a NOTE ON EXTENDED AMBIGUOUS
 POINTS

J.L. STEBBINS

Let f be an arbitrary function from the open unit disk D of the complex plane into the Riemann sphere S. If p is any point on the unit circle $C, C(f, p)$ is the set of all points w such that there exists in D a sequence of points $\left\{z_{j}\right\}$ such that $z_{j} \rightarrow p$ and $f\left(z_{j}\right) \rightarrow w . \quad C_{\Delta}(f, p)$ is defined in the same way, but the sequence $\left\{z_{j}\right\}$ is restricted to $\Delta \subset D$. If α and β are two arcs in D terminating at p and $C_{\alpha}(f, p) \cap C_{\beta}(f, p)=\Phi, \quad p$ is called an ambiguous point for f.

Mathews (3, p. 138) defined an extended ambiguous point for f in the following way: Let α be an arc in $\bar{D}-\{p\}$ terminating at $p . E C_{\alpha}(f, p)=$ $\cap \overline{U C(f, q)}$ where the intersection is taken over all neighborhoods N of p and the union over all q on $\alpha \cap N, q \neq p$, and $C(f, q)=\{f(q)\}$ if $q \in D$.

Bagemihl (1) proved that an arbitrary function from D into S can have at most countably many ambiguous points. Mathews (3, p. 138, proof of Theorem 1) has proved that a countinuous function from D into S can have at most countably many extended ambiguous points. This proof does no ${ }^{\dagger}$ hold if f is not continuous (the statement that $C_{B L}(g, 1)$ is contained in either $E C_{\alpha}(f, p)$ or $E C_{\beta}(f, p)$ only holds if f is continuous). The theorem, however, does hold.

Theorem (Mathews): If f is an arbitrary function from D into S and if a point p on C is an extended ambiguous point for f, then p is an ambiguous point for f.

Proof. Let α be any arc in $\bar{D}-\{p\}$ such that α tends to p. As Mathews' indicates, it is sufficient to find an arc $\alpha^{\prime} \subset D$ and tending to p such that $C_{\alpha^{\prime}}(f, p) \subset E C_{\alpha}(f, p)$. Use the points $q \in \alpha \cap C$ and the method of Gross (2, p. 249) to construct a "wedge" Z_{1} in D such that for every sequence of points $\left\{z_{k}\right\}$ in Z_{1} tending to $p,\left\{f\left(z_{k}\right)\right\}$ has limit points only in $\cap \overline{U C(f, q)}$
where $q \in \alpha \cap C, q \neq p$, and the intersection is taken over all neighborhoods of p.

In general the set Z_{1} will not be connected since $\alpha \cap C$ will not always contain a terminal part of α. However, $\alpha \cap D$ may be used to join the components of Z_{1} so that $(\alpha \cap D) \cup Z_{1}$ will contain an arc α^{\prime} tending to p. It is clear that $C_{\alpha^{\prime}}(f, p) \subset E C_{\alpha}(f, p)$, and the theorem follows.

References

[1] Bagemihl, F., Curvilinear cluster sets of arbitrary functions. Proc. Nat. Acad. Sci. U.S.A. 41, 379-382 (1955).
[2] Gross, W., Zum Verkalten analytischer Funktionen in der Umgebung singulärer Stellen. Math. Z. 2, 243-294 (1918).
[3] Mathews, H.T., A note on Bagemihl's ambiguous point theorem. Math. Z. 90, 138-139 (1965).

