component of ZxBU, where ZxBU is the

representation space of complex K theory. Let j : BO® -> BU® denote the

natural H map defined by complexifying vector bundle. Since /* : H*(B0® :

Zp) -+ H*{BU® : Zp) is monomorphism, it is sufficient to prove {j*{x))p ψ 0 for

x<=Hr(B0® : Zp)9 x¥=0. Let B = H*{BU® : Zp) and B* denote dual Hopf

algebra HomZp{B, Zp), So that B* = H**{BU® : Zp) = ^[[c!, c2, ]], ct is

i-th Chern class. Let a :B-+B denote the Hopf algebra homomorphism



PL MICRO BUNDLES 175

defined by a(x) = xp, and a* : B* -> 5* denote dual of α. We compute

α*(l + Cj + c2 + •)• Let ξ^K{BU®) = K(BU) denote the universal element

with augmentation. ε(f) = 0. Then it is easy to show [a*(c)Y = c((l -f ς)p)

= cί?)27 c(f2)®. ciξ^iv-^ciξ*) in H**(BU® : Z*). So that α*(c) = c(£) c(£2)^~®

• c(f ̂ ΓPXP-V c{ξp) v. Using Chern character it is easy to show that

<c(tξ3) = l -f decomposable in cr in H**{BU® : Z), / ;> 2. And the same argu-

ment show that the coefficient of cζ in c(ξp) is zero in H**{BU® : Zp), when

,nl>2. So that α*(c) = 1 + c2 + cB + , mod {decomposable + Ci}. This

shows that ά* : H**{BU® : Zp)l{c1)-+H**{BU® : Z^Λd) is onto mapping, where

(Ci) denote the ideal generated by cί9 and as α*(ci) = 0, α* is well defined.

Since y**(d) = 0 where * : H**(BU® : Zp) -> H*(BU® : Zp), this shows that

for any a f= 0, U*W7 Ψ 0.

Remark 2-2. Indeed we can show that H*(BU® : Zp) = ΓP[W®ZP[^,^3,

- ], where deg bx = 2, deg 6J = 2;.

2-2. Now we study the map k* : H*(SF : Zp) ~> H*(F/PL : Zp). By pro-

position 1-3 it is sufficient to study gx* : H^QiS0 : Zp)-± H*{B0® : Z^). Since

<g : QS°-+ZxBO is a infinite loop map, g is a //£ map in the sense of

Dyer-Lashof [8]. So that the following diagram is commutative, where

W(πp) = W is a acyclic free πp CW complex, and πp is the cyclic group of

order p.

idx(g)p

W x (QS°)P > W x (ZxBO)p

lΘ

QS° > ZxBO

At first we analyes the map θ : Wx(ZxB0)p ->ZxBO defined by infinite
πP

loop structure ZxBO = \ΊmΩ8nBO<8n>. Let X be a finite CW complex, for

any element x<=K0{X), we define a element P(^)eKO(VFx(X)i>) as follows.

Represent x as # = ξ — 27 where £ and η are vector bundles over Xy and

define P{x) = P{ξ) - P(η). Where P(f) and Pfo) are defined by P{ξ) : Wx

Ep

ξ->WxXp, P(v) :W xEξ->WxXp. Then P(x) is independent to the

expression # = ί — 27. And the construction P has the following properties.

<2-2) i) P:K0(X)-+K0(WxXp) is abelian group homomorphism.
πP

ii) P i s natural, i.e. for a map f:X-¥Y the following diagram is

commutative.
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P
KO{Y) • KO(W x Yp)

I / !
 P

KO{X) > KO{W x Xp)

iii) Let Lp = W/πp be the mod p lens space. And N<=KO(LP) denote

the element defined by regular representation πp-+SO{p). Then*

Δ*P(x) = N®x in KO(LPxX) where Δ : LpxX-+WxXp.

Since KO(Wx{ZxBO)p) = \im KO{WxXp), where Xa runs all finite com^
πp <p 7tp

plexes of ZxBO, the above construction P define a map P :Wx(ZxBO)p

7Γ~

CONJECTURE 2-3. 77f£ two maps θ and P: Wx(ZxBO)p-ΪZXBO coincide.

Since we can not prove this conjecture, we can prove more weak form!

of the conjecture.

PROPOSITION 2-4. 0(1) = P(l) as an element of KO(LP) = KO(Wx (*)*),

where l€=/CO((*)).

Proof. The Dyer-Lashof map θ : W<n~vχ(ΩnX)p -*ΩnX is reconstructed
πp

in [18] as follows. Let Sn

p denote Sp = SnW VSn, the one point union of

<p sheres. Define /ι : ΩnSn

px(ΩnX)p -±ΩnX by ^(ω, /lf , lp) = (1PW \J lp) -
α> ΛV V/p

α> : S n — > SΛV VSn >X. The cyclic group πp operates on ΩnSr

P

ί,

by induced action of πp on Sp, defined by σ{{x,i)) = {x,σ{(i)), σ^πp, (x9i)^Sp,

And jrp acts on (ΩnX)p by permutation. Then μ is a πp equivariant map

and define μ : ΩnSpx (ΩnX)p~^ΩnX. On the other hand, there is a πp

equivariant map θn : W^n~iχp"ι)^ -> ΩnSp9 such that the image is in the con-

nected component represented by 1 + + l^πo{ΩnSp) =Z+ Z, n>.2.

The Dyer-Lashof map θ : WU»-™p-inχ(ΩnX)p-+ΩnX is defined by μ-{θnxid)\

)* -> ΩnSn

p x (ί2nX) p -> ΩnX.
np πp

Now consider the element θ(l)eK0{Lp). Let ^s^ei^O^S3^), and τj8NζΞ

K0°(S8N) be the canonical generators. Then Θ(l)(g)r]8N€ΞKO&N(LptXiS8N) is, by

Bott periodicity, defined by the adjoint map of 0(1) : Lp->ZxBO=Ω8NBO<8N)f

where X\/y = I x F / I x ( * ) . By the definition of 0(1), on (SN- l){p - 1) skel-

ton of Lp, θ{l)(g)ηQN is defined by the following πp equivariant map.
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S8NV VS8N
VSNW

>B(K8N>.

On the other hand the mapping P: W\K(0xBO)p -> {OxBO) can be

liftable on P : W\K(B0(8N»p -> B0(8N>. And denfie a πp equivariant map

P : WlK(BO<βN})p -y B0(8N>. Then the following diagram is πp equivariantly

ihomotopy commutative.

\ίSSN

W\K(SSN)P
id\K(VsN)p

-> B0<8N>

I
->B0<8N>

idxMp

π

>0xBO

where t : S8NW VS8JV - ^ K ^ Γ is defined by ί((a?,y)) = (Λω0); *x x*xx

x*. . . x*), where σ^πv : generator s, ί <τ(f) = <τ(f + 1) mod p, and (00Glf :

fixed element.

On the other hand, by equivariant cohomology theory due to Bredon

ί[4], the following diagram is πp equivariantly homotopy commutative, c.f.

the argument in [18].

ON

^ W\X(S*N)P

πP

•So that π - (θ(l)(g)ηSN) : ttp

8Nl\XS*N-+B0<8N>-+0xBO is by Bott periodicity

^{1)®VSN in /CO^Ly^lXS8^) on the other hand the above two commutative

diagrams show that π (0(l)(gty8*) is represented by J*(P(TJ8N)) in KO°(D-*N]\KS8N).

On the other hand by (2-2) iii) shows that J*(P(T?8^)) = N(g)7JQN. This shows

.0(1) = Â  in KO°(Lί*N\ so limiting to N-+oo we obtain 0(1) = TV in KO»{LP).

On the other hand P(ϊ) = N in KOΰ{Lp). This shows the proposition.

PROPOSITION 2-5. The Dyer Lashoj operations on H*(ZxBO : Zv) defined by

θ and P coincide.

Proof. Let μ : (ZxBO)x(ZxBO)-+ZxBO denote the product defined by

tensor product. Then the two diagrams are homotopy commutative.
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P
W x (ZxBOV > ZxBO

[iidxΔ
p

W/πpx(ZxBO) >(pxBO)x{ZxBO)

θ
Wx(ZxBO)p >ZxBO

[idxΔp χ χ i d \μ

Wjπpx(ZxBO) — >{pxBO)x(ZxBO)

On the other hand any element of H*(Wx{ZxBO)p : Zp) of the form

is in the image of (idxJp)* : HjyV\πvx{ZxBO) : Zv) -+ H*{Wx(ZxBO)p : Zp)t
πp

c.f. Lemma 2-1 of [17]. This proves the proposition.

2.3. Now we determine the map g^ : H+(QιS° : Zp)-+ H*(BO® : Zp),

We remember the result of [17] about the Pontrjagin ring H+iQiS* : Zp) =

H*{SF:ZP). Let H = {/ = (ei9jl9e29j2t ,e r,y r)} be the set of sequences /

satisfying,

(2-3) i) r ^ l

ii) yt =Ξ= 0 mod (p — 1), t = 1, , r.

iii) j r = 0 mod 2(7) — 1).

iv) (p-D^Λ^ t^jr.

v) Si = 0 or 1.

vi) if β ί + 1 = 0, then yt/(p — 1) and ji+ί/(p — 1) are even parity,

if e i + 1 = 1, then jt/(p — 1) and jί+1/(p — 1) are odd parity.

0
And h :LP-*QPS» is defined by h :Wlπp->Wx(id)v-+Wx(QλSΎ—> QPS»

πp nv

And h0 : Lp-ϊQoS° is by definition k0 = hV(—pid). Then xs = ho*(e2j{p-ι)}

^Hzjip^iQoS0 : Zp), And for / = (βi,^, -,εr,jr)&H, Xj is by definition

Xj^βϊQjr -β^QjrJϊ'XjrMp-D^H^QoS0 : Zp). And xJ = i^

f : OoS°->SF. Then Theorem / of [17] is as follows,

(2-4) Hχ{SF:Zp) is free commutative algebra generated by xj9

LEMMA 2-6. For J={εί9jί9 , ε r , y r ) e i 7 with ec = l /or jom^ /,

/1 Since the following diagram is commutative.
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00
->OXJBO

QιS° >lxBO

9I*(XJ) = Qι*i*{β'vQjλ βi'fijτ/2iP-o) = i-Λβ'pQj, βir9o*(%jr/2(p-i))) On

the other hand in H*(B0 : Zp), the Bockstein map jŜ  is zero map, so the

lemma follows.

PROPOSITION 2-7. The elements g^(xj) are indecomposable in H*(B0® : Z p ).

And the image of H*(SF: Zp) by &* coincides with the sub algebra generated by

Proof. Since ;* : ΉJβO® : Zp) -> H*(BU® : Z J is monomorphism of Hopf

algebra, it is sufficient to prove analog proposition for &*= (j #1)* : H*(QιS° :ZP)

-±H*(BU<g) : Z). By lemma 2-6, the kernel of g* contains ideal generated

by cj9 j^O (33 —1) Let A = Zp[xu ^2, ]£f l*(dS 0 : Zp) denote the sub-

algebra generated by xy, then this is a subHopf algebra. 4̂* denotes the

dual Hopf algebra oί A, and I : H"{QιS : Zp) ->^4* denotes the dual of in-

clusion. Then to prove the proposition., it is sufficient to prove I o g* : i/*

(βί/(g) : Zp) -> ̂ 4* is onto. We construct 4̂* and i o ̂ * concretely as follows.

Let /*! = ΛoVίrf : LP ~* QiS\ and consider hι : Lp ~> d S 0 -> 51/® -> 5ί/<g>.

Then, by Proposition 2-4, Sx determines the element l + ^ e K ( L , ) , where

iV is the element determined by regular representation, and N = N_— p. For

hx xhi μ®
large / consider Hi : Lι

p = Lpx xLp J5C/®X xSί/® >BU®.

And consider //y : H*(BU® : Zp) -> H*(Lι

p : Zp) = Z^tA, , ft] ® i4(«i, , «j).

Then the image of H? is contained in SZpψΓ\ ,β?" ιl where SZPWf\

. . - ^ Γ 1 ] means invariant subHopf algebra of Zp[βpΓ\ -,/SΓ1] by the action

of permutation group Σ J SZp\βl~ι

9 - ^ Γ 1 ] = Z ^ ! , ,<τj, where ^ is

the ί-th elementary symmetric function of β\~\ - f̂"1. And up to dim

2/(33-1), Λ* and ί ff? is represented by SZpljSΓ1, - ^ Γ 1 ] = Zp[σl9 ,^3

and Jϊ?. Consider the element i/?(l + Cj + ), and we shall show, for

l ^ s ^ l , the coefficient of σs in #?(1 + d + •) is (—I)8. Then this shows

the proposition, since Hf is algebra homomorphism, and {c*} and {σt} are

algebra generator of H*{BU® : Z,) and SZp\β*Γ\ jS?"1]- BY definition

H*{{1 + d + •) = c((l +JVt) (1 + ftι)), where Nt^K{Lι

p) is the element

defined by 1 (x) - <g> 1 ®_N® 1 ® <g> leϋC(L{,) = i^(^) ® ®K{LP), where

JV is in the ί-th factor.
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) Π
i = i<j

And

= 1 - σx + + (-I)1**.

Then the following lemma show the proposition.

LEMMA 2-8. In the above situation, for 2^t<l, the coefficient of σs,

in Π c(Λi. Nit) is zero.

Proof. We prove in the case t = 2, since proof is analog for the case

/ > 2, since it is tediously long.

Π c(NίNj)= Π c((Nt-p)(Nj-p))

= [ π c(Λii^)].[ π

= Π c(NiNj) mod decomposable
1&<J<1 = =

= [ Π c(NiNj)]U2 [ Π
f = l . . . / = = = = = t = l . » . / = = = = ' •

= [ Π Π (1 + Otβt + ajβ,)]1'* [ Π Π

= [ Π Π ({l+aiβi)
p — βp

J'
1(l+aiβt))']u\Tί Π

Ξ [ Π

mod dec.

= [ Π ((1 + aφiY1 — at + + (—l)ισι)]m mod dec.

Ξ [ ( Π (1+ aφiY1) + p /(—en + 4- {—l)Lσι)J/2, mod dec.

Ξ 1 mod dec.

where mod decomposable means in SZp[βp~ι

9 ,/3?~1] = Zp[σi9 - 9σ{\. This

proves the lemma.
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2.4. Let yjGH2j{P-i)-i(SO:Zp) denote the unique element defined by

the following conditions, j = 1,2, , i) <jσ(qj), yj> = 1, ii) ys is a primitive

element. Denote i^yά) by yj for i* : H*(SO : ZP)-+H*{SF: Zp).

CONJECTURE 2-9. #j w contained in the subalgebra of H*(SF : Zp) generated

by xk, βpxk9 k = 1,2, .

Since we can not prove this conjecture, we prepare the following two

lemmas, which are proved in §5.

LEMMA 2-10. There are continuous maps, f : Lp-> SF and g : CP°° ->• F/O

with the following properties.

i) The following diagram is commutative.

Lp >SF

i 9 i
CP~ > FIO

σ

ii) The map Lp-> 5F-> F/PL-> BO®{P) represents in KO(Lp)(p) the element

1 + • -_7 N, where BO®tP) denote the localized space of BO® at prime p and

KO(Lp)ip) = KO(LP)®Z[1I2,U3, , lfo, ].

LEMMA 2-11. The following formula are valid, for some c

(2-5) f*{e2j(P-ι)) = cxj + aj9 aj^G2, j = 1,2, .

/*(^2i(p-D-ι) = cβpxj 4- bj9 bj(=G2, > = 1,2, . .

Now we define the subsets of H as follows.

(2-6) i) Ht= {J = (0, v - 1, 1, 2/(j> - l ) ) e f t •= 1,2,

ii) H-2 = {J = (1, p - 1, l,2y(p - l))e/ff / = 1,2,

iii) H+ltl = {J = (0, ;\, 0, j 2 9 - . , 0 , ; r ) e i 7 , r ^ 2 }

iv) JSΓT.i = (/ = (1, ii, 0, y2, . . 0, j r

v) H\,2 = {/ = (ε1? 7i, ε2, >2, ,

jiΨV- l deg #,, = even,

vi) #7, 2 = {/ = (β!, /i, , e r , jr)&H, r ^

jxΨV — 1, degZj = odd,
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Now we define the element Xj^H2j(p^ί)-.ί(Q0S
0 : Zp), 7 = 1,2, , by

Xj = /o+te*./^-!)) for fo:Lp-+QoS0, where LO:LP-+QOS° is defined by

/0 = fy{—id) for / : LP-*SF defined in lemma 2-10.

For / = '(εl9jί9 ,εr,jr)&H, we define xjt=H*(SF : Zp) by i+ψfQj^

/3^i/2(p-i)), where ί. : H^QoS0 : ZP)-*H»(SF : Z*).

L E M M A 2-12. Λta ί& algebraic generators for H*(SF: Zp)9 we can choose the

following elements.

• i) ήj9βpήj, = 1,2, .

ϋ) χZ9 ieHu um,2 UH+

2.

iii) όp-i Op-i(ά/), /ei/7,! U #

iv) QP-2QP-!- Qp-i(»/)f /eίΓ7fl

PFA r̂̂  Qp-29 and Qp^ are the Dyer-Lashof operations on H*(SF : Zp) defined in

[17].

Proof of this lemma is analog of that of proposition 6-8 of [17], so we

omit the proof.

P R O P O S I T I O N 2-13. The elements yά are in the subalgebra of H*{SF: Zp)

generated by χk9 βpxk, k — 1,2, . And ys = CjβpXj mod dec, cj ^0.

Proof Since y5 is non decomposable element, yό == csβv

in QH*(SF : Zp)^ the vector space of indecomposable elements. Now consider

yj in QH*(F/O : Zp). By lemma 2-10, βpx5 is zero in H*{FjO : Zp). Since

kernel of QH2J(p-i)-i(SF : Zp) ->• Qftycp-D-i (-̂ /O Zp) is 1 dimensional, other

elements Qp_i(^/) are linear independent. On the other hand, ϊ/j=0 in

H*(F/0 : Zp), this shows that jf̂  = Cjβpxj9 Cj^09 in QH2j(p^)^(SF : Zp). On

the other hand since y5 is a primitive element, and 0~> PH2j(p^ι)-ι(SF : Zv)

-+QH2j(p-1)-.ί{SF : Zp)->0, and the subalgebra of H*(SF : Zp) generated by

Km βp%k9 k = h 2, , is subHopf algebra, so that y5 belongs to the subal-

gebra generated by xh9 βpxk.

Remark 2-14. By lemma 2-10, g^(Xj) = cgι*(xj)9 j = 1,2, , for g^ :

H+(SF : Zp) -> fl;(J5O® : Zp), for c ψ 0.

For J&H°tl, consider g^{xj)9 by proposition 2-7 and remark 2-14, there

is a unique element ΰj^ZJixu X29 •] H*{SF : Ẑ ,) such that g^{xj) — gι*{ΰj).

Q{ ) denotes the space of indecomposable elements.
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Define xfj == Xj — ΰj. And for J={l9jί9O,j2, '909jr)^HZi, define xί = βpx'j,

where / ' = (O,juO,jz, -,0,

PROPOSITION 2-15. ^b algebraic generators for H*{SF : Zp), we can choose

following elements.

i ) Xj, VJ, > = 1,2, . . . .

ii) χl9 IELH\,2V}H% and x'l9

iii) Qp^' Op-i(ά7),

iv) Qp-aOp-i Q p - i ( / ) , lt2

and Qp-2Qp-i

/*. For a basis of QH*(SF : 2^), we can choose elements in lemma

2-12. By proposition 2-13, y5 = Cjβpxj9 Cj¥=0, in QH*(SF:ZP). For

I^H-lΛ, xί = Xi-\-Cτy{I\9 in QH*(SF:ZP), where | / | = (degα7) + l/2(p - 1),

by definition oί ^ί and by proposition 2-13. Since the construction of § 4

of [17], defining the H~ structure on SF can be extended on SO, and define

the H™ structure on SO with the following commutative diagram.

W x [SOY > W x (SF)P

SO > SF

So that we can define the operations Qj on H*{SO : Zp) compatible with the

operations Qj on H*(SF : Zp). So by proposition 2-13 and by the fact that

the image of H*(SO : ZP)-+ H^SF : Zp) is the subalgebra generated by jjj9

j = 1,2, , we can easily show that Qp-iiyj) are in Zp[xu x2, ](x>

Λ(βpx19 βpx2, —) and OP-2Op-i (2/;) = 0. So that for / e ^7,,, <?*.., (icί) ^

Oί-i(ά/) + c(j,f7)^,7) in QH*(SF : Zp)9 where y^tD = yj, for 2//(p—1)—1= deg

(©5-!(ίC7)), and OJ,-2Qp-i(άί)ΞQ1,.2Qί.1(ίC7) in QH*(SF : Zp). This shows the

proposition.

2-5. At first we consider the homology spectral sequence associated to

SPL-+SF-+FIPL, and determine the Pontrjagin ring H*{SPL : Zp).

PROPOSITION 2-16. As a Hop/ algebra over Zp, H*(Ω(F/PL) : Zp) =

• ), degdj — Aj — 1, j = 1,2, . */y #r£ primitive elements.
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PROPOSITION 2-17. There are elements Xj<^H*(SPL : Zp) for J^H\Λ Ui/ί,2

;9 such that j*(xj) = Xj + dec, for / e # ί , 2 \jH% and jjβj) = x'j + dec, for

: Zv).

Proof Since i*(aj) = 0, for /e^f,2 U#f, and ί*(άί) = 0 for J<=Hil9

where /# : H*(SF : ZP)-+H*(F/PL : Zp). Proposition follows from the homology

spectral sequences associated to the following two fibering.

Ω(FIPL) — > SPL > * • Ω(FIPL)

i i
SF >F\PL

Remark 2-18. For 57, I^H\Λ U-fffl2 Ui/f* we can choose the pair Zj

and βpxj.

As in the proof of proposition 2-15, the Hp3 structure on SO and SF

can be extended on SPL with the following commutative diagram

<2-7) W X (SO)P > W x (SPL)P > W X {SF)*

Next define elements dj^H^.^SPL : Zp) by y*(έ/,/) for j * : H*{Ω(F/PL):ZP)

-+H*(SPL:ZP), for ^ O (p - l)/2. And define yj^Hzjip^^iSPL : Zp) by

), U : ^*(SO : Zp) -+ H*(SPL : Z p ).

PROPOSITION 2-19. H*{SPL : Zp) is a free commutative algebra generated by

the following elements.

i) yj9 j = 1,2, . . . . dt j

ii) x7, /e/ft.i U#ΐ,2 US'?.

in) Oi-,(^/). /efl'T., Ui/7,2

iv) Qp-zόJ-iί^/), /eiffT.i U#7.2

Proof of this proposition is by using homology spectral sequence associated

to SPL-ΪSF-ΪF/PL.

2-6. Next we define the elements of H*(BSPL : Zp).

Let N:Lp-~> BSO denote the map defined by the regular representation

of πp. Define Zj = N*(e2j(P-ι))GH2jiP-dBSO:Zp). Then Zj are non decom-
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posable elements, ;' = 1,2, . Define the element 2JGH2J{P-D{BSPL:ZP) by

zj = j*(zj), u : H*(BSO : ZP)-+H*(BSPL : Zp).

And define a5 e H,j(BSPL : Z^), ^ 0 (p - l)/2, by £, = ίjβ,), i* : #*

(F/PL : ZP)^H*(BSPL : Z,).

Our main proposition is as follows.

PROPOSITION 2-20. H*{BSPL : Zp) w a free commutative algebra generated by

the following elements.

i) zj, j = 1,2,

ii) δj, j ^ 0 (p - l)/2

iii) <r(3j), /e^f.! U^ΐ,2 UίΓf.

/. In the spectral sequence EU^H*(F/PL : ZP)®H*{ΩFIPL : Zp)r

*=Zp9 the following relations hold.

And in the spectral sequence El*£zH*(BSO : Zp)(g)H*(SO : Zp), EZ^Zpf the

following relations hold.

p p-i, ( p) = l

And since i/J structure on 5PL can be extended on the fibering SPL-+

ESPL->BSPL as that of SF-+ESF-> BSF, c.f. (4-15) of [17]. So that Kudo's

transgresion theorem holds on the spectral sequence El* = H*(BSPL : Z )̂ (x)

H*{SPL : Zp), c.f. proposition 6-1 of [17]. These date determine the differen-

tial of the spectral sequence for E%*=H*{BSPL : ZP)®H*(SPL : Zp). And we

obtain the proposition by the same method oί the proof of Theorem 2 in

[17].

C O R O L L A R Y 2-21. Kernel of the i* : H*(F/PL : ZP)-+H*{BSPL : Zp) is ideal

generated by j*(xj), j = lf2,-. , for j * : H*(SF : ZP)-+H*(FIPL : Zp).

By corollary 2-21, the subalgebra Zp\δ5\ j 5- 0 (p - l)/2 of H*(BSPL : Zp)

is the image of ί* : H*{FIPL : Zp) -> H*(BSPL : Zp), so that this subalgebra

is subHopf algebra. And dual algebra of this subHopf algebra is a poly-

nomial algebra, since this subalgebra is realized as a subalgebra o£

H*(FIPL : Zp).
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By definition of zj9 Δ{ls) = Σ *i ® zj-i9 z0 = 1. These two remarks
i=0

s h o w t h a t s u b a l g e b r a g e n e r a t e d b y zj9 a n d aό of H*{BSPL : Zp) is a s u b H o p f

a l g e b r a a n d t h e r e a r e e l e m e n t s bk<=Zp[zί9z2, •~\®ZP[3j']9 j^O ( p—1)/2, d e g

,£fc = 4&, s u c h t h a t

Zplz» z29 ](x)Z p [α, ] = ZpEffi, ff2, ]

a n d Δ{bό) Σ ^ ?
£ = 0

THEOREM 2-22. ^4J <Z //O^/" algebra

i) H*(BSPL : Zp)=Zp[BJ']<g)Zp[σ{xIy]<g)A{σ{xj)), where

ii) 4{bj)= Σ ? t ( x ) ^ -i, σ(5/), σ(x7) are primitive elements.
/=0

§ 3. H*{BSPL : Z [ l / 2 3 ) / T o r s i o n .

3-1. The purpose of this section is to prove the following theorem.

THEOREM 3-1. As a Hopj algebra over Z\\\2\

i) H*(BSPL : Ztl/2])/ Torsion = Z[l/2] [Rl9 R29 . ]

ii) Ji?, = Σ Ri®Rj-t, Ro = 1, ώg i?^ = 4;.

iii) In H*(BSPL, Q) = Q[pi, p2, * ], i?./ αr^ expressed as follows.

Rj = 2α'(22->-1 — l)Num(Bj/4j) pj + decomposable for some

At first we study the Bockstein spectral sequence.

PROPOSITION 3-2. In the Bockstein homology spectral sequence, E1~H^(BSPL:

Zp)9 E- = {H*(BSPL : Z)lτorsion)®Zp9 the following formula holds.

If x(=Er

2n, y e £ J n _ , are such that dr(x) = y, then dr+1(xp) = xp'ιy.

Proof. For r > 1, this is theorem 5-3 of [5], and using /f£ structure

Θ : W x{BSPL)p -± BSPL, it is easy to show that this holds for r = 1.

Remark 3-3. The above spectral sequence is a Hopf algebra spectral

sequence over Zp.

PROPOSITION 3-4. As a Hopf algebra over Zp9 E°° = (H*{BSPL : Z)\ Torsion)

=Zp[(bι), {b2), •], Δ{(BX)) ? ? F

έjy ft ίw Theorem 2-22.
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Proof. By Theorem 2-22, as a Hopf algebra over ZP9 H*(BSPL : Zp) =

Zp\bJ1®Zp{σ{xI))®Λ{σ{^J)). By remark 2-18, in <r(f7) and σ(Zj)9 if <τ(̂ j) ap-

pears then a{βpxj) = βpσ{xj) also appears. So that Zp[σ(2I)'](S)Λ[σ{xj)'] is de-

composed following two types of Hopf algebras. Zp\σ{βi)\®Λ($pσ(xi)) and

Zp\^pσ{βjj^A{σ{βj)). So that the proposition follows from proposition 3-2,

remark 3-3, and the fact that d1 = βp.

Proof of Theorem 3-1. Since p is any odd prime, proposition 3-4 shows

that H*(BSPL : Z[l/2])/ T o r s i o n = Z[l/2][/?lf R2, •], Δ[Rj) = ΣΛ<®#;-» for
i0
Σ

i—0some i?y. Since P(H4j(BSPL : Z)/Torsion®^ 1 } *s 1-dimensional, over Z^,

and spanned by the image of PH4j{BSO : Zp) and PH4J{FIPL : Zp), so that

P(H,j{BSPL : Z[l/2]/χorsjon)=Z[l/2] and spanned over Z[l/2] by the image

of PHij(BSO : Z)=Z, and PH,j(F/PL : Z[l/2])=Z[l/2]. On the other hand

there is a generator tnjGPH4J(BSO : Z)=Z9 such that <pJ,mJ> = l, and

9 Z[l/2]) = Z[l/2] such that <£,,, m̂  ) = (2j=/[)T B u t s i n c e L i =

K ) ( , / ; ) , d p r s o Λ t > M denom

So that in PH4j(BSPL : Q), P(i^4, (5SPL,Z[l/2]/χors ion))=Z[l/2] is generated

over Z[l/2] by mά and 'w+i{£%™^fBj,4j) **,- ^ odd prime factor

of denom (BjlAj) and (22-7'"1 — 1) Num (Bj/4j) are relatively prime, so that

P{H4j(BSPL : Z[l/2])/Torsion) is spanned over Z[l/2] by ^g

So that we can take Rj by Rj = 2aj{22^ί-l) Num (Bjl4j)pj + dec in i/*

(J5SPL : Q), for some β ; eZ.

p)§ 4. Determination of φ : A -> H*(MSPL : Zp

4-1. Let A — Ap denote the mod p Steenrod algebra over Zp, and

φ : A->H*(MSPL : Zp) is denned by the following, where u&H\MSPL : Zp)

is the Thorn class.

(4-1) φ(a) = α(«).

The object of this section is to prove the following theorem.

THEOREM 4-1. The kernel oj φ is the left ideal generated by J3O, Qι. Where

Qj is the element defined by Milnor.

The following lemma is proved in 4-2.

χ) P ( ) denote the space of primitive elements.
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LEMMA 4-2. Φ{Qj)Φθfor j^.2.

Proof of the Theorem. Since φ{Q_0) — φ(Qι) = 0, ker φΏA{Qo, Qt)9 where

A{Qo, Qι) = the left ideal generated by jQ0, and _Qlβ MSPL has the product

μ : MSPLΛMSPL-+ MSPL, defined by Whitney sum. So that H*(MSPL :

Zp) has the coalgebra structure over Zp. And it is well known that φ is a

coalgebra homomorphism. Let X : A-±A denote the canonical anti-automorph-

ism of A. And define φ : A-+H* (MSPL : Zp) by $(<ή = χ{a) u. To prove

the theorem, it is sufficient to prove that, kernel of φ is the right ideal

generated by χ(Q0) = —Qp9 X(Qi) = —Qi. Let A* denote the dual algebra of

Ay then by Milnor A* — Zp[ξι, £2> HS)Λ{τ0, τϊy ). It is easy to show the

following.

(X{AJA(Q09Q1))* =

Consider the algebra homomorphism, φ* : H*(MSPL : Zp) ~> 4̂* Since dual

basis of ί[i?22 TJ TΊ1 is QtfQy P β , where R = (Γi,r2, •)• So it is

sufficient to prove φ{PR)ψ0, and φ{Q_j)φO for y ^ 2 . But since in # *

(M5O : Zp), φ{PR) = ^(Z(PΛ)) = X(PR){u)^ 0. And by lemma 4-2,

Φ(X(Qj)) = —φ(Qj) = —Q_j{u)i=0 for y^:2. This proves the theorem.

4.2. Pπ?o/ ςjΓ lemma 4-2. Let K is a CW complex of the form.

K = S p r - 1 U^ r U^ + 1 ) r Ue ( p + 1 ) r + 1 , r = 2(p - 1).

And let / : K-+BSPL be the map which represents ft in /o/ot :Sί)r~1->ϋΓ

-+BSPL-+BSF. Then / is represented by a PL disk bundle Ef over if of

fiber dimiV, iV>0. And X = XN denotes the Thorn complex of Ef. Then

XN is the following form,

βi V αi p

Then the action of A on H*(XN : Zp) is the following, for s e HN{XN),

epr-xe-H"+*T-ι{XN), epr<ΞHN+pr(XN), elp+i>r £ H«+w (XN) and

= 0
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iii) δPp+'(s) = δPipv(s) = e ( j,+ 1 ) r + 1.

Pp+ιδ{s) = pvp'δis) = δPpP1(s) = PpδP1(s) = 0.

P^Pp(s) = 0.

iv) d^r-i) = ^ r ,

V) P ^ ^ r ) = β(i» + l ) r , θPl{epr) = ^(p + Dr + 1

Vl) 5 ( ^ + 1),-) = £(p + i)r + l .

So that the Milnor homomorphism 1 : H*(XN : Z*) ->• H*(XN : ZP)®A* is given

by the following.

ϋ) λ{epr-i) = ^ r - l ® l + ^ r ® T 0

ϋi) λ(epr) = epr®l + ^ + l)r®fl

IV) i ( β ( ? ) + l ) r ) = β(i>+l)r<8)l + ^ + l )

V) ^(^(p + i)r + l) = ^(p + l)r + l ® l .

Now consider the following construction. Let π \W -± B be a oriented PL

disk bundle over B of fiber dim N. Then Wx(E)p-*WxBp is a PL disk

bundle of fiber dim φN. Then the Thom complex of this bundle is of the

form,

W\X(MEΛ P AME) = Wx(MEΛ AME)/Wx *,
π p π p τrp

where ML is the Thom complex of π :E-+X. If u^HN{ME : Zp) is the

Thom class of π : L->Z, then P(ίi)GFηifK(M£) ( ί ; ) : Z*} is the Thom class

of WX(E)P-Ϊ WxXp, where P(«) is the Steenrod construction of u9 c.f

Steenrod cohomology operations, ch VII.

Now consider the case πf : E = Ef-+K. And consider the twisted

diagonal map,

Then by the definition of the Steenrod reduced powers,

QΛΓ-.2JXP-1)
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(iSΓ-2/χp-l) _
2

where m = -2=ί. f aeHWIπp : Zp), βeH\Wlπp : Zp).

By Milnor λ(a) = α(g)l + ̂ (x)τo+ +β*r®rτ + . λ(β) = β(g)l + βp®ξ1

-LiV(p-i) -±-N(p-v-p<:r>-v

+ . And J?(P(s)) = ((-l)^+my^+D/2(w!)Λr)[β2 ®s + ^2
J_iV(p-l)-(p+l)(p-l) 4 - Λ Γ ( p - 1 ) - C p + 1 ) ^ - 1 ) - 1

®epr + j8 ® ^ + D r + otβ ®(e(p+1)r+i)l Apply-
ing λ and using the fact that λ is a ring homomorphism we obtain,

1 iV(P-l)_p2
5

+ other term with respect to the last

So that _Oy(J?(P(s))^0, so that j}jP(s) ^ 0 , for ; ^ 2 . Using naturality of

Thorn class, ζ^/M^O for u&H°{MSPL : Zp). This proves the lemma.

§ 5. Proof of Lemma 2-10 and 2-11.

5-1. The main idea of this section is come from the work of Adames

[1], and we use his results freely in this section.

Let π : E -> X be a spin (8w) bundle over a finite complex, then it is

well known the existence of the fundamental Thorn class in KO theory in

the following form, [3].

(5-1) There exists a Thorn class a{π)^KO8n{E, E — X) with the following property.

i) functorial

ii) multiplicative.

iii) φ~Hl/pha(π) — A{π)"λ, where A{π) is the A polynomial of π.

Now consider π : E -> X, a oriented real vector bundle with homotopy

trivialization, t : {E, E — X) -» Xx (R8n, R*n — O). Consider the following ele-

ment τ(π)t=KO°(X), defined by r(τr)®^8n = {rι)*{a(π))<Ξ:KOZn(Xx(R*n, R8n - O))

= KO°(X)(g)KO8n{RSn

9R
8n - O ) . Then it is easy to show that i) ε(τ{π)) =

lEΞK°(p9t) ii) r(τr®8) = τ(π) iii) f is functorial iv) Ph{τ(π)) = A(ΰ). And

passing to the limit we obtain a universal element τ(=KO°(FIO), ε{τ) = 1.
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Now for any integer k, we define the i/-map δk : BO® -> BO® by the

formula, δ*(l + ξ) = Ψk{l + £)/l + f, where 1 + £ e l + KO(BO®) denotes the

universal element.

Next for any integer k with (k, p) — 1, we define a 77-map 93* : BSO® ~>

by the following way. The isomorphism,

P* : KO8*(£SO(8n), ESO{$n) - BSO(8n))j>->KO*n(ESpin(8n),

ESpin(8n) — BSpin(8n))P.

define the Thorn class (ί)-1)*(β(^SO(8w))e/ΓO^(£5O(8n), ESO(8n) -

and we also write this Thorn class by a{ES0{8n)). Then this element defines

the Thorn isomorphism φκo : KO° (BSO (8n))P -> KO8w (ESO (8n), £SO (8n) -

BSO(8n))P defined by ^ 0(a?) = π*(x) a(ESO{8n)). Then define φU : BSO{8n)

-+BO®{V) by 9Ϊ n = ~φ~κιoΨ\a(ESO{8n)\ then it is easy to show that f*9>f(n+1)

= ΨU for / : BSO{8n)-+BSO(8{n + 1)). So passing to the limit we obtain

yk : BSO -> BO®(P). Then it is easy to show the following, cf Adames [1],

PROPOSITION 5-2. The following two diagrams are homotopy commutative.

i) F/O > BO®

i *' I9"
BSO > BO®(P)

ii) BSO > BO®(P)

BSO > BO®(p)

Let T-^Lp and ϊ-^CP" denote the canonical complex line bundle and

7R-±Lp, ϊR-^CP°° denote the corresponding real vector bundle of dim 2,

and ξR^KO{Lp) or KO{CP°°) is the element ξB = ΪR - 2.

PROPOSITION 5-2. In KO{LP)(P)9 φp+1{ξR) represent the element 1 + iV,

where N ̂ KO{Lp)(p) is the class corresponding the regular representation.

Proof of this is due to the Theorem 5-9 of [1].

5-2. Proof of lemma 2-10. For ξR<BKO(CP°°), consider the element

γ>*+1(eΛ)el + KO{CP~\p). And consider {Ψp+ι - l){ξR), then by Adames con-

jecture, there is a map g : CP°° -> F/O with the following commutative dia-

gram.
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CP°° t -—> FIO > BSO®

I ' Γ
l*R

 ΨP+I-I φp+ι i δ

BSO — > BSO > BSO®ip)

dP+ι

Since [CP°°, B0®(P)] — > [CP™, BO®^ is monomorphism, the above commutative

diagram and the following commutative diagram

e* φp+ί

CP™ > BSO > BSO®ip)
I I

MΓP+i i sP+i

iΨ φp+1 1°
BSO > BSO®(p)

show that the two maps φp+1, ξR and τog : CP~ -+BO®(P) is homotopic. So

that τogoπ Lp -> CP°° -> FjO ~¥ BO®(P) represents 1 + ^_Λ N by proposition 5-2.

And since LP-ΪCP°° ~> F/O-+BSO is homotopic to LP^CP°°-+BSO

BSO, so that this map is trivial. So that goπ :LP-*FJO factors LP-±SF

-+F/O. And it is easy to show the following commutative diagram.

si —> '

F/PL >BO®P

So that σojof : Lp-±BO<gχp) is equal to rofo/, and τoiof is equal to τogoπ :

Lp-ϊCP^-ϊFIO-ϊBO®^) and this element represent 1 + —j^-JV. This shows

the lemma.

5-3. Proof of lemma 2-11. We prove this lemma by induction on j .

For i = 1. Since σojof : LP-+SF-+ FJPL-+ BO®(p) represents 1 +_N, so that

(σojof)*[P^J^O. So that Λ(^2(p-i)) = cxt for some non zero c<=Zp. Sσ

that ΛC^cp-D-i) = /*GV2CP-I>) = ^ P * I Suppose we can prove the lemma for

j<jo> io^:2, we prove the case of ; 0 . Put f*{eoJ0(P-ι)) == cJoxJO + ajo and

Λfeio(,-i)-i) = c i o M ; o + ̂ o f o r s o m e CUGZP a n d ^ o ' ^ o e G 2 . We prove

Cj _ c _ Ci — . . . = c^ ^ i . But the following lemma 5-4 shows that for some

i ίe2jo(p^) = deacio-jfcxp-i), or P i ^ ^ c p - D - ! = de2(j0-*)C2>-i>-i f o r s o m e

Then for example Plf(e2Joip^)) = c J oPJa; i o + PJ(Λ J O ) = cs^dxjfΓk

^Kp-t)) = rf
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δut PJ(fl,0)eG2 by definition of G2 in [17] and by Nishida [11], so that

£Jod = dc and cjo = c. This prove the lemma.

L E M M A 5-3. In H*{LP, ZP) and for any j Q > 1, there is a integer l^Lk< j 0

such that P$(e2JoiP-i)) Ψ 0 or Pk*(e2j0(P-D-i) Ψ 0.

Proof is easy.

§ 6. Appendix.

6-1. The object of this section is to prove propostion 1-4, the exis-

tence theorem for KO theory fundamental Thorn class for oriented PL disk

bundles. The essential idea of this section depends on the work of Sullivan

[15].

At first we remember the result of Sullivan [15], Let π : E-> X be a.

oriented real vector bundle over a finite complex of fiber dim m. Then

there is a fundamental Thorn class u{π) e KOm{Xβ,4OP with the following

properties, where XE is Thorn complex oί π : E ->• X.

(6-1) i) functoriαl.

ii) multiplicative.

iii) φ-H

ιphu(π) = L(π)-ι^H"(X, O).

Let KO*( ) P denote the homology KO theory localized at odd primes

P, and make 4-graded by the same method (1-6). And Ω*{ ), and Ω*{ )

denote the oriented real cobordism and bordism theory. Then above Thorn

class induces following multiplicative cohomology and homology operations.

(6-2) u :Ω*{ )-+KO*( ) P

By (6-1) iii) and Index theorem of Hirzebruch. The map u :Ω*{p,t) =

Ώ*{p,t)~+KO*(p,t)P = KO*(p,t) = Z[l/2] is the map defined by associating to

each represented manifold its index. And we consider Z[l/2] as a Ω* = Ω*

module by this map. Then the natural transformations in (6-2) define the

following natural transformations.

(6-3) u:Ω*( )

Then the following proposition is due to Sullivan [15].
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PROPOSITION 6-1. The natural transformations in (6-3) give equivalence of

functors.

Now let π :E-+ X be a oriented real vector bundle of fiber dim m-

Then we define the following map ΰ by taking Kronecher index < ,u(π)>*

u <
(6-4) a : ΩP(E, dE) — > KOP(E, dE)P

ί Z [ l / 2 ] i f p - m = 0(4)
where KOp-m(S>)P =

10 ή p — m^ 0(4).

Another map u is defined by the following

[2Έ1/2] p-m = 0(4)(6-5) ΰ :0 p (£,d£:)->
[0 p — m** 0(4).

If as = (Mp,dMp : f)(=Ωp(E,dE), we can take / satisfying the condition

that / is /-regular to the zero section X of E. Then u(x) is by definition

index of (f~ι{X)). Then u is well defined. And it is easy to prove the

following proposition.

PROPOSITION 6-2. The above two homomorphism ΰ and u coincide

6-2. For any odd integer q > 0 introduce the mod q homology theories

ΩJi : Zq) and KO*( : Zq) as follows. Let Λf9 = S1 U 02 be the mod q Moore
Q

space, for a finite CW-pair (X,A), we define,

(6-6) Ωn(X, Λ:Zq) = lirn[M,ΛS^+wι-2, (X/A)AMS0(N)l>.

KOm(X,A: Zq) = \im[MqAS*M+m-\ (XIA)/\(ZxBO)\.

As in the case of KO*{ )P, the homology theory KO*{ : Zq) is con-

sidered 4-graded by τj^KO^)P.

Since q is odd integer, by Araki-Toda [2], these modules Ω*(X, A : Zqy

and K0*(X, A : Zβ) are Z9 modules.

And by the method of [2], the Bochstein homomorphism βgf the reduc-

tion mod q homomorphism ψq, and for a \ Zq-+ Zr* an abelian group

homomorphism, the reduction homomorphism ψa can be defined.

βq:ΩM(X,A: Zv)-±Ωm.x(X,A\ KOm(X,A: Zq)~

Ψq: Om(X, A) -> Ωm(X, A : Zq\ KOm(X, A) -+ KOm(X, A : Zq)
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Ψa : Ωm(X, A:Zp)-> Ωm(X, A : Z r), KOm(X, A:Zp)-> KOm(X, A : Zr).

The homology operation u defined in 6-2 can be naturaly extendable

to the following homology operation uq.

(6-8) uq:Ω*( :Zq)-+KO*( : Zq).

And this homology operation uq induces the following natural transfor-

mation.

(6-9) uq : Ω*{ : Z,)®Z[l/2] -> KO*( : Zff).

Then proposition 6-1 induces,

PROPOSITION 6-3. The natural transformation uq in (6-9) is an equivalence oj

functors.

6-3. Now we show the geometric interpretation of the homo topically

defined homology theory Ω*( : Zq).

For finite CW-pair (X,A), a singular Zq manifold of dimension m for

(X9A) means the following system (Q,f) = (Q,f,φ,Mι) satisfying the following

condition.

(6-10) i) {Q,dQ) is a compact oriented differentiable manifold of dim m.

ϋ) dQ = Q0\jQu where Mo and Mi are regular (m — 1) submanifolds,

and QoΠQi = dQ0 = dQx.

iii) (Ml9 dM), compact oriented (m — 1) differentiable manifold,

Ψ : (UMi, U dMλ)-+{Qι, dQi) is an orientation preserving diffeo-
Q Q

morphism. Where U means disjoint union of q elements.
q

iv) / : (0, Qo) -> (X, A), continuous map

v) For any inclusion i : Mx -> U Mu the composite map foφoj is
Q

independent of this inclusion.

Then as in the usual case, the equivalence relation "bordant" can be

defined. And we denote the set of equivalence classes of singular Zq mani-

folds of dim m for (X, A) by Ωm{X, A : Zq). Then this becomes an abelian

group, and Ωί(X, A : Zq) becomes a right Ω*{p, t) module by defining the

product of manifold.

PROPOSITION 6-4. The functor Ωί{ : Zq) constitutes a generalized homology

theory, and Ωί(p, t : Zp)^Ω*(p, t)®Zq.
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Then by the same method in the case of Ω*{ ), constructed in Conner-

Floyd [7], we have the following.

PROPOSITION 6-5. There is a natural equivalence, τ : Ωί( :Zq)->Ώ*{ : Zq).

The reduction mod q homomorphism, φq : Ωm{X, A) -> Ωίn(X, A : Zq) can

be "defined by considering the ordinary singular manifolds as Zq singular

manifolds. And for the homomorphism a:Zq~±Zqs defined by «(1) = (s),

the reduction homomorphism φί : Ωm(X9 A : Zq) ->Ωίn{X, A : Zqs) is defined

by φ'Λ(Q,f)) = ((UQ, Of)). And the Bockstein homomorphism & :Ωή{X,A:Zq)
s s _ _

-+Ωιn-1{X,A) is defined by βq{{Q, f, φ, M)) = (M,, foφoi). Then φ'q and φί is

compatible with φq and ψa in (6-7), and /3̂  and βq are compatible up to

sign.

6-4. Now we define the mod q index homomorphism Iq : £?*(#, ί : Zq)

-*Zq by the following way. Let (Mm,dM) is a Zg manifold, then we define

Iq(Mm) by

ί 0 if m ^ 0(4)
(6-11) / β ( M » ) = • . r

I ?5+ — 2?_, m o d q u rn^ΞΞ.0(4).

Where p+ and ί)_ are the following numbers. Consider the following sym-

metric pairing,

H2n(M, dM : R)(g)H2n(M, dM : R) — > Hin(M, dM : R) > R.

where An ~ dim M. Then p+ = the number of the positive eigen values of

the above pairing, and p_ is the number of the negative eigen values.

PROPOSITION 6-6. Iq is not depend on the representative, and define a map

lq Ω+iP, t : Zq) -> Zq and has the following property.

i) iq(χ + y) = Φ) + iq(v)

ϋ) Iq{x*y) = Iq{x) I{y) for x^Ω^t : Zq), y<=Ω<,(v,t).

iii) Iqt{φa{x)) = alq{x), for x<ΞΩ*{φ,t : Zq) and a : Zq->Zqs defined by a(l) = (s).

Let ^ : £ - > I b e an oriented PL disk bundle over a finite complex of fiber

dim m. We define the following homomorphism uq9 u9 for odd integer

Z n — m~ 0(4)
(6-12) u:Ωn(E,dE) '

i 0 n - m * 0(4)
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f Zq n — niΞ= 0(4)
Uq:Ωn(E9dE:Zq)->

1 0 n — m^ 0(4).

Let (Q, f)^Ωn(E,dE : Zq), we can suppose / is ί-regular to the zero-section

X of E. Then f~ι{X) define a element of Ωn-m(P, t : Zq). Define uq((Q,f)) =

Iq{f~ι{X)). The same for u. Then it is easy to show that u(x9y) = U(x) I(y)

for x e Ω*(E, dE), y e β*(p, *), and wg(α, 2/) = uq(x) /(#), α? e β*(-E, a^ : Zg),

p,t). So that ^ 0 and ŵ  define the following homomorphism.

f Z[l/2] * - w = 0(4)
(6-13) u : β ^ ^ , d£)(g)Z[l/2] = /fθ*(£, a ^ ) P ->

Λ ί 0 * - « ΐ 0(4)

f Z, * - m Ξ= 0(4)
w, : ^ ( f i , dE : Z,)(x)Z[l/2] = XO*(£, dE : Z,) ->

^* { 0 * — w 5- 0(4).

Then these w and uq satisfy the following relations.

(6-14) uqoφq = «ς u aq: Z-+Zq~ Z\qZ

uqs°ψa = a-Ug a : Zq-+ Zqsf α(l) = (s).

6-5. Now remember the following duality law for KO*( )P and KO*( ) P .

PROPOSITION 6-7. For any finite CW-pair, There is a correspondence between

the following set i) and ii)

i) u<=KOm(X,A)P

ii) u^Homz[l/2ίKOm(X9Λ)P, Z[l/2]),

uq<=HomZq(KOm{X, A : Zq), Zq), q : odd integers satisfying the following

relations.

uqoφq = aQouq aq: Z -> Z g = Z/^Z

w?s°^α = a-uq a : Zq-+ Zqs, α(l) = (s),

Λ̂  correspondence is given by

,u>: KOm(X, A\Zq)-* KO0(S» : Zq) = Z,.

these correspondence is functorial.

Proof of proposition 1-4. For PL disk bundle π : £ -> X of fiber dim m,

consider M, and wg defined in (6-13). Then by (6-14) and proposition 6-7,
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there is an unique element u(π)^KOm(E,dE)P. This element is what we

want.
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