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ON THE FINITE SUBGROUPS OF GL (3, Z)

KEN-ICHI TAHARA

Introduction

We should like to study three dimensional algebraic tori in the same

way as Voskresenskii does in [14] and [15]. To do so, it is necessary to

determine all finite subgroups of GL{3,Z) up to conjugacy.

We find in Serre [11] that the order of any finite subgroup of GL{3,Z)

is at most N(ή), where N{ή) is the greatest common divisor of 2n2(2w—1) (2̂ —2)

• {2n — 2n~1) and (φn — 1) {pn — p) {pn — φ^1) for every odd prime φ.

According to Serre himself *>, this estimate was first obtained by Minkowski

[16]. This estimate, however, is not the best possible. For example, when

n = 2, the greatest of the orders of all finite subgroups is 22 3 = 12 (cf.

Serre, ibid.), while N{ή) = 48. We refer the reader to a sharper estimate

of the orders of all finite subgroups of GL{n,Z) by Minkowski [17]. Accord-

ing to this, the greatest is not larger than 24 3 = 48 when n = 3. In this

paper we show that this is the best possible, and further determine all the

finite subgroups of GL{3,Z) (resp. SL{3,Z)) up to conjugacy.

First of all, we find all non-conjugate cyclic subgroups of GL{3,Z), By

Vaidyanathaswamy [12] and [13], any element of GL(3,Z) has order 1, 2, 3,

4, 6 or oo: namely φ{m) ^ 2 only for m = 1, 2, 3, 4 or 6, where φ(m) is Euler's

function. Hence the order of any finite cyclic subgroup of GL{3,Z) is 1,2,

3, 4, or 6. Reiner [10] determined all non-conjugate cyclic subgroups of

order m in GL{3,Z) for prime numbers m = 2 and 3. Therefore we must

determine all non-conjugate cyclic subgroups of order m in GL{3,Z) for

m = 4 and 6.1)

Next we determine all non-conjugate non-cyclic subgroups of GL{3,Z).

Since each element of GL{3,Z) has order 1, 2, 3, 4, 6 or oo, the order of any

Received February 26, 1970.
*> We wish to thank Professor J.-P. Serre for kindly informing us of the results of Min-

kowski and for giving us helpful several comments to the first draft of this paper.
χ) For w = 6, see Matuljauskas [7].
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finite subgroup of GL(3,Z) is of the form 2* 3/. On the other hand, the

structure of abstract groups of small orders are well-known up to isomorphism.

By considering the structure of each of them, we show that i ^ 4 and j ^ 1.

More explicitely, there exists neither any abelian subgroup of order more

than 6, nor any finite subgroup of order more than 23 3 = 24 in SL(3,Z),

hence the order of any finite subgroup of GL(3, Z) is at most 24 3 = 48. We

list in a table below the number of non-conjugate classes of subgroups of a

given order in GL(3,Z) and SL{3,Z).

Finally as an application, we investigate groups of fixed-point-free

rational automorphisms of algebraic tori. Here a rational automorphism φ

of an algebraic torus is called fixed-point-free, when φ(x) = x if and only if

x is the identity element of the torus.

The author would like to express his appreciation to Dr. T. Oda for his

helpfull suggestions and encouragement during the preparation of this paper

and for his critical reading of the manuscript.

order

1

2

3

4

6

8

12

16

24

48

sub-total

total

GL(3,Z)

abel.

cyclic

1

5

2

4

4

16

non-cy.

11

6
1

18

non-ab.

6

8

10

2

11

3

40

74

SL(3,Z)

abel.

cyclic

1

2

2

2

1

8

non-cy.

4

4

non-ab.

3

2

4

3

12

24

0. Notation and conventions

0.0 As usual Z and Q are the domain of rational integers and the

field of rational numbers. We use the following notation:
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GL(n, Q) : the general linear group of degree n over Q

GL(n,Z) : the general linear group of degree n over Z

SL(n,Z) : the special linear group of degree n over Z

{A,B, ,D] : the group generated by elements A,B, > ,D

Zm : the multiplicative cyclic group of order m

ιW : the subgroup of GL(n,Z) consisting of the transposed matrices of

all matrices of a subgroup W in GL{n,Z)

det(X) : the determinant of a matrix X in GL(n,Z)

En : the unit matrix in GL{n,Z)

0.1 Let A and B be matrices in GL{n,Z). Then A is called conjugate

to B in GL{n,Z) (resp. SL{n,Z)) if there exists a matrix M in GL{n,Z) (resp.

SL{n,Z)) such that A = M~1BM. A subgroup V of GL{n,Z) is called conju-

gate to another subgroup W in GL(n,Z) (resp. SL(n,Z)), if there exists a

matrix M in GL{n,Z) (resp. SL{n,Z)) such that 7 = M~ιWM. We note that

for any odd number n9 A (or V) is conjugate to B (or W) in GL{n,Z) if

and only if they are conjugate to each other in SL{n,Z). In this case we

merely say they are conjugate to each other and denote by A—B (or V~W).

Clearly, if V is conjugate to W9 V is isomorphic to W.

0.2 According to Coxeter-Moser [1], p. 134, we list, up to isomorphism,

all the non-abelian abstract groups of order not more than 24, each element

of which has order 1, 2, 3, 4 or 6.

1) Group of order 6

@3 = {S,T} : the symmetric group of degree 3, i.e.

2) Groups of order 8

O = {i,jik} : the quaternion group, i.e.

j2 = j* = F = (ft = _ 1

S)4 = {S,T} : the dihedral group with the following defining relations:

54 = T2 =



172 KEN-ICHI TAHARA

3) Groups of order 12

®6 = {S,T} = @ 3xZ 2 : the dihedral group with the following defining

relations:

ϊ4 = {S,T} : the alternating group of degree 4, i.e.

S3 = 72 =

<2,2,3> = {S, T} : the ZS-metacyclic group with the following defining

relations:

S* = T2 = (ST)2

4) Groups of order 16

^4xZ2 the direct product of the groups ©4 and Z2

QxZ2 : the direct product of the groups G and Z2

<2,2|4,2>= {S,T}: the group with the following defining relations:

54 = T4 = l f τ - i S T = S 3

(4,412,2) = {5,T}: the group with the following defining relations:

S* = T4 = (ST)2 = (S-^) 2 = 1

81= {R,S,T} : the group with the following defining relations:

5) Groups of order 24

2*4X^2 : the direct product of the groups W4 and Z2

<2,2,3)xZ 2 : the direct product of the groups <2,2,3> and Z2

SD6x2Γ2 : the direct product of the groups £)6 and Z2

@4 = {S,T} : the symmetric group of degree 4, i.e.

S* = T2 = {ST)3 = 1

<2,3,3> = {S,T}: the group with the following defining relations:

S* = T3 = {ST)2

(4,6(2,2) = {S,T}: the group with the following defining relations:
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S4 = T6 = (ST)2 = {S^T)2 = 1

1. Finite subgroups of GL(3,Z)

1.0 First we wish to determine all non-conjugate cyclic subgroups of

GL(3,Z). To do this we need the following well-known result:2)

PROPOSITION 1. There exist only 6 non-conjugate cyclic subgroups of order 2,

3, 4 or 6 in GL{2,Z):

0 1

1 0/J

W =

Z4:

-I

1 - 1

0 - 1

0

" " Ki o.

that

1.1 Groups of order 2

By virtue of Reiner's basic result ([2] Theorem 74.3, p. 508,), it follows

PROPOSITION 2. There exist 5 non-conjugate subgroups of order 2 in GL(3,Z):

/I

-ι°
\o

0

0

1

1
\

0

- 1

(1

0

\o

0

0

1

0

\

0

- 1 /

oy
0

1/

1.2 Groups of order 3

For the same reason as above, we have

PROPOSITION 3. There exist 2 non-conjugate subgroups of order 3 in GL{3,Z):

0

\o

0

0

1

0\

- 1

- 1 /

ί/°•, w2 = \ o

Hi

1

0

0

0

1

0

2) See Voskresenskff [14], p. 192.
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Remark. Without Reiner's basic result, we may prove Proposition 2

and 3 by elementary calculations.

1.3 Groups of order 4

We show the following:

PROPOSITION 4. There exist 15 non-conjugate subgroups of order 4 in GL{3,Z):

those isomorphic to Z4

1
0

. 0

/

-
\

(1

0

\0

0
0

1

0
- 1

0

0

1

0

, W2 =

1

-1

0
9

1
0

0

0
0

1

0
- 1

0

those isomorphic to Z2XZ2

Wlt =

0 0 1

β 0 0\ 1-1 0 0\l

0 - 1 0 , 0 - 1 0

\0 0 - 1 / \ 0 0 1,

1
0

0

0
—1

0

0
0

1
, w8 = -

1
0

0

0
— 1

0

0
0
1

1
0

0

1

0

0

0
0

- 1

0

1

0

- 1

0/

°\0
1/

(

I

- 1
1

- 1

- 1

0

0

0
0

- 1

1

0
_ 1

°\
- i

0/

0/

.

- 1
0

0

0
0

1

\
1 ,

0/

/—I

0

0

1
0

- 1

- 1
- 1

0

COROLLARY. In SL{3,Z) there exist only 2 non-conjugate cyclic and 4 non-

conjugate non-cyclic subgroups of order 4:Wi, W3 and Wβ, Wt, Wn, Wu
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Proof. We first find all non-conjugate cyclic subgroups of order 4 in

GL(3,Z). Let Y<=GL{39Z) be of order 4. By Proposition 2 it follows that

/I 0 0\ /-I 0 0

1) Y2^ 0 - 1 0 or 2) 7 2 ~ 0 0 1

\0 0 - 1 / \ 0 1 0

Case 1) Assume that Y2 = M"1

1 0 0\

0 - 1 0 M, where MeGL(3,Z). We

0 0 - 1 /

need an auxiliary result which will often be used later.

/I 0 0\

LEMMA 1. Let X be a matrix in GL(3,Z). If X2 is equal to \θ —1 0 ,

\θ 0 - 1 /

(-1 0 0

0 1 0

{ 0 0 - 1

- 1 0 0\

0 — 1 0 , then X is of the form

0 0 1/

/I 0 0\ /α 0 δ\ /β b 0\

± 0 « fe, ± 0 1 0 or ± c -Λ 0

\0 c -a) \c 0 -a) \0 0 1/

respectively. Here a2 + 6c + 1 = 0.

The proof is straightforward.

Hence we have MYM~ι = ±

1 0 G\

0 a b\ where a2 + be -j- 1 = 0. Since

0 c -a]

Y and hence the matrix (a ®\ have order 4, it follows by Proposition 1

that

1

0

0

0

a

c

\

b)"
/

/I

- 0

0

0

0

1

0

- 1

0

and so {Y}^W1 or W2.

/-I 0 0\

Case 2) Assume now that Y2 = M'H 0 0 1M, where M^GL{3,Z).

\ 0 1 0/
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1-1 0 0\

LEMMA 2. Let X be a matrix in GL(3,Z). If X2 is equal to 0 0 1

\ 0 1 0/

1-1 0 0\

or I 0 0 —1 L then X is of the form

\ 0 - 1 0/

/

\

a

l + a2

2b

l + a2

2b

1

1

b

— a
2

+ a
2

-b

l + a
2

1-a
2

\

j/
or ±

/ a

l + a2

2b

{ l + a2

x 2b

b

1-a
2

l+a
2

b

l + a
2

1-a
2

\

-/

respectively. Here b¥=0, a and ~]~ a are all odd integers.

The proof is easy.

By Lemma 2, we have MYM"1 = ±

\

a b -~b \

l + a2 I — a l + a
2b 2 2

l + a2 l + a I — a
2b

I1 ° Λ
We claim that F ~ ± 0 0 — 1 . It is enough to show that TV-

\0 1 0/

/I 0 1

1 0 1\

0 0 - 1 .

.0 1 0/

Easy calculations show that ΛΓ~ 0 0—1
\0 1 0

if there is a matrix Zin GL(3,Z)

such that

212

z =
— (1 + a)zn H 7^τ— U12 — Zn) — bzn — •

\ —(I — a) Zn %Γ~ (^12 "" *«) bzn ~ •
\ Δu

1-a
\

(Z12 —

- bzn
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where det (Z) = - {z12 + zn) \2bzl - 2azn{zί2 - zn) +

i.e. Z12 + zn — + 1 and 2bz\x — 2azn{zί2 — zί5) +
2b

N is conjugate to
1 0 1\

0 0 —1 , if zn = # and

0 1 0 /

ing the following diophantine equation

^ M 2 l 2 - * 1 3 ) 2 j = + 1 ,

- Ui2 — Zπ)2 = + 1. Hence

. = y are integers satisfy-

Theorem 7 — 4 ([6], p. 126) shows that the above equation has integral solu-

I1 ° Λ
tions. Therefore N is conjugate to 0 0 —1 . We can easily see that

\o 1 0/

Wi (1 < i ^ 4) are not conjugate to each other.

We next find all non-conjugate non-cyclic subgroups, i.e. those isomorphic

to Z 2 x Z 2 in GL{3,Z). Let S and T be generators of Z2xZ2, then S2=T2=E

and TS = ST where E = Ez is the unit matrix in GL{3,Z). By Proposition

2, our proof is divided into three cases.

Π 0 0V

Case 1) Suppose that S = ± M"1 0 - 1 0 \M, where M e GL(3,Z).
\0 0 - 1 /

Since TS = ST, we have MTM'1
1

0

0

0

- 1

0

0

0

- 1

=

1 0 0\
0 - 1 OlMTM-K The fol-
0 0 - 1 /

lowing easy lemma is useful for a characterization of MTM'1.

LEMMA 3. Let X be a matrix in GL(3,Z). If X commutes with

then X is of the form

/I 0 0

+ 0 #22 #23

\0 #32 #33

1

0

0

0

- 1

0 -

0

0

- 1

where #22^33 — #23^32 = 1.

/I 0 0

Therefore we see that T = + M"1 0 #22 #23

\0 #32 #33

M , where #22^33—^23^32 =
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Since T and so the matrix Tλ = ίX22 X2Z\ have order 2, Proposition 1 im-

plies that 7\ is conjugate to Γ"1 °\ ί1 °\ or (° XV Thus {S,T} is

conjugate to

(Here both 0 and

0 0\ / - I 0 0\

1 0), - 0 - 1 0

\ o o iy

is conjugate to WΊ0.)

0 0 1/

/I 0 0
are conjugate to W7, and \ — 0 — 1 0

\0 0 - 1

Classifying all elements of Wi (5 < i < 10) of five types of Proposition 2, we

easily see that Wt (5 < i ^ 10) are not conjugate to each other.

/ - I 0 0
Case 2) Suppose now that S = ± M"1 0 0 1

\ 0

GL(3,Z).

/ - I 0 0\
TS = ST implies that MTM"1 0 0 1 =

0
M, where M

\ 0 1

proof of the following is straightforward.

LEMMA 4. Let X be a matrix in GL(3,Z).

then X is of the form

( #11 #12 —#12\

#21 #22 #23

— #21 #23 #22'

0/

' - 1 0 0\
0 0 1MTM" 1. The

. 0 1 0 /

/ - I 0 0̂

If X commutes with 0 0 1 ,

\ 0 1 0/
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where {x22 + a^M^nfe ~ #23) — 2#i2#2i} = l Furthermore,

/ - I 0 0\ / - I 0 0

(1) if X has order 2, then X= + 0 0 - 1 , +( 0 0 1

\ 0 - 1 0/

1 0 0\

0 - 1 0L

0 0 - 1 /

- 1 0 o\
0 - 1 , ±a

-a - 1 0/

1 ° °\ /a - 1 0 , +

-a 0 - 1 / \

\ 0 1 0/

—1 a —a\ /I a —a\

0 0 - 1 , + 0 - 1 0

0 - 1 .0/ \0 0 - 1 /

-b

or ±1 a — (1 + a)\ where a, b and c are all integers, and in the

I
last case they satisfy the equation 2a2 + 2a + be — 0,

(2) there is no such matrix X of order 3.

/-I 0 0\
First assume that Ί = ±M~Λ 0 0 - 1 M, ±M~ι

\ 0 - 1 0/

/I 0 0\ /I 0 0\
+M"1 0 - 1 0 M or -M'1 0 1 0 M. Then {S,T} is conjugate to

\0 0 - 1 / \0 0 1/
1-1 0 0

- 0 0 1
\ 0 1 0

/ - I 0 0\ /-I 0 0̂
1 , 0 0 - 1
0/ \ 0 - 1 0)

τi (5^f^lO).
/-I 0 0\

Next assume that T = +M"1 \ a 0—1 M, ±M - 1

\-o - 1 0/
/-I a-a\ n a-a\

±M'1 0 0 - 1 M or +M" 1 0 - 1 0 M. If S is equal to

W9, W10 or

Π. Here

0 0

— [ 0 0
\ 0 1

is not conjugate to

is conjugate to T7i0. Clearly,

0 - 1 0/ \0 0 - 1 /

then {S, T} is conjugate to
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/ i 0
- 1

0

0 >

0
- 1

•=W'", *W, zWf

9

 tW" or *!¥"'. When a is even, we put

N =

/
Xn

#(#22 — #23)

2

a(x22 — #23)

0

- #22

0

# 2 3

where a& - a& = ± 1. Then T7 = N'W.N and hence W, W", W"', *W,
zWr

9

 ZW" and %W"' are conjugate to W» WU9 Ws, W10, WίQ, W% and Wί0,

respectively. When a is odd, we consider two non-conjugate subgroups Wί2,

Wis isomorphic to Z2xZ2:

'—I 0 0
0 0 1

, 0 1 0

- 1
1

- 1

0
0

- 1

0
— 1

0

/ - I 0 0
0 0 1

v 0 1 0

1-1 0 o\)
, - 1 0 - 1

\ - 1 - 1 0/

Here W12 and so W13 are not conjugate to WΊ (5 ̂  i ^ 11). Using Lemma

4 with easy calculations we see that W = N^W^N, where

xn 0 0

a(x22 — #23) — 3

I
N =

\

#22 #23

\ -

ιGL(3,Z).

x22
/

Hence T7r, W", W ", *W, ιWf, ZW" and tWr n are conjugate to W18f T712,

PΓ18,
 βWi2 = W14, 'Wig = WIB, W14 and WIB, respectively. By calculating one

by one, we know that W12 is not conjugate to Wu and hence Wn is not

conjugate to Wlζ. Thus R̂^ (5 ̂  / ̂  15) are not conjugate to each other.

- 1 0 0\
If S is equal to — M"1 0 0 1 M, we see, by replacing S by — S in

0 1 0 /

the above consideration, that {S,T} is conjugate to W8, W9, WΪZ9 W15.

Finally assume that T = ± M~ιLM, where

L =

- ( 1 + fl)

-b \
—(1 + fl) and 2a2 + 2a + be = 0.

a I
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We need the following three lemmas.

LEMMA 5. Let a, b and c be integers which satisfy an equation

2a2 + 2a+bc = 0.

Then b is odd if and only if c = + 2{a, c) {a-\- l,c), and so b is even if and only

if c = ± {a, c) [a + 1, c) where (a9c) is the greatest common divisor of two integers a

and c, and so on.

Proof Put c = 2kcf where k is a non-negative integer and (2, cf) = 1.

Let p be a prime number and suppose pn divides cr. Since 2a(a-\-l)=— be,

jf)n divides (a, cf) {a + l,c') On the other hand {a,c')(a + l,c') divides cf since

[a, a + 1) = 1. Therefore c' = ± (a, cr) [a + 1, cr). By comparing the exponents

of the prime number 2 in these integers a, a + 1, b and c, we easily get the

result. Q.E.D.

LEMMA 6. L is conjugate to

even and even integers, respectively.

1
0

0

0
- 1

0

0
0

- 1

if and only if a, b and c is odd,

,1 0 0\
Proof Let X=(Xij) be in GL{39Q) and assume that L = X~λ 0 —1 OX.

\O 0 - 1 /

/I 0 0

Then XL = 0 — 1 OX and so we obtain

\0 0 - 1

-xn —

x = #22 —

2a?,
0 0\

where det(X)= π (#22̂ 31 — ̂ 21̂ 32)* Thus L is conjugate to 0 - 1 0 if
\o 0 - 1 /

and only if — —^—-— r
7 (a + 1, c) (2α, c)

Then c is even and hence

divides c. Assume that
2 c divides c.

a + 1, c) {2a, c)

divides c. Therefore a is odd
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Γ—TΊ—r divides c, hence c = + {a + l,c) («,c). By Lemma 5, 6 is

even. Conversely we suppose that a, b and c is odd, even, and even, respect-

ively. By Lemma 5, c= ±{a + 1,c) {a,c) and

divides c. Thus Z, is conjugate to

(a + 1, c) (2a, c)
1 0 0\
0 - 1 0 , Q.E.D.

=±(a+l9 c) [a,c)

1-1 0 0

Put L'= 0 0 1

\ 0 1 0

0 0 - 1 /

L. In the same way as above, we have

LEMMA 7. U is conjugate ίo 0 - 1 0 if and only if a, b and c are all

\0 0 - 1 /

even integers.

By Lemmas 6 and 7, we have to consider the following four cases:

Case i) #, b and c is odd, even and even, respectively,

Case ii) c is odd,

Case iii) α, b and c are all even,

Case iv) b is odd.

/ - I 0 0\
We now show that if S=M-H 0 0 1 M and T = M~ιLM, {S,T} is con-

\ 0 1 0/

jugate to Ws, Wi2, W8 and PΓi4 in Case i), ii), iii) and iv), respectively,

and so {S, — Γ}, {-S, T}, { - S, - T} are conjugate to T 7 < ( 9 ^ t ^ l 5 ,

i ϊ^l l) . For example, we show that T7 = {S,T} is conjugate to Wi4 in Case

iv). The proof is similar in other cases. In Case iv), by Lemmas 6 and

/ - i o oy
7, both L and L' are conjugate to 0 0 1 . Let X = (*y) be in

\ 0 1 0/

/ - I 0 0\
GL(3, Z) and assume that X'ι\ 0 0 1 1 =

implies that

\ 0 1 0/

( #11 #12 "~"#12

#21 #22 #23

— 0&21 #23 #22

- 1 0 0\

0 0 1 . Then Lemma 4

0 1 0 /
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where det(X) = {x22 + #23) {̂ 11(̂ 22 — #23) — 2xnx2X}, Furthermore assume that

/ l - l IX
X-A 0 - 1 0\X=L. Then we have

\0 0 - 1 /

/ %n X12 —»12 \

X = ± (1 + fl)aJn — c # 1 2 # 2 2 tan + 2axί2 + cc22

\—(1 + a)xn + cίCi2 δfljn + 2ax12 + ^22 ^22 /

1-1 1 - 1
which satisfy X" 1 0 0 - 1 X = U and det(X) = {bxn + 2axl2 + 2x22)

\ 0 - 1 0

X {—bxu — 2(1 + 2ά)xnx12 + 2cx2

12}. Therefore W is conjugate to Wu if and

only if two diophantine equations

bxn + 2axl2 + 2α;22 = ± 1 (1)
bx2

n + 2(1 + 2a)xnxl2 — 2cx\ = ±1 (2)

have at least one integral solution simultaneously. Since b is an odd integer,

if the equation (2) has an integral solution, the equation (1) has an integral

one. Since 2a(a + 1) = — be, (2) can be arranged as follows:

2(1

b being odd, i.e. c = ± 2 (a, c) {a + 1, c), we have a(a + 1) = ± b{a, c) {a + 1, c).

Hence we may put b = bχb2 where bi and b2 divide a and a + 1, respectively.

The equation

h a s a n i n t e g r a l solut ion xn=
 1 t a r—> ^12= ~ - T h u s T7 is con-

b2 b\ Δ

jugate to Wu and hence {5, - T], { — S,T] and { - S, —T} are all conjugate

to Wί5.

II 0 0\ /I 0 0
Case 3) Suppose that S ^ - M " 1 0 1 0 M = - 0 1 0

• \o 0 1/ \o 0 1

MεGL(3,Z). Then clearly {5,T} is conjugate to W5 or T7n.

Thus we complete the proof of Proposition 4, Q.E.D.

where
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1.4 Groups of order 6

There are two non-isomorphic abstract groups of order 6, i.e. Z6 and

we obtain the following:

PROPOSITION 5. There exist 10 non-conjugate subgroups of order 6 in

GL{3,Z):

those isomorphic to Z6

II 0 0\1 ί /I 0 0\

0 0 - 1 L W 2 = - 0 0 - 1

\0 1 1/ \0 1 1/

those isomorphic to

1 0 0

0 0 - 1

0 - 1 0

1
0

0

0

0

1

0
0

1

0

- 1

0

0

1

0

- 1

0

0

- 1 0 0

0 0 - 1

0 - 1 0

1

0

0

0

0

1

0

1

0

COROLLARY. In SL(3,Z) there exist only 4 non-conjugate subgroups of order

6: Wu Wt, Wu W*.

Proof For cyclic subgroups, we refer the reader to Matuljauskas's

result [7].3) We determine all non-conjugate ones isomorphic to @3.
4) Let

S and T be generators of such a subgroup W. Then Sz = T2 = (ST)2 = E.

By Proposition 3, it follows that

3 ) I t is not h a r d to find all of them by our method.
4) See Nazarova-Roiter [9].
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1) S
1
0

0

0
0

1

0
- 1

- 1

or 2) S

/I 0 0
Case 1) Assume that S = M"1 0 0 - 1

\0 1 - 1

M, where M^GL{3,Z). Since

1 0 0
TS = S2T, we get MTM~λ 0 0 - 1

0 1 - 1

lemma can be proved immediately.

/I 0 0\
= 0 - 1 1 )MTM-\ The following

\0 - 1 0,

LEMMA 8. Let X be a matrix in GL{3,Z).

II 0 0

(1) Assume that X 0 0 - 1

\0 1 - 1

- 1 0 0\ 1-1 0 0

0 - 1 1 , ± 0 1 0

0 0 1/ \ 0 1 - 1

/ - I 0 0\

± 0 1 —1L all of which have order 2.

\ 0 0-1/

= 0 - 1 I X Then X = ±

,1 0 0\
(2) If X commutes with 0 0—1

\0 1 - 1 /

/I 0 0\

or

1
0

0

0
- 1

1

0
1

0

, then X = + 0

,0 - 1 0

, ± (θ -1 o], ± 0 1 - l ] ± [o
\0 0 - 1 / \0 1 0

Hence {S,T} is conjugate to

Using Lemma 8, we see that W$ is not conjugate
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to W7 and so W6 is not to W8-

1° * °\
Case 2) Assume now that S = M"1 0 0 1 M, where M G G L ( 3 , Z ) .

\1 0 0/
/0 1 0\

Since TS = S2T, MTM"1 0 0 1 =
\1 0 0/

0 0 1\

1 0 0 \MTM-\ MTM"1 is charact-
0 1 0 /

erized by the easy lemma:

LEMMA 9. Let X be a matrix in GL(39Z).

/0 1 0\ /0 0 1\ / 0 0 - 1 \

(1) Assume that X 0 0 1 = 1 0 O X Then X = ± 0 - 1 0 ,
\l 0 0/ \0 1 0/ \ - l 0 0/

/ - I 0 0\ / 0 - 1 0

0 0 - 1 \ or ± - 1 0 0

0 - 1 0 / \ 0 0 - 1

of which have order 2.

/0 0\ /0 0

(2) If X commutes with (0 0 1J or 1 0 0

\0 1 0,

0

1

0

0

0

1

1

0

0

or

\1

±

0

β
0

o

0

0

1

0

Lemma 9 states that {S,T} is conjugate to
(0 1

0 0

0 0/

I 0 0 - 1 \

0 - 1 0

[-1 0 0/

or

0 0\ 0 0 - 1 \

Ξ ] ^ 1 0 . Clearly W9 is not conjugate to any0 0 1 , - 0 - 1 0

1 0 0/ \ - l 0 0/

one of Wi (5 ̂  ί ^ 8) and so Wi (1 ̂  i < 10) are not conjugate to each other,

Q.E.D.

1.5 Groups of order 8

By Vaidyanathaswamy [12] and [13], there is no cyclic subgroup of order

8 in GL(3,Z), and clearly there is no quaternion subgroup in GL{3,Z).

Hence any subgroup of order 8 in GL(3,Z) is isomorphic to I) 2Γ4xZ2, II)

Z2xZ2xZ2 or III) 3)4.
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PROPOSITION 6. There exist 6 non-conjugate abelian and 8 non-conjugate non-

abelian subgroups of order 8 in GL(39Z):

those isomorphic to Z±xZ2

0 0 1 0 0\ 1 0
0 - 1

0 0 0 l

0 0 - 1
0 1

those isomorphic to Z2xZ2xZ2

0 0\
1 0

0 0

1
0

0

1
0

- 1

-̂
- 1

0
9 —

1
0

0

0
1

0

0 '
0

1 .

those isomorphic to

W7 =

Wt=

1

0

0

0
0

1

0
- 1

0
9

- 0

0 0
0 - 1
1 0

1
0

. 0

0
0

1

1
- 1

0

Wu=\-
1
0

0

0
0

1

1
- 1

0
9

COROLLARY. In SL(39Z) there exist only 2 non-conjugate dihedral subgroups

of order 8: W7, Wn, and there is no abelian subgroup of order 8.
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Proof. Case I) Let W = {S,T} be an abelian subgroup of the type

Z,xZ2 i.e. S4 = T2 = E, ST = TS.

fί 0 OV
Case 1-1; Suppose that S=±M~1 0 0 - 1 M, where M E G L ( 3 , 2Γ).

/I 0 0\

\0 1 0/

/I 0 0

Since TS = ST, M T M " 1 0 0 - 1 = 0 0 - 1

\0 1 0/ \0 1 0

ma can be easily obtained.

MTM-K The following lem-

LEMMA 10. Let X be a matrix in GL{3,Z).

ίl 0 0\ /I 0 0\ /I 0 0\
(1) i f X commutes with 0 0 - 1 or 10 0 1 , ^/z X = ± 0 0 - 1 ,

\0 1 0/ \0 - 1 0/ \0 1 0/

/I 0 0\ /I 0 0\/I 0 0
± 0 0 1

\0 - 1 0

, ± 0 - 1 0 or ± 0 1 0 .

\0 0 - 1 / \0 0 1/

(2) Assume that X

1-1 0

± I

2.

1 0 0\ II 0 0\ 1—1 0 0\
0 0 - 1 = 1 0 0 l\χ. ThenX=±\ 0 0 1 ,
0 1 0 / \0 - 1 0/ \ 0 1 0/

- 1 0 0\ 1-1 0 0\

0 0 - l ) , + 0 1 0\ or ± 0 - 1 0 , Λ// ςf which have
0 - 1 0 / 0 0 - 1 / \ 0 0 1

T having order 2, by Lemma 10, {S,T} is conjugate to
1 0 0\
0 0 - 1 ,
0 1 0 /

/I 0 0\
- 0 - 1 0

\0 0 - 1 /

f/1 0 0\ /I 0 0̂
0 0 - 1 , - o 1 0
yO 1 0 / \0 0 l)

II 0 IV
Case 1-2) Suppose now that S = ± M"1 0 0 —1 M, where M

\0 1 0/

/I 0 1
GL(3,Z). Similarly we have MTM"1 0 0 —1

\0 1 0

/I 0 1\

= 10 0 -UMTM'1.

\0 1 0/
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LEMMA 11. Let X be a matrix in GL{3,Z).

I1 ° x\
(1) If X commutes with 0 0—1

\0 1 0/
i i n /i i
0 - 1 0 , + (0
0 0 - 1 /

then X =
1
0

0

0
0

1

1
- 1

0

(2) Assume that X Then X=±

- 1 0 0

0 0 - 1

0 - 1 0

0 - 1 \

Thus {S,T} is conjugate to 0

\o

0
0 -

1

1
- 1

0

all of which have

= W2. Clearly

W\ is not conjugate to W2.

Case II) Let W = {S,T,R} be an abelian subgroup of the type Z2x

Z2xZ2, i.e. S2 = T2 = i?2=£, ST=TS, SR=RS and TR= RT. Put V={S,T}.

By Proposition 4, V is conjugate to one of W\ (5 ̂  i ^ 15) in the notation

of Proposition 4. Using Lemmas 3 and 4, two equalities SR = RS and

TR=RT determine R and so W is conjugate to one of subgroups Wi{3^Li^L6)

in the notation of Proposition 6. Here WΊ (3 ̂  f ^ 6) are not conjugate to

each other.

Case III) We determine all non-conjugate dihedral subgroups of order

8, $ 4 = {S,T}, i.e. S* = T2 = (STY = E.

II 0 0

Case IΠ-1) Assume that 5 = ± M'1 0 0 - 1

\0 1 0

M, where M G G L ( 3 , Z ) .

/I 0 0\
Since TS = SZT, MTM'1 0 0 - 1 =

\0 1 0/

ί/1 0 0V

{S,T} is conjugate to \ 0 0 — 1 ,

\0 1 0/

0

0 - 1

0
0

1

-1

0

0

°\
1

0/

0

0

1

MTM"1.

°w
0

III

By

^ 7 >

Lemma

A
0

\o

0

0 -

1

10,

°\
0
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1-1 0 0\

- 0 0 1

\ 0 1 0/
/-I 0 0̂

- 0 0 1

\ 0 1 0/

other.

II 0 0\ 1-1 0 0

-10 0 - 1 , 0 0 1

\0 1 0/ \ 0 1 0
=W* or

/I 0 0V
- 0 0 - 1 ,

\0 1 0/

Ξ= WIQ. Clearly Wi (7 ^ i ^ 10) are not conjugate to each

/I 0 IV
CaseIΠ-2) Assume now that S=±M~' 0 0 —1 M, where. MεGL(3,Z).

\0 1 0/
/I 0 IV /I 1 0V

Similarly we have MTM'1 0 0 - 1 = 0 0 1 Λ/TM"1. By Lemma 11,
\0 1 0/ \0 - 1 0/

1 0 1\
0 0 - 1 ,
0 1 0 /

/I 0 IX
- o o - 1 ,

\0 1 0/

ί/1 0 IV /-I 0 0\
we see that {S,T} is conjugate to 0 0 - 1 , 0 0 - 1 \=Wn,

l\0 1 0/ \ 0 - 1 0/

II 0 1\ / - I 0 0\

-10 0 - 1 L 0 0 - 1

\0 1 0/ \ 0 - 1 0/
=Wn or

( 1 1 ^ / ^ 1 4 ) and hence T74 ( 7 ^ f ^ are

1—1 0 0\

- ° °-ή
\ 0 - 1 0/
/-I 0 0̂

- 0 0 - l b l f u . Here
\ 0 - 1 0/

not conjugate to each other. Thus the proof of Proposition 6 is complete,

Q.E.D.

Using Lemmas 8 and 9, we know that there exists no subgroup of

order 9 in GL(3,Z). Hence the order of any finite subgroup of GL{3,Z) is

of the form 2* 3* and j ^ 1. From now on, we have only to consider finite

subgroups of order 2* or 2*3 in GL{3,Z).

1.6 Groups of order 12

Any abstract groups of order 12, all of whose elements have order 1,

2, 3, 4 or 6, is isomorphic to I) ZzxZ2xZ2 = ZQxZ2, II) S6 = @3xZ2, III)

Ĉ4 or IV) <2,2,3>.

PROPOSITION 7. There exist 11 non-conjugate subgroups of order 12 in GL(3,Z):

those isomorphic to Z6xZ2
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/I 0 0\ /I 0 0

0 0 - 1 , - 0 1 0

\0 1 1/ \0 0 1

those isomorpkic to S)6

W4 = \-

those isomorphic to

0
0

1

0

0

1

1
0

0

1

0

0

°\
Ί
0/

°\40

1 0
0 0

0 1

ί I1

- °
I \o

A
- °

0

— 1

l)

0

0

1

0

0

1

. -

- 1 '
1/

°\
-1'
- 1

- 1 0
0 0

0 1

- °
I o

/-1

0

0

1

0

0

- 1

0

0

0

1

0

- 1

0

1

°\0
- 1 /

— 1

1

0

, wί0 =
/o

0

\l

1

0

0

0

1

0

COROLLARY. In SL{3,Z) there exist only 4 non-conjugate subgroups of order

12: W2, T ĝ, Wio, Wn, and there is no abelian subgroup of order 12.5)

Proof Case I) Let W = {S,T} be an abelian subgroup of the type

Z6xZ2 i.e. Se = T2 = E and ST = TS. Denote by V the subgroup generated

by S. By Proposition 5, V is conjugate to Wί9 W2, W3 or W\ in the nota-

tion of Proposition 5.

ί I1 ° V
Case 1-1) Assume that V = M"1 + 0 0 - I H M , where MeGI(3,Z).

\0 1 1/

5) See Dade [3] Theorem 3, p. 27.
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/I 0 0

Since W is commutative, MTM'1 0 0—1

\0 1 1

proof of the following is immediate.

/I 0 ^

0 0 - 1 1 MTM'1,

\θ 1 l/

The

LEMMA 12. Let X be a matrix in GL{3,Z).

(1) If X commutes with

/I 0 0

± 0 -1 -1

\0 1 0

, ± 0 - 1 0 , ±

/I 0 0

then X = + 0 0 - 1

\0 1 1

0 0

,0 - 1 0

/I 0 (A

or ± 0 1 0 .

\0 0 1/

(2) Assume that X

all of which have order 2.

By the above lemma, W is conjugate to

Then X =

fl 0 0\ /I 0 0\

0 0 - 1 , - 0 1 0

\0 1 1 / \0 0 1/

Case 1-2) Assume now that V = M'1

GL(3,Z). Similarly we have MTM'1 0

\0

Lemma 8, W is conjugate to

1 0 0

0 0 - 1

0 1 - 1

Case 1-3) Assume that V = M" 1 - 0 0

\1 0

where M

0 - 1 M T M " 1 . By

M, where M G G L ( 3 , Z ) .
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/0 1 0\ /0 1 0\
Then MTM"1 0 0 1 = 0 0 1 MTM"1' By Lemma 9, there is no

\1 0 0/ \1 0 0/

such subgroup W in GL{3,Z).

Case II) We determine all non-conjugate dihedral subgroups of the

type 2)6 in GL{3,Z). Let S and T be generators of such a subgroup. Then
56 = T2 =

/I 0 0̂

Case II-l) Assume that S = ± M"1 0 0 - 1 M, where M eGL(3,Z).

\0 1 1/

/I 0 0\ /I 0 0
Since TS = S5Γ, it follows that MTM'1 0 0 - 1 = 0 1 1

\0 1 1/ \0 - 1 0

MTM-1. By

Lemma 12, {S,T} is conjugate to
ί/1 0 0̂  / - I 0

0 0 - 1 , 0 0

l\0 1 1/ \ 0 1

/I 0 0\ / - I 0 0\ /I 0 0 / - I 0 0̂
0 0 - 1 , - 1 0 0 1 = T78, - - 0 0 - 1 , 0 0 11 = W± or

\0 1 1/ \ 0 1 0/ \0 1 1 \ 0 1 o)

II 0 0\ 1—1 0 0\'
- 0 0 - 1 , - 0 0 1 • = WB. Clearly Wz is not conjugate to W, or

\0 1 1/ \ 0 1 0/

W5, and using Lemma 12, we can show that W4 is not conjugate to W5

and hence Wi (2 ̂  f ^ 5) are not conjugate to each other.

Case II-2) Assume that S = — M'1
1 0 0\
0 0 - 1 M, where M G G L ( 3 , Z ) .

0 1 - 1 /

/I 0 0\ A 0 °\

Similarly MTM'1 0 0 - 1 = 0 - 1 1 \MTM~1. By Lemma 8, {S,T} is

\0 1 - 1 / \0 - 1 0/

conjugate to \ —
1 0 0\ / - I 0 0\l

0 0 - 1 , 0 0 - 1

0 1-1/ \ 0 - 1 0,

/I 0 0

- 0 0 - 1

\o 1 - 1

/ - I 0 0̂
0 0 1

\ 0 1 0/

Using Lemma 8, we see that W6 is not conjugate to W7.

1° λ °\
Case II-3) Assume that S =-M'1 0 0 1 M, where M G G L ( 3 , Z ) .

\l 0 0/
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Then we have

is conjugate to

1\
0 \MTM~K By Lemma 9, {S,T}

0/

= W%. Here <i<8) are

not conjugate to each other.

Case III) There are 3 non-conjugate subgroups W99 Wί0 and Wn

isomorphic to 2t4. We refer the reader to Nazarova [8].

Case IV) We show that there is no subgroup of the type <2, 2, 3> in

GL(3,Z). Let W be such a subgroup and let S, T be generators of this

subgroup. Then Sz = T2 = {ST)2 and so S6 = T4 = E. Hence by Proposition

/I 0 <h
5, S = M"1 0 0 - 1 M, where M G G L ( 3 , Z ) . Since T5 = S57, this implies

\0 1 1/

that

/I 0 0\ /I 0 0

0 0 - 1 = 0 1 1

\0 1 1/ \0 - 1 0

MTM-1

Then by Lemma 12, there is no such matrix T in GL{3,Z). This establishes

the proof of this proposition, Q.E.D.

1.7 Groups of order 16

By Corollary to Proposition 6, there is no abelian subgroup of order

16 in GL{3,Z). We now show that there exists no non-abelian subgroup of

order 16 in SL{3,Z).

An abstract non-abelian group of order 16, all of whose elements are

of order 1,2,3,4 or 6, is isomorphic to I) S)4x^2, II) OxZ29 III) <2,2[4,2>,

IV) (4,412,2) or V) St. We have the following:

PROPOSITION 8. There exist 2 non-conjugate subgroups of order 16 in GL{3,Z),

which are isomorphic to c£)ixZ2.

1-1 0 0\ /I 0 0\
0 0 1 , - 0 1 0

\ 0 1 0/ \0 0 1/

A
0

\o

0
0
1

0
- 1

0
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-1
0

0

0
0

- 1

0
- 1

0
>

COROLLARY. In SL(39Z) there is no subgroup of order 16.

Proof. Case I) Let W be a subgroup of the type 2)4x2Γ2. By Pro-

position 6, SD4 is conjugate to W* (7 ̂  i < 14) in the notation of Proposition

6. Let T be a generator of Z2. Suppose 3)4 = M~λW\M (7 ̂  ί ^ 10), where

/I 0 0V
M G G I ( 3 , Z ) . Then MTM'1 commutes with 0 0—1 and

\0 1 0/

/I 0 0
By Lemmas 4 and 10, W is conjugate to

Suppose

(11^/^14), where MεGL(3,Z). Similarly using Lemma 11, we

1
0

0

0
- 1

0

0
0

- 1

see that W is conjugate to
1
0

0

0
0

1

1
- 1

0

9

- 1 0 0\ /I 0 0̂
0 0 - 1 , - 0 1 0
0 - 1 0/ \0 0 1/

Here W2 is not conjugate to WΊ.

Case II) Since there is no quaternion subgroup of order 8 in GL{3,Z),

there exists no subgroup of the type OxZ 2 .

Case III) Let W = {S,T} be a subgroup of the type <2, 2|4, 2>, then

/I 0 0

S* = T4 = E and T^ST = SK First assume that S = ± M"1 0 0 - 1 M,

\0 1 0

,1 0 0\

where M G G L ( 3 , Z ) . T-'ST = S3 implies that M Γ W " 1 0 0 - 1 =

\0 1 0/

/I 0 0

0 0 1 MT"1M"1. By Lemma 10, these matrices have all order 2 and

\0 - 1 0

I \
so there is no such matrix T. Secondly assume that S = ± M ~ 1 0 0 —1 M,

\0 1 0/
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where M&GL(3,Z). Similarly there is no such matrix T that S and T

generate this subgroup. Thus there exists no subgroup of the type <2,2|4,2>

in GL{3,Z).

Case IV) Let W = {S,T} be a subgroup of the type (4,4 [2,2), then

Si = T4 = (ST)2 = (S'λT)2 = E.

,1 0 0\

Case IV-1) Assume that T = ± M"1 0 0 - I I , where M G G L ( 3 , Z ) .

\0 1 0/

/I 0 0\ /I 0 0\

Since S2T3 = T3S2, it follows that MS2M~ι 0 0 1 = 0 0 1 A ί S ^ " 1 .

\0 - 1 0/ \0 - 1 0/

/I 0 0\

By Lemma 10, {MSM^f = 0 — 1 0 since S* - E. Further by Lemma 1,

\0 0 - 1 /

/I 0 01

S = ± M'1 0 Λ 6 Af, where β2 + ^c + 1 = 0. On the other hand,
\0 c -a)

I1 ° °\
M has order 2 and so S = ± M"1 0 0 1 \M or

\0 - 1 0/

/I 0 0\

+ M"1 0 0 — 1 \M. Thus such a subgroup {S,T} does not have order 16.

\0 1 0/

II 0 IV

Case IV-2) Assume that T = ±M~1 0 0 - 1 \M, where MeGL{3,Z).

\0 1 0/
/I 1 0\ /I 1 0\

In the same way as above, MS2M~ι 0 0 1 = 0 0 1 = M S 2 ! " 1 .
\0 - 1 0/ \0 - 1 0/

/ 1 1 1

ST = ±
1
0

0 •

0
b

—a

0
—a

—c

By L e m m a 11, {MSM"1)2 = 0 - 1 0 By easy calculations (ST)2 =

\0 0 - 1
/I 0 IV

implies 5 = ± M " 1 0 0 - 1 \M. Hence {5,7} does not have order 16.

\0 1 0/

T h u s there exists no subgroup of the type (4,4|2,2) in GL{3,Z).

Case V) Let W = {R,S,T} be a subgroup of the type 81, i.e. R2 = S2

= T 2 = E and RST = STi? = ΓΛS.
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/I 0 0
Case V-l) Assume that R = ± M"1 0—1 0

\0 0 - 1
M, where M G G L ( 3 , Z ) .

Since {ST)R = R{ST), it follows that

1 0 0\

0 - 1 O

.0 0 - 1 /

By Lemma 1,

M{ST)M-1 =

where #22#33 — #23#32 = 1. Since ST has order 4, #33 = —#22.

implies that
= TRS

1 0
0 —#22 —MSM-
0 —#32 #22/ \0 —#32

On the other hand T2 = E implies that

MSM-

0 0

#23 = 0 —^22 —#23

#32 —#22/ \0 —#32 #22

MSM~\

which is a contradiction.

Case V-2) Assume that R = ± M"1
- 1 0 0\

0 0 1 M, where MeGL{3,Z).
0 1 0 /

Similarly using Lemma 2 we have a contradiction.
Thus there is no subgroup of this type in GL{3,Z). We complete the

proof of Proposition 8 and its Corollary, Q.E.D.

By Corollary to Proposition 8, the order of any finite subgroup of
GL(3,Z) (resp. SL(3,Z)) is of the form 2* 3/ and j ^1 and i^A (resp. i<3).

1.8 Groups of order 24

By Corollary to Proposition 6 and Corollary to Proposition 7, there is
no abelian subgroup of order 24 in GL{3,Z). A non-abelian abstract group
of order 24, all of whose elements are of order 1, 2, 3, 4 or 6, is isomorphic
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to I) %xZ2, II) <2,2,3>xZ2, III)

(4,612,2). We have

IV) @4, V) <2, 3, 3> or VI)

PROPOSITION 9. There exist 11 non-conjugate subgroups of order 24 in GL(3,Z),

all of which are non-abelian:

those isomorphίc to

1

0

0

0

1

0

0

0

1 .

those isomorphic to 5) β xZ 2

those isomorphic to @4

W10 =

0

0

. - 1

/

1

1-1
/ i

- 2

\ o

0

1

0

- 1

1

0

1

- 1 •

0

1\

0

Oy

1

0/

0

- 1

1

\ I'1

1 \ o

\ I'1

M °
' \ o

I ' 1

\ o

0

0

- 1

-J

1

0

- 1

0

1

0

- 1

0

°\]
of, w9 =-1/J

" Λ
1

0/

1 °
1-1
/ °

- i

1-1
ί / λ

-\-2

{ \ o

0

1

0

- 1

1

0

1

- 1

0

1-1 0 0

ol, -( o o- i
0/ \ 0 - 1 0

°\4-
0/

0

- 1

1

- 1 - 1 0

0 1 0

0 0—1

/I - 1 - 1 \

, - o o l

\\0 1 0/.

COROLLARY. In SL(3,Z) there are only 3 non-conjugate subgroups Wβ, Ws

and Wί0, all of which are isomorphic to @4.
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Proof. Case I) Suppose W = %iXZ2, where 2t4 is an alternating sub-

group of degree 4 and Z2 = {R} is a subgroup of order 2 in GL(3,Z). By

Proposition 7, $l4 is conjugate to Wi (i = 9, 10, 11) in the notation of Pro-

position 7. Then

0
0

1

1
0

0

0
1

0

0
0

1

1
0

0

0
1

0
MRM-

where MeGL(3,Z). By Lemma 9, W =

{Wio9-E}=W2 or {Wn,-E}Έ=Wz. Clearly

to each other.

MRM~\

is conjugate to {T79, — E}=WU

i (i = 1, 2,3) are not conjugate

Case II) Since there is no subgroup isomorphic to <2,2,3> in GL{3,Z)

by Proposition 7, there is no subgroup isomorphic to <2,2,3}xZ2.

Case III) Let W=^QXZ2 be the direct product of a dihedral subgroup

SD6 of order 12 and a subgroup Z2 = {R} in GL(39Z). By Proposition 7, SD6 is

conjugate to Wi {2<i^8) in the notation of Proposition 7. First assume

that S)β = M~WiM ( 2 ^ ί ^ 5 ) , where M E G L ( 3 , Z ) . Then it follows that

/I 0 OV

= 0 0 -IIMRM'K

\0 1 1/

By Lemma 12, S 6 x Z 2 is conjugate to

1
0

0

0
0

1

0
- 1

1

- 1
0

0

0
0

1
4
0

1
0

0

0
1

0

°\0
1/

Next assume that 3)6 = {i = 6,7), where M G G L ( 3 , Z ) . Similarly we

see that ^ = 2)6X^2 is conjugate to
1
0

, 0

0
0

1

0
- 1

- 1
9

- 1 0 0\ /I 0 0

0 0 - 1 , — 0 1 0

0 - 1 0 / \0 0 1

ΞΞWS, and Wζ is not conjugate to W4. Finally assume that ®6 = M~XWZM,

where M G G L ( 3 , Z ) . Using Lemma 9 we see that there is no such subgroup.

Case IV) Let W = {S,T} be a symmetric subgroup of degree 4, then

Si = T2 = (STY = E. Denote by V the subgroup generated by S2T and T.

Then V is a dihedral subgroup of order 8, and by Proposition 6, V is

conjugate to Wi (7 < i < 14) in the notation of Proposition 6. We show that



200 KEN-ICHI TAHARA

W is conjugate to WQ, W7 or WB9 W9, W10, Wn in the notation of Proposi-

tion 9, according as V—W< (7^*^10) or Wi ( I l ^ ί ^ l 4 ) . For example,

we prove that if V is conjugate to Wt (7 ̂  i < 10), W is so to WQ9 W7. The

other cases can be proved similarly. Suppose that V = M'ιWiM (7 ̂  i ^ 10).

By the structure of these subgroups

/I 0 0\ /I 0 0\
S2T = ±M~1 0 0 - l M o r ± M ι 0 0 1 M.

\0 1 0/ \0 - 1 0/

/I 0 0\ / - I 0 0\
If S2T = ± M"1 0 0 - 1 M, it follows that T = ± M"11 0 - 1

\0 1 0/

0 0\ /-I 0 0\
1 0JM, ± M " α 0 0 - l J l f or ± .

\ 0 - 1 0/

1-1 0 0\

S2 = M'1

0 -11

1-1 0 0\

0 0 - 1 M, M'1 { 0 0 I J M , M"1

\ 0 - 1 0/ \ 0 1 0/

0 0\
—1 0M, respectively. By Lemmas 1 and 2,

0 1/

= ±

a

1+β 2

2b

1+α 2

b

1-a
2

1+a

b

1+0
2

1—α

\

/

M, ±M'1

(

\

a

1+Φ
2b

1+α2

b

I—a
2

1 + β

- 6

1+0
2

1-0

\

/
2b

ja 0 b\ la b 0\

± M " 1 0 1 O M o r + M " 1 \c -a 0 M.
\c 0 -0/ \0 0 1/

/ 0 0 1

M,

2b

= E implies that S = ± M"1 0 1 0
/0 0 - 1 \

M, ± M'1 0 1 0 M or

\ - l 0 0 \l 0 0/
/ 0 1 0\ /0 - 1 0\ / - I 0 0\

±M~\-l 0 OJM, ±M-1[l 0 OjM, only if T = ± M"1 0 0 - 1 M

0 0 1/

/ - I 0 0\

\0 0 1/

or ± M"1 0 0 1 \M. Thus {S, T} is conjugate to

\ 0 1 0/

i 0 0 1\

0 1 0 ,

^-1 0 0/
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1-1 0 0\ / 0 0 1\ 1-1 0 0 '
0 0 - 1 ~ W 6 or • 0 1 0 , - 0 o-l =W7. If S2T = M"1

\ 0 - 1 0/ \ - l 0 0/ \ 0 - 1 0
1 0 0\

x 0 0 1 M , similarly {S,T} is conjugate to W6 or W7. Secondly Suppose

0 - 1 0/

that V = M"λWιM (11^/^14) . In the same way as above, {S,T} is con-

jugate to

1 1 0\ 1-1 - 1 - 1 \
- 2 - 1 - 1 , 0 0 1

0 0 1/ \ 0 1 0!

/ 1 1 0\ / - I - 1 -1\
- - 2 - 1 - 1 , - 0 0 1

\ 0 0 1/ \ 0 1 0/

Trivially, W6 is not conjugate to W8 and easy calculations show that Ws is

not so to TF9. Hence Wi (6^i < 11) are not conjugate to each other.

Case V) We consider the fifth subgroup i.e. a subgroup of the type

<2,3,3>. Denote by S, T generators of such a subgroup. Then S*=T3=(ST)2

II 0 0\
and so S« = T* = {ST)4 = E. By Proposition 5, T = M'1 0 0 - 1 M, where

\0 1 1/

MEΞGL{3,Z). Since T3-(ST)2, Lemma 1 implies that

where a2 + be + 1 = 0 and so S = M"1

1 0 0

0 a-b a M, which does not have

0 a+c c

order 4. Thus there is no subgroup of the type <2,3,3> in GL{3,Z).

Case VI) Finally let W = {S,T} be a subgroup of the type (4,6|2,2).

Then S4 = T6 = {ST)2 = (S^Γ)2 = £. By Proposition 5, we have three cases.

1 0 0\
Case VI-1) Assume that T = ± M"1 0 0 - 1 M, where M G G L ( 3 , Z ) .

0 1 1 /

/I 0 0\
Since S2T5 = TδS2, MS2M'1 commutes with 0 1 1 , and so by Lemma

\0 - 1 0/
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12, MS2M'λ = {MSM'1)2 =
1 0 0\
0—1 0 . Moreover by Lemma 1, S = ± M"1

0 0 - 1 /

π o ov
x 0 α b\M, where α2 + δc + 1 = 0. But for these S, {ST)% ψ E.

\0 c -β/

/I 0 0\

Case VI-2) Assume that T = - M " 1 0 0 - 1 M, where MeGL(3,Z).

\0 1 - 1 /

/I 0 ON

In the same way as above, MS2M~ι commutes with 0—1 1 and so by

\0 - 1 0/

1 0 0\

Lemma 8, (MSM-ψ = 0—1 0 . Lemma 1 implies that S = ± M"1

0 0 - 1 /

/I 0 0

x 0 a b

\0 c — Λ

M, where a2 + Z>c + 1 = 0. But for these, {ST)2 ψ E.

°\1 \
Case VI-3) Assume that T = — M~ι 0 0 1 M, where M<BGL{3,Z).

\l 0 0/

/o o ix

Then MSW" 1 commutes with 1 0 0 , and lemma 9 shows that S2 does

\0 1 0/

not have order 2. Hence there exists no subgroup of the type (4,6|2,2) in

GL(3,Z).
Thus the proof of the proposition is complete, Q.E.D.

1.9 Groups of order 48

By Corollary to Proposition 8, there is no subgroup of order 48 in

SL{3,Z). Hence a subgroup of GL{3,Z) of order 48 is generated by a sub-

group of order 24 in SL{3,Z) and a matrix of determinant — 1 .

PROPOSITION 10. There exist 3 non-conjugate subgroups of order 48 in

GL(3,Z):

Wί =
'001

0 1 0

y-1 0 0

/-I 0 0

0 0 - 1

I 0 - 1 0

/I 0 0\

, - o i o
\0 0 1/
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W2 =

0

1

1

1

2

0

1

0

1

- 1 -

0

\ 1(-1

l ) , ( 0

0/ \ 0

0

- 1

1

9

1

0

0

- 1

1

0

"L

0

1

0

0

- 1

—V

1

0

I1

, - o
\o

\ I1

1 o

0

1

0

0

1

0

°\0
1/

°\0
1

And there is no subgroup of order more than 48 in GL(3,Z).

COROLLARY. In SL{3,Z) there is no subgroup of order 48 or more.

Proof Let W be a subgroup of order 48 in GL{3,Z), and let V be the

subgroup consisting of all elements with determinant 1. By Corollary to

Proposition 9, V is conjugate to W6, W8 or W10 in the notation of Proposi-

tion 9. We see that W is conjugate to {T76, — E} = Wu {W*, — E} = W2

and {W10, —E] = Wz according as V is so to WQi Ws and W10. For example,

we show that, if V is conjugate to W6, then W is so to WΊ. Assume that

V = M"1WQM, where M G G L ( 3 , Z ) , and denote by R such an element that

generate W together with V. Suppose that R(M~ιSM) = (M'ιSfM)R9 where

s =
0

0

- 1

0

1

0

1

0

0

and Then (MRM~ι) S = S' (MRM~ι). By the

structure of the subgroup We, S
f =

0

1

0

MRM'1 is determined by the fol-

.0 - 1

lowing easy lemma:

LEMMA 13. Let X be a matrix in GL{3,Z).

I 0 0

(1) If X commutes with 0 1

\ - l 0

1-1 0 0\ /I 0 0\

+ 0 1 0 or ± 0 1 0 .

\ 0 0 - 1 / \0 0 1/

1

0

0

, then X = ±
0

0

- 1

0

1

0

i\

o U
0

0

0

1

0

1

0

"Λo l
0
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/ 0 0 1\ /0

(2) Assume that xl 0 1 0 = 0

\ - l 0 0/ \l

/O 0 1\ i-1 0 0\

± 0 - 1 0 , ± 0-1

\ i o o / l o o
0 or ± 0 - 1 0 .

1/ \0 0 - 1 /

/ 0 0

(3) Assume that XI 0 1

1 /O - 1 0\

0 = 1 0 0\χ. Then X =±

\-l 0 0 \0 0 1/

/O 0 1\ /I 0 0\ /-I 0 0\

± 1 0 0, ± 0 0 - 1 U f ± 0 0 1 .

\0 0/ \0 0/ 0 0/

(4) Assume that X

0 0 1

0

- 1

/ 0 0 1\ /I 0 0\

± - 1 0 0 , ± 0 0 1 \ or ±

\ 0 - 1 0/ \0 - 1 0/

0 1 0\ /O 0 - 1 \

- 1 0 0 X. Then X= ± 1 0 0 ,

0 0 1/ \0 - 1 0/

- 1 0 0\

0 0 - 1 .

0 - 1 0/

/ o o i\

(5) Assume that x\ 0 1 0) =

1 0 0\

0 0 - I X Then X=±

.0 1 0/0 0/

/O 1 0\ / 0 1 0\ /O 1 0\

± 0 0 1 , ± - 1 0 0 or ± 1 0 0 .

\1 0 0/ \ 0 0 1/ \0 0 - 1 /

(6) Assume that X

0 0 1

[-1 0 0

Then X = + 0 0 - 1

Hence by the above lemma, in all case R is contained in V and so

{WG, — E] ΞΞTPI. For ΐ ^ 8 and W10, we need the following two lemmas:

LEMMA 14. Let X be a matrix in GL{3,Z).
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0 - 1 0
(1) If X commutes with

0 - 1 0\ 0 0 - 1
, then X=±\ 1 1 1 , ± - 1 0 0

\ - l 0 0
1-1 - 1 - 1 \ /I 0 0

0 0 1 or ± 0 1 0
\ 0 1 0/ \0 0 1

\ - l 0 0/ 1 1

0 - 1
1 = - 1 0 - 1 X. Then X =(4) Assume that X\ 1

\ - l 0 0/ - 1 - 1

/ 1 0 IV A 1 0\ / - I - 1 OV
+ - 1 0 0 , ± 0 0 1 or ± 0 1 0

\ - l - 1 - 1 / \0 - 1 0/ \ 0 0 - 1 /

(5) Assume that X
(
]

) - 1

L 1

- 1 0

0

0

1

°\
1

o/
1

- 1

- 1

1

0

1
0

0

i \

- i
0

0
0

1

or

1
1

0

±

X. Then X=±

i-l 0

0 -
1

0

- 1
1

0

0 - 1 0
(6) Assume that X\ 1

\ - l
1 0
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LEMMA 15. Let X be a matrix in GL{3,Z).

I 1 1 0\ / 1 1

(1) If X commutes with - 2 - 1 - 1 , then X=±\-2 - 1

\ 0 0 1/ \ 0 0

/ - I 0 - 1 \ /I 0 0\

± 0 - 1 0 \ or ± 0 1 0 .

I 0 0 1/ lθ 0 1/

- 1 - 1 - 1 \

/ 1 1 0

(2) Assume that X - 2 - 1 - 1

I 0 0 1

l U r ± - 2 - 1 - 1 .

0 0-1

/ 1 1 0

(3) Assume that xl—2 —1 —1
I 0 0 1

- 1 0 0\

0 0 - 1 .

0 - 1 0/

/ 1 1 0\

f 1 0 1\ /I 0 1\

0 1 0\X. Then X = ± 0 0 - 1 ,

1-2 - 1 - 1 / lθ 1 0/

/-I - 1 -1

(4) Assume that X —2 — 1 — 1 = 0

I 0 0 1/ I 2
/ 1 0 0\ /I 1 0\

0 0 l L ± 0 0 1] or ±

-2 - 1 - 1 / \0 - 1 0/

/ 1 1 0\

(5) Assume that X\-2 -1 - 1

I 0 0 1/
/ 1 1 OV

± 0 - 1 0 .

1-2 - 1 - 1 /

/ 1 1 0\

(6) Assume that X - 2 - 1 - 1

I 0 0 1/

/I 0 IV

0 0 - I X Then X=±

lo l o/

= ±
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The rest of the statement was already shown at the end of 1.7.

Appendix: Groups of fixed-point-free rational automorphisms

of algebraic tori

Let K be a field with the characteristic exponent p and T be an n~

dimensional algebraic torus defined over K. A rational automorphism φ

of T is said to be fixed-point-free if the only element of T left fixed by φ is

the identity element.

Hertzig [5] has shown that if if is a group of fixed-point-free rational

automorphisms of T, then H is a finite p-group and n^=0 mod. (p — 1).

We determine all groups of fixed-point-free rational automorphisms of

algebraic tori in the special cases n — 2, n — 3, and in general, when n is

odd.

A rational automorphism φ over the algebraic closure K of K can be

identified with an element (φίtj) of GL{n,Z) via φ(xl9 x2, , xn) = {yu y2>

*••> Vn)i where yi = Π xfj. Thus we may speak of the characteristic

polynomial XΦ(X) of φ.

LEMMA 1. Let φ be a rational automorphism of T. Then φ is fixed-point-free

if and only if χφ(ΐ) is a power of p.

Proof. A fixed-point of φ is a solution of the equations

X-Φui . . . χ-ti{i-tχl-ίi>i x^ii+1 xtfun = 1 (1 ̂  i ^ n).

By elimination, these reduce to

where δ = det (En - φ) = Xφ(l), Q.E.D.

COROLLARY. Let φ and Ψ be two rational automorphisms ofT. Assume that

φ is conjugate to Ψ. Then φ is fixed-point-free if and only if ¥ is so.

In the case n = 2, there exist 2-subgroups of order 2, 4 or 8, and 3-

subgroups of order 3 in GL{2,Z). But considering all non-conjugate 2-

subgroups and 3-subgroup, we have immediately
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PROPOSITION 1. There exist the following groups of fixed-point-free rational

automorphisms of a 2-dimensional algebraic torus defined over K:

(1) the subgroup ί/'"1 °\\ only if p = 2

(2) all groups of order 3 only if p = 3

(3) all cyclic groups of order 4 only if p = 2.

In the case n = 3, and in general, when n is odd, we have

PROPOSITION 2. Let n be odd and H a non-trivial group of fixed-point-free

rational automorphisms of an n-dimensional algebraic torus defined over K. Then the

characteristic exponent of K is 2, and H is the cyclic group of order 2 generated by

— En9 where En is the unit matrix of GL{n,Z).

Proof By Herzig (Theorem 1, p. 1041, [5]), H is a finite p-group and

n Ξ= 0 mod. (p — 1). Hence p — 2. To prove this proposition it is sufficient

to show that fixed-point-free rational automorphism of order 2 is only — En

and H does not contain any subgroup of order 4. Let φ be a rational

automorphism of order 2 and φψ — En. Then the characteristic polynomial

of φ is (X -}- l)k{X — l)m where m ̂  1 and k + m = n. Hence φ is not fixed-

point-free. Next let Ψ be automorphism of order 4 in H. Then Ψ2 is auto-

morphism of order 2 and Ψ2 ψ — En. Therefore {¥} is not a subgroup of

fixed-point-free of rational automorphisms, Q.E.D.

In the case n = 4 and p = 2, we guess that groups of fixed-point-free

rational automorphisms of T have all order 8 at most and are all cyclic.

(In fact there is a cyclic group of order 8 of fixed-point-free rational auto-

morphisms of T). More generally, the following natural question arises;

Let H be a group of fixed-point-free rational automorphisms of T, then how

is the order of the finite p-group H related to the dimension n of T? By

Proposition 2, the question is open only if n is even.
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