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RAMIFICATION THEORY FOR EXTENSIONS

OF DEGREE p

SUSAN WILLIAMSON

Introduction. The notions of tame and wild ramification lead us to

make the following definition.

DEFINITION. The quotient field extension of an extension of discrete rank one

valuation rings is said to be fiercely ramified if the residue class field extension has a

nontrivial inseparable part.

The purpose of this paper is to study ramification in Galois extensions

KZDU of degree p. The ground field k is the quotient field of a complete

discrete rank one valuation ring R of unequal characteristic, and p denotes

the characteristic of R. Assume furthermore that R contains a primitive

pth root of unity, from which it follows that the absolute ramification index

a of R is divisible by p — 1.

Observe that a Galois extension of degree p may be unramified, wild,

or fierce. In order to study the properties of such an extension relative to

ramification we established a technique for computing the integral closure

S of R in K.

The computation of S is facilitated by a judicious choice of the element

of k whose pth root defines the extension. Let U{i) for i^.0 denote the

usual filtration on U(R)9 and let U^ι) denote the set of prime elements of

R. In Section 1 we associate to each Galois extension Kz)k of degree p an

integer x with — 1 ̂  x < p called the field exponent of the extension such that

K=k(b1/P) for some element b of U(x) (see Prop. 1.6).

The ring R[b1/P] where b is in U(x) is contained in the integral closure

S, but equality need not hold. In Section 2 we present a technique for

computing 5 which entails the construction of a chain (Si) with O^i^g

of simple ring extensions Si of R where So = R[b1/P], S^-iCSί, and SgQS.

The integer g satisfies the inequality 0 ̂  g < (ajp — 1) — 1 and is called the
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conductor number of Kz>k. By examining the terminal ring Sg of the chain

one can determine if Kzik is unramified, wild, or fierce and obtain an ex-

pression for the integral closure S (see Prop. 2.6).

The importance of the conductor number g of a Galois extension of

degree p is demonstrated in Sections 3 and 4.

In Section 3 we obtain an expression for the ramification number i of

Kz)k in terms of the conductor number g. Namely, i = {apjp — 1) — gp — t

with 0 :< t :< p — 1 when Kz) k is wild, and i = (a/p — 1) — g — 1 when Kz)k

is fierce.

In Section 4 we present expressions for the differential exponent d(K\k)

of a Galois extension Kz)k of degree p in terms of the conductor number

g. From this we obtain the following criterion for ramification in terms of

the differential exponent.

PROPOSITION. Let d(Kjk) denote the differential exponent of a Galois extension

KzDk of degree p, let g denote its conductor number, and let a denote the absolute

ramification index of k. Then

i) Kz)k is unramified if and only if d{Kjk) = 0

ii) KzDk is fierce if and only if d(K/k) = a — g{p — 1)

iii) Kz)k is wild if and only if d(K\k) >a — g(p — 1).

Finally, in Section 5 we present examples to show that a cyclotomic

extension of degree p may be unramified, wild, or fierce.

The following notation shall be in use throughout the paper. The set-

theoretic difference of sets X and A shall be denoted by X — A. If R is a

ring, then its multiplicative group of units shall be denoted by U{R) and

its radical by rad R. If t is an element of an overring T of R, then R[t]

shall denote the intermediate ring obtained by adjoining t to R; if m is an

element of an i?-module M, then R{m) denotes the i?-submodule of M

obtained by adjoining m to R, If R is a local ring, then R shall denote

its residue class field.

The filtration £/(0 on the group of units of a discrete rank one valuation

ring R is defined for i ^ 0 by Ϊ7<°> = U(R) and U{i) = 1 + π'R for i > 0 where

π denotes a prime element of R (see p. 19 of [6]). For convenience of no-

tation (see Section 1), we shall let U™ = πU™.

For the definition of the ith ramification group Ĝ  we refer the reader

to p. 97 of [6], and for the definition of ramification number to p. 294 of
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[8]. The definitions of tame and wild ramification may be found on pp.

88 — 89 of [6], and the definition of differential exponent on p. 298 of [8].

Unless otherwise stated, R shall always denote a complete discrete rank

one valuation ring of unequal characteristic containing a primitive pth root

of unity where p denotes the characteristic of R, and S shall denote the

integral closure of R in a Galois extension K of degree p over the quotient

field k of R; π shall denote a prime element of R and Π a prime element

of S. The definition of the absolute ramification index a of R is given on

p. 45 of [5].

1. The field exponent. Let k denote the quotient field of a complete

discrete rank one valuation ring R of unequal characteristic, and assume

that k contains a primitive pth root of unity. The main purpose of this

section is to define for each Galois extension Kz)k of degree p an integer

x with — l^x^p which we shall call the field exponent of Kz^k (for the

definition see the end of Section 1). The notion of the field exponent shall

be used in the rest of the paper for studying ramification.

Consider an extension Kz)k where K = k(b1/p) and b is in R, and let

β = b1/p. Observe that the ring R[β] is contained in the integral closure of

R in K and that this inclusion may be proper or improper; observe also

that R[β] is a local ring (see p. 9 and p. 105 of [4]).

In the case when b is in U{1) the unique maximal ideal of R[β] is gene-

rated by π and β — 1. The following proposition presents technical infor-

mation about the ring R[β] when βp — b is in U{1) which shall be useful

throughout the paper.

P R O P O S I T I O N 1.1. Let b denote an element of U(1) and let β = b1/p. The

element {β - l)p of R[β] is of the form

(β - ιγ = (b - i) + uφ(β -1)

where u is an element of the R-module R{l,β, ,βp~2) and satisfies the congruence

K Ξ Ξ Ξ - 1 mod (p,β- l)R[βl

Proof In the case when p - 2 an easy computation shows that

(j8 - I)2 = (b - 1) + (- I)2(j8 - 1). Therefore β - 1 satisfies an equality of the

desired form with u = — 1.

Assume now that p is an odd (positive) prime number. Expanding (β—l)p

according to the binomial theorem one obtains that (β — l)p = (b—1) — Bxβ
p~x
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+ + (— l)iBiβ
p'i + + Bp-$ where B€ denotes the ith binomial coef-

ficient. By combining terms with the same binomial coefficient one obtains

the equality (β - l)p = {b - 1) + Σ (- 1)' Bt(βP-Zi - 1)^ with l^i^(p- l)/2.

Define Ai = (-l)iBilp. Expressing βp-2i-l in the form βp'2ί-l = (0*-"-1 +

. . + 1) (;3 - 1) we get that (β - l)p = (b-1) + p(β-l) Έ A^~2i^ + + I)j3*

from which it follows that u = Σ A^"1'1 + + β*). Since there are

p — 2ί summands in the expression βp-*-1 + . . . + β\ the element (βp-^1

+ + βι) - {p - 2%) is in (j9 - l)R[βl For 1 ̂  i ^ (p - l)/2 let 5* denote the

element of R[β] defined by QS*-*-1 + - + βι) - {p - 2%) = (β - l)st. Then

u = (i3 - 1) Σ Λ ^ + Σ ili(ί> - 2i). Now Σ Λ(ί? - 2i) = - 1 mod (p) (see Lem-

ma 2.8 of [7]) we have shown therefore that {β — l)p satisfies an equality of

the desired form with « = — 1 mod (p,β — l)R[β].

It remains to show that u is in the i?-module R{l9β, ,βp~2). For

each i with l^i^(p — l)/2, the element β9'^1 + + βι is in Λ(l,j9, ,

^p-2) because p- i-l^p-2 when 1 < i. Since M = Σ Aiiβ*-*'1 + +iS*),

it now follows that u is in R{l,β, ,βp~2) and this completes the proof.

We proceed to prove propositions preliminary to the definition of the

field exponent.

LEMMA 1.2. Let Jc denote the quotient field of a complete discrete rank one

valuation ring R of unequal characteristic, and let a denote the absolute ramification

index of R, If b is in Uin) for n = (ap/p — 1) + 1, then b has a pth root in k.

Proof Let β = b1/p where b = 1 + πnr denotes an element of U{n\ and

define the element T of k{β) by 7 = {β - I)/*"'*-1. Since k{7) = k{β) it suffices

to prove that degk7<p in order to prove the lemma (see Prop. p. 121 of

[1]). The equality (β - l)p = (b - 1) + up{β - 1) established in Prop. 1.1

together with the definition of 7 implies by an easy computation that

γp = πr + uv7 where v is the element of U(R) defined by vπa = p. Since u

is in the i?-module R(l,β9 9β
p~2) according to Prop. 1.1, it follows at

once from the definition of 7 that u is in the i?-module R(l,7, 97
P'2).

Therefore the equality 7P = πr + uv7 gives rise to a monic polynomial f{X)

in R[X] with f(7) = 0. Since u Ξ - 1 mod (p,β - l)R[β]9 and R[β] = R9 we

have that f(X) = Xp + vX in R[X~\. We have assumed that R is complete;

therefore the factorization f(X) = X(Xp~λ + v) implies that f(X) is reducible

over R by HenseΓs lemma. Hence degfc 7 < p9 and so we may conclude

that β is in R.
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The preceding lemma shall be useful for proving the following existence

statement.

PROPOSITION 1.3. Let k denote the quotient field of a complete discrete rank

one valuation ring R of unequal characteristic which contains a primitive pth root of

unity, and let KiDk be a Galois extension of degree p where p = char R. Then K

is of the form K = k{bί/p) for some element b of U(x) — U(cΰ+1) (set-theoretic difference)

with — 1-^x^p.

Proof Since k contains a primitive pth root of unity, a Galois extension

K~Dk of degree p is of the form K = k{c1/p) for some element c of k. Using

the division algorithm it is easy to see that such an element c may always

be chosen in πpU(R) for some p with 0^p<p.

We next observe that if c is in π(>U{R) with 1 ̂  p ^ p — 1, then there

exists an element b in πU{R) such that k{c1/p) = k(bί/p). For there exist inte-

gers m and n such that mp + np = 1 because p and p are relatively prime.

Let b = cnπmp, and observe that b is in πU(R). Since n is relatively prime

to p we may conclude that k(c1/p) = k{b1/p) by Lemma 3 p. 90 of [3].

It remains to consider the case when p = 0, i.e. when K = k(cι/P) with

c in U(R). Write c in the form c = 1 + πyt with y^O and t in U(R).

Observe that k{c1/p) = k{(cdp)1/p) for every non-zero element d of fc. The

proof shall depend upon the proper choice of the element d. Recall that

the absolute ramification index a of k satisfies a Ξ> p — 1 because we have

assumed that k contains a primitive pth root of unity. If a = p — 1, then

the assumption thet \K : k] = p implies that 0 :< y ^L p according to Lemma

1.2. We may therefore restrict our attention to the case when a > p — 1

and y > p. Let d = 1 + π and let b = cdp. Since y > p and a^.p, an easy

computation yields that b is of the form b = 1 + πvr with r in U{R), and

this completes the proof.

COROLLARY 1.4. Let Ko>k be Galois of degree p. If K = k{b1/p) for some

element b of Uw such that b has a pth root in R, then there exists an element bx

in U(x)-W*+» with l^x^p such that K = k(b1

1/P).

Proof Since b is in U(R) and b has a pth root in R, there exists an

element c in U(R) such that cv Ξ= b mod πR, and so we may consider an

element w of U(R) and a positive integer y such that b = cp + πvw. Define

Cί = blcp and observe that cx is in Uω — Uiy+1) with y>0. The proof of
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Prop. 1.3 shows that there exists an element bγ in U{x) — U(S!+ί) with

such that k{cx

ι/p) = kib^).

In order to prove the desired uniqueness property of the integer x

whose existence is guaranteed by Prop. 1.3 and Cor. 1.4 we first prove a

lemma.

L E M M A 1.5. i) If bi and b2 are elements of k such that

&! is in U{XJ — Wχι+1) with

b2 is in £/(*2) — i/<*2+i> with

and k{bι1/p) = k{b2

1/p), then xx = x2.

ii) If b is in U^\ then k(b1/p) ψ k(Jbΐ/p) for every bx in U(R).

iii) If bι is in EΛ°>, b2 is in U™, and k{bx

1/p) = k(b2

1/p), then b1 has a pth

root in R.

Proof The assumption that k(bι1/p) = k(b2

1/p) implies that bι=b2

ncp where

n denotes a positive integer relatively prime to p and c is in U(R) (see

Lemma 3 p. 90 of [3]). It is easy to verify that b2

n is of the form b2

n - l+πx*w

where w is in U{R). The assumptions that bι and b2 are in ί/(1) imply that

c is in £/(1) and so we may write c in the form c = 1 + πt with t in R.

Then bi — (1 + πx^w) (1 + πt)p and so b\ satisfies the congruence 6X = 1 + πx*w

modπpR since the absolute ramification index a of k satisfies a^p — 1. If

x2<p, it now follows that α?i = α?2 If %2 = Pi then the above expression

for bx implies that xι^
ιp. Since we have assumed that x^p, we conclude

t h a t xx — x2 — p.

The proof of part ii) is by contradiction. Assume that k{b1/p) = k(bi1/p)

for some element bx of U(R). Then b = bχncp for some element c of R and

some integer n relatively prime to p. So cp = b\b™ is in πU(R) from which

it follows that c is in πR and b is in πpR which contradicts the assumption

on b.

It remains to prove part iii). Since k(bχλ/p) — k(b2

1/p) and bι and b2 are

in U{R) we may consider an integer n relatively prime to p and an element

c of U{R) such that bi = b2

ncp. Now b2 = T because £2 is in ί/ .̂ Therefore

b1 = cp.

The next proposition follows at once from the preceding lemma and

Prop. 1.3 together with its corollary.
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PROPOSITION 1.6. Let k denote the quotient field of a complete discrete rank

one valuation ring R of unequal characteristic and let p = char R. Assume that k

contains a primitive pth root of unity, and let Kz)k denote a Galois extension of

degree p. Then there exists a unique integer x such that K Z)k is of one of the

following forms:

i) K = k(b1/p) for some element b of U(x) with x = — 1

ii) K = k{b1/p) for some b in U(x) - [Λ*+1> with x = 0 and such that the

polynomial Xv — 5 is irreducible over R

iii) K = k(b1/p) for some b in U(x) - W**1) with

DEFINITION. Let KzDk denote a Galois extension of degree p. The unique

integer x(K/k) = x between —1 and p defined by Prop, 1.6 is called the field ex-

ponent of KzDk.

2. The conductor number. Consider a Galois extension KzDk of

degree p where K — k{β) and βp = b is in k. According to Section 1 we may

assume that the element b is in U{x) where x = x(Kjk) denotes the field ex-

ponent of Ki)k.

In this section we present a method for computing the integral closure

S of R in K by constructing a sequence (SJ (O^Li^g) of ring extensions of

R in S such that So = R[β], S^-iCS ,̂ and SgQS. The number g satisfies

the inequality 0^g ^(alp — 1) — 1 and shall be called the conductor number

g(Klk) of K ZDk. Its importance shall be seen in the results of Sections 2,

3, and 4 of this paper.

We proceed to define the chain of rings (Si) which shall be used for

the construction of S. For the sake of clarity we shall consider separately

the cases x < p and x = p.

DEFINITION. If the field exponent x = x(K/k) of K "Dk is such that x < p,

we define the conductor number g = g(K/k) to be zero.

When x(K/k)<p we therefore have Sg = R[β]QS. In Prop. 2.6 A we

construct S from Sg for such x.

We now restrict our attention to the case of an extension K Z)k for

which x = x(K/k)= p. The construction of the integral closure S is facilitated

by a separate consideration of the case when the absolute ramification

index a of k equals p — 1. When a - p — 1 and x{Kjk) — p we shall define
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the conductor number g(K/k) to be zero. In Prop. 2.6 B we construct S

for the case when x — p and a = p — 1 and prove that such an extension is

always unramified.

It remains to consider extensions K ZDk with field exponent p for which

the absolute ramification index a of k satisfies a^p. The following lemma

shall be used for proving Prop. 2.2. which is technical in nature.

LEMMA 2.1. Let R denote a discrete rank one valuation ring of unequal

characteristic whose absolute ramification index a satisfies the inequality a^.p where

p = char R. If Xp — f - 0 has a solution in R, then there exists an element rx in

R such that π9 — r is in π*R - πt+1R with

Proof Let f0 denote a solution of the equation Xp — f = 0. If ro

p — r

is in π*R — πt+1R for some t with 1 ̂  t ^ p, then we may take rx — r0. If

r\ — ΓΞΞO mod πp+1R, then we may write ro

p—r= aπp+1 with a in R. Define

T\ = fo + π and observe that rp — r = ro

p — r + πp + πpϊ for some element ϊ

in U{R). So rλ

p — r = aπp+1 + πp + πα+1t;r where v is the element of t/(Λ)

defined by πav = p. The assumption that α ^ p now implies that rip — r is

in

PROPOSITION 2.2. Let KzDk denote a Galois extension of degree p whose field

exponent x(K/k) is p, and for which the absolute ramification index a of k satisfies

a>.p. There exists a pair of sequences (c*) and {φi) with O^i^g such that

i) each d is in U(R), c0 = — b, and d = — r where b = 1 + πpr

ii) each φi is in U(S), φ0 = β, and φx = (φ0 — l)/π

iii)

and such that for every i > 0 the pair of elements φ.L and Ci satisfy a congruence of

the form

φp = - a + B<ff«-4(p-i>+i + Aiπa-«*-Vφi mod π -

where Ai is in U(R[β]), Bi is in R[φi], and R(φi-i) denotes the R-module

Proof Observe that when i = 0 we have φo

p = — c0. For i = 1, Prop.

1.1 implies that φ? = [{β - l)/τr]p = [τrpr + up{β - l)]/ττp = r + uvπa-^+1φ1 where

z; is the element of U(R) defined by πav = p and u is in £/(i?[/3]). Therefore
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φλ

v = — d + A1π
a'^''l)φι with Ax = uv, and so φλ satisfies a congruence of the

desired form with B1 = 0.

We proceed to define the pair of sequences {φi) and (d) inductively.

So assume that φi and d have been defined for some i with

and that an i?-module congruence of the form

holds for some element ^ of U(R[β]) and some ^ in R[φi~\.

If the polynomial Xp + c< is irreducible over ^, then we terminate the

sequences, i.e. we do not define φi+1 and ci+1.

On the other hand, if Xp + ci is reducible over R, then it has a root

in R (see Thm. 7 p. 66 of [8]). According to Lemma 2.1 we may therefore

consider elements yt and ci+1 of C/(i?) such that y/ + a—c^iπ^ with l ^ ί ^ p .

Consider the element ^ of R{l,φ^u '^i-i^"2) defined by

whose existence is guaranteed by the inductive hypothesis. Form the element

Φi — Vi °f R[φi\ a n d observe that

(Φi ~ ViY - Φi* ~ Viv mod piφi - yi)R(φi)

+ fi^ -*^-1)*1 + {At + flr<JrC*-1)Cp-i))y<πα-i(p-i)

mod pfa -

In order to define Ai+l9 observe that a computation like the one used

in the proof of Prop. 2.9 shows that π^-^p-^Rlφ^ is contained in R[β].

Since gi is in i?[^ί-J and A4 is in ί/(i?[/3]) it now follows that the element

Ai+1 defined by Ai+1 = At + g^-wr-v is in U(R\β}) (Note that A2 = A1

because ^ = 0).

Recall (see the beginning of Section 1) that R[β] is a local ring whose

maximal ideal is generated by π and β — 1 and whose residue class field is

R. Since φi = {β — l)/π is in S because we have assumed that x{K/k) = p,

the element β — 1 is in πR[φ{\. Therefore we may consider elements at of

U{R) and Ai of R\_φ^\ such that Ai+1yi = «4 + ^4^. Define the element 5* of

RίφΔ by Bi = Bi + Ai and observe that the definitions of Aί+i and ^ together

with the congruence established above imply that
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(φ. - Viγ = - c<+1*
e' + βiπ*-***-1' + jSiTr -*^

+ i4<+1π* {φi - y^-**-* mod

The above congruence shall be denoted by (*).

Now we may complete the definition of the sequences (φi) and (cj . If

i = (α/p — 1) — 1 or if ^ < p then we terminate the sequences.

However, if tt - p and i < (ajp — 1) — 1 we define φί+1 = (φt — #4)/TT. The

congruence (*) established above implies at once that

ψi+ι

p 3= - cί+1 + α<Jf -*(p-D-p + BiK

+ Ai+1π»-v+™-»φi+1 mod π^

The ring i?[^J is a local ring with residue class field R whose maximal ideal

is generated by π and φi — yim We may therefore consider elements bi of

R and Bi+1 of i?[^ ί+i] such that Bi = bt + Bi+1π. Define the element ci+1 of

U(R) by the equality - ci+1 = - ci+ί + a^"^"^^ + biπ°'^i+1^'ι\ Then

^ ί + i P s - c4 + 1 + 5< + 1JΓ -(«+«CP-I)+I + i W -c*+i>(*-i>01+1 mod π«-?+1φi+1R(φi)

and this completes the proof.

Statement (*) of the above proof shall be useful for the construction of

5 and so we present it as a corollary.

COROLLARY 2.3. If the polynomial Xp 4- c* is reducible over R for some

i > 1, then the element φi — Vi of S satisfies a congruence of the form

+ Λί+ί(φi - yi)vP-ii*-1'> mod p(φi

where at is in U(R), Bi is in RlφJ and l^ti^p.

Propi 2.2 enables us to define the conductor number of an extension

with field exponent p.

DEFINITION. Let Kz^k denote a Galois extension of degree p whose field ex-

ponent x is p. If a - p — 1 we define the conductor number g(Klk) to be zero. If

a^p, consider a sequence (φi) (O^i^Lg) of elements whose existence is guaranteed

by Prop. 2.2. The integer g depends only upon the extension Kz)k (see Cor. 3.2)

and we call g = g(Kjk) the conductor number of K Z)k.
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We have now defined the notion of conductor number for each Galois

extension K ZDk of degree p. Note that g{K/k) > 0 if and only if x(Kjk) = p

and a>p. In the case when g = 0 we define φ0 = β.

The elements φi defined above give rise to a sequence of subrings (Si)

of S in the following way. Let So = R[β]9 and let Sί+ι = Si[φi+ι] for O^Li<g;

observe that Si = Rlφii for each i. We have now defined for each Galois

extension K ZDk of degree p a chain of rings

7?cSoc . . . cSiCSi+iC . . . (zSgQS.

The inclusion RaS0 is strict and so is each inclusion SiCiSi+i. However, Sg

may equal S.

The rest of this section is devoted to the task of computing S from its

subring Sg and to studying the ramification properties of K ZDk. The reader

may refer to the introduction for the definition of fierce ramification.

LEMMA 2.4. Let k denote the quotient field of a complete discrete rank one

valuation ring R of unequal characteristic, let p — char R, and let S denote the

integral closure of R in an extension K"Dk of degree p.

i) If there exists an element a in S such that av = Aπv~ιa + Cπp where A

is an element of U{S) present in the R-module R(l, a, , av~2) and C is an element

of R\_ά\, then K~Dk is unramified and S = R[0] where θ = a/π.

ii) If there exists an element a in S such that a9 is in πyU(S) where y is a

positive integer relatively prime to p, then Kz^k is wildly ramified and S = R[ΐl~\

where Π = anπm and m and n are integers satisfying mp + ny — 1.

iii) If θ is an element of S such that θ is not in R but θv is in R, then

Kuk is fiercely ramified and S = R[θ].

Proof The definition of θ together with the assumption on a implies

that θv = Aθ + C. Since A is in R(l9 a, , ap'2) and a = πθ, the equality

θv = Aθ + C gives rise to an irreducible monic polynomial f(X) having θ as

a root. Consider the polynomial f(X) of R[X] and observe that f(X) =

XP-ΛX-C. Since f'(X) = - A and AψO because A is in U(S), the

polynomial f(X) can have no repeated roots. If f(X) were reducible over

R it would follow by HensePs lemma (since R is complete) that f(X) is

reducible over R which is a contradiction. Therefore f(X) is an irreducible

separable polynomial over R, and S = R(θ). Prop. 1 p. 25 of [3] now implies

that Kz^k is unramified and S = R\fi\. This completes the proof of part i).
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The assumption on a in part ii) implies that we may consider an

element s of U(S) such that ap — πys. Since ny + mp = 1, an easy compu-

tation shows that Up = πsn where IL = anπm. Therefore Π is a prime element

of S, the extension Kz)k is wild, and S = R[ΐί] (see Cor. 3-3-2 of [6]).

The hypothesis of part iii) implies at once that SziR is purely insepar-

able of degree p and that S = R{θ). Therefore K z^k is fiercely ramified,

and so π is a prime element of S. The fact that S = S/πS together with

the fact that R is a local ring implies that S = R[ff] (see for example p. 270

of [2]).

COROLLARY 2.5. If K~Dk is an extension of degree p, then the extension

SZDR is simple; i.e. there exists an element θ of S such that S = R[θ].

The main result of the paper is presented in the three statements of

Prop. 2.6. Recall that k denotes the quotient field of a complete discrete

rank one valuation ring R of unequal characteristic which contains a primitive

pth root of unity where p = char R. Recall that a Galois extension Kz^k

of degree p may be written K — k{β) where βp — b is in U{x) and x denotes

the field exponent of K ZDk.

PROPOSITION 2.6 A. Let Kzik be Galois extension of degree p with x{Kjk)<p.

i) If x{Kjk) = — 1, then K nk is wildly ramified and S = R[β].

ii) If x{K/k) = 0, then K Z)k is fiercely ramified and S = R[β].

iii) If l^x{K/k)< p, then Kz^k is wildly ramified and S = i?[Π] where

Π = (β — ϊ)nπm and m and n are integers satisfying nx + mp = 1.

Proof If x(K/k) = — 1 then βp = πr for some element r of U(R), so that

β is a prime element of S, the extension K ak is wildly ramified, and S^Rlβ].

If x(K/k) = 0, then Xp — b is irreducible over R according to the defi-

nition of the field exponent. By applying Lemma 2.4 we conclude that

K Όk is fiercely ramified and S = R[β\.

In the case when l^x^Cp, an application of Prop. 1.1 shows that

{β — l)p is in πxU{S). The desired result now follows from Lemma 2.4.

PROPOSITION 2.6 B. Let Kz)k be a Galois extension of degree p such that

x{K/k) = p and a=p—l. Then K Dfc is unramified and S = R[θ] where θ= (β—l)/π.

Proof Since x = p we may write b in the form b = 1 + πvr with r in

U(R), and since a = p — 1 we may write p = πv"ιυ with v in U(R). Let
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a = β — l. Prop. 1.1 implies that ap = uυπp~λa + πpr where u is a unit

present in R(l,β, ,βp~2). Since uυ is in R{l,a, ,αp"2) we may now

conclude from Lemma 2.4 that K z>k is unramified and that 5 = R[alπ\.

The notation used in the statement and proof of Prop. 2.6 C has been

introduced in Prop. 2.2.

PROPOSITION 2.6 C. Let K nk be a Galois extension of degree p such that

x(Klk) = p and a^p, and let g denote the conductor number of K Dfc.

i) If Xp + cg is irreducible over R, then K^k is fiercely ramified and S=Sg.

ii) If Xp + cg is redcible over R and g< (a\p — 1) — 1, then K Z)k is wildly

ramified and S = R[H"] where Π = (φg — yg)
nπm and m and n are integers satisfying

ntg + mp = 1.

iii) If Xp + cg is reducible over R and g = (ajp — 1)—1, then K zik may be

either wild or unramified. In particular, if tg = p — 1 and — cg+λ + ag is a non-unit

of R than Kz)k is unramified and S = R[ff\ where Θ = (φg — yg)lπ. Otherwise

KzDk is wildly ramified and S = R[U] where U = (φg—yg)
nπm for suitable integers m

and n {see the proof below).

Proof. Note first of all that the congruence established in Prop. 2.2

implies that φρ + c« = 0 for each i because a — i (p — 1) > 0 when 0 :< / <

{alp—l)—l. The assumption that Xp + cQ is irreducible over R implies that

φg is not in R since φg

p + cg =~0. Lemma 2.4 now implies that K ZDk is

fiercely ramified and that S = R[φgl. This completes the proof of part i).

The hypothesis for part ii) implies that tg < p. For, if tg were equal

to p, then φg+ι would be defined because g< (a/p — 1) — 1 and Xp + cg is

reducible over R (see the proof of Prop. 2.2). Also, the assumption that

g < (ajp — 1) — 1 implies that a — g(p — 1) ̂  p and so (φg — yg)
p is in τrέ</ U(S)

by Cor. 2.3. Since l^tg^p — 1, an application of Lemma 2.4 gives the

desired result.

In part iii) the assumption that g={alp—1)—1 implies that a—g{p—l) = p—1.

Define the integer t by t = tg if tg^p — 1 and t = p — 1 if tg = p. If

tg ψ p — 1, then Cor. 2.3 implies that (φg — yg)
p is in ^U(S). An application

of Lemma 2.4 now shows that K ZDk is wildly ramified and that S =

where Π = (φg — yg)
nπm and nt + mp = 1.
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If tg = p — l and — cg+1 + ag is in U(R), them Cor. 2.3 implies that

(φg-VgY is in πi-ViS). So K ZDJC is wildly ramified and S = Λ[Π] where

Π = iφg — yg)
nπm and n{p — 1) + mp = 1 according to Lemma 2.4.

Finally, in the case when tg = p — 1 and — cg+ί -f ^ is a non-unit of

i?, let a - φg — yg and note that α satisfies an equation of the form av —

Aπv'ιa + Cπp with ,4 = Ag+1 in {/(S,) and C in Sg according to Cor. 2.3. In

order to apply part i) of Lemma 2.4 it remains to verify that Ag+1 is in the

^-module R(hφg, 9φo

p~2). Since Aλ = uv is in R(l9β, ,βp~2) (see Prop.

1.1) and Ai+1 is defined by Ai+ί = At + fl^*""1^'1', one can show by an

inductive argument that each Ai+ί for 0 ^ i ' ^ 9 is in R{l,β, ,βp-2) because

each Qi is in iv^l,^-!, , ΐ̂_12
)~2) according to its definition in the proof

of Prop. 2.2. The inclusion Λ(l,j9, ,i9*-2)c/?(l,0(,, ,^/"2) now implies

that a — φg — yg satisfies an equation of the desired form because R(l, or, ,

ap-η = R(lnφg, . -,φg

p~2). We conclude therefore by Lemma 2.4 that

is unramified and that S — R[{φg —

The statements of Cor. 2.7 follow at once from Prop. 2.6.

COROLLARY 2.7. L ί̂ i£z>fc ώnofe α Galois extension of degree p.

i) If K^k is unramified^ then the conductor number g(Klk) is (ajp — 1) — 1.

ii) If the field exponent x{K/k) is relatively prime to p, then Kzik is wildly

ramified.

iii) If KZDU is fiercely ramified, then S — Sp-

The next proposition motivates the naming of the conductor number

of an extension.

PROPOSITION 2.8. Let g denote the conductor number of a Galois extension

K~Dk of degree p. Then CR = πQ{v~ι)R where CR is the ideal of R defined by

CR= {c in R\cSgaS0}.

Proof If g = 0 then CR = R and the assertion is true. It follows by an

easy computation from the definitions φt = (^_i — y^lπ for l^Li^g (where

y0 = 1) that φg = {llπ9)φ0 — Σ^yg-Jπ1 with 1 ̂  i ^ g. Observe that an element

c of R is in CR if and only if cφg

% is in So for 1 :< i <: p — 1. By expanding

Φg9'1 — [(1/^)00 "~ Σlyg-il^y'1 according to the binomial theorem and using

the fact that {l,φo, ,^o2?"1} is a free basis for K over k, one may conclude

that an element c of R has the property that cφ/"1 is in So if and only if
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c is in π^v^R. It is easy to see that cφg is in So for 1 ̂  i < p — 1 when

c is in π^v'^R, and this completes the proof.

3. The ramification number . Consider a Galois extension K Ώk of

degree p, where k denotes as usual the quotient field of a complete discrete

rank one valuation ring R of unequal characteristic which contains a pri-

mitive pth poot of unity where p = char R. Let i denote the ramification

number of K =>fc; i.e. let i denote the discontinuity in the sequence of

ramification groups of K ID&. (Explicitly, i is the integer with i :> — 1 for

which G = Gi and Gί+1 — (1) where G is the Galois group of K Z)k and Gj

denotes the j t h ramification group of K Όk.)

The purpose of this section is to give an expression for the ramification

number i in terms of the conductor number. (In the case when x{Klk)=—l

hte ramification number of K ZDk is well known (see Exercise 4 p. 79 of [5])).

In the following proposition, g denotes the conductor number of K Dfc,

x denotes the field exponent of K Z)k, and a denotes the absolute ramification

index of k.

PROPOSITION 3.1. Let i denote the ramification number of a Galois extension

K Z)fc of degree p.

ϊ) If Kz^k is unramified then i — — 1.

ii) If K Όk is wildly ramified then i = ap\p — 1 when x = — 1, and

i={aplp—l)—gp—t when xψ—1 where l^t^p-1 and rad Sg= {π9ΐl
tSf)Sg)Sg.

Furthermore, t = x when 1 < x :< p — 1.

iii) If K Dfc is fiercely ramified then i = (a\p — 1) — g — 1.

Proof The equality G^~G{Klk) always holds. When Kz>k is unramified

it is well known that Go — (1).

If Ki)k is wildly ramified and x — — 1, then β is a prime element of

S and an easy computation shows that the discontinuity in the sequence of

ramification groups occurs at i = ap\p — 1.

In the case when Kz)k is wildly ramified and x > — 1 (so that β is a

unit), recall that the element φg — yg of Sg has the property that (φg — yg)
p

is in πct/(Sg) for some integer t with l^t <p — 1 (see Props. 2.6 A and

2.6 C). An easy computation shows that (φg — yg)S = IX gS. Since rad Sg is

generated by π and φg — yg we may now conclude that rad Sg - (π, Π^SHS^).

(Using the assumption that K Z) k is wild together with the fact that



164 SUSAN WILLIAMSON

1 -<, t ^ p — 1, one can show that t is the unique integer satisfying the

equality rad Sg = (TΓ, IίtSf)Sg)Sg.)

We proceed to compute the ramification number i of KDk. Consider

positive ingeters n and w such that nt — wp = 1, and recall that S = R[Iί]

where Π = (φg — yg)
nlπw is a prime element of S. Let ζ denote a primitive

pth root of unity and let a be the element of G(Klk) defined by σ{β) = ζβ.

It follows from the definition of Π that σ is in the ith ramification group

Gι if and only if

- yg) - (φg - yg)1ίσ(φg - y,)*-1 + . . . + (φg - yg)
n^]lπw

is in IP+ 1S. Observe that σ{φg-yg)
n'1+ + {φg-yg)

n~1 is in n(φg-ygγ-ιU(S)

because σ{φg— yg)^= φg — yg mod USg. Since n is relatively prime to p, we

now have that σ is in G* if and only if {σ{φg)—φg) {φg—yg)
nlπw is in [φg—yg)Uί+ιS.

The definition of Π together with the fact that {φg — yg)S = ΠCS implies

that σ is in Ĝ  if and only if a{φg) — φg is in Π f + ΐS. Use the equality

φg = (llπg)β - Σiyg-Jπ* with l^i^g (see the proof of Prop. 2.8) to obtain

that σ{φg) — φg is in{ζ — 1)1 π9U{S). We may now conclude that a is in Ĝ  if

and only if i^(ap\p — 1) — gp — t and this completes the proof of part ii).

When KΌk is fiercely ramified, S = Sg according to Cor. 2.7. Let ζ

and (j be as above, and note that σ is in Ĝ  if and only if σ(φg) — φg is in

πί+1S. The equality φg = (llκg)β — ΣlVo-J^ with l^i^g now implies that σ

is in G* if and only if (ζ-l)/πg is in πί+1U{S), i.e. if and only if i^(a/p-l)

-9-1.

COROLLARY 3.2. The conductor number g{K/k) is uniquely defined.

Proof. The proof follows at once from Cor. 2.7 and Prop. 3.1.

4. The different. Throughout this section K'Dk shall always denote

a Galois extension of degree p where k is the quotient field of a complete

discrete rank one valuation ring R of unequal characteristic containing a

primitive pth root of unity where p = char R, and S shall denote the integ-

ral closure of R in K. The object of this section is the computation of the

diferent D{SIR) in terms of the conductor number g(K/k). From this we

shall establish a criterion for determining if KzDk is unramified, wild, or

fierce in terms of the differential exponent and the conductor number.

The assumption on the degree of K'Dk implies that SDR is a simple

extension (see Cor. 2.5). It is well known in the case of an extension with
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a separable residue class field extension, that the ramification groups yield

an expression for the differential exponent. A similar expression holds for

any Galois extension L~Dk with the property that the integral closure S of

R in L is a simple ring extension of R. The proof of the following lemma

may be obtained at once from pp. 33-34 of [3], and for the convenience of

the reader we present it here.

LEMMA 4.1. Let L denote a Galois extension of the quotient field k of a

complete discrete rank one valuation ring R such that the integral closure S of R in

L is a simple ring extension of R. Then the differential exponent d = d[L\K) is

given by

d = Σ(& — 1) with 0 < i < oo

where gt denotes the order of the ith ramification group of L~Dk.

Proof. The assumption that S^R is a simple ring extension means that

we may write S = R[ά] for some element a of S, so that D(SIR) — g'(a)S

where g(X) denotes the minimal polynomial of a over k (see Prop. 6 p. 17

of [3]). From this it follows that d(L/k) = vL{Iί{a — aa)) where σ ranges over

the set G{L/k) — {1} and vL denotes the valuation of L. The homomorphic

property of υL now implies that d(L/k) = ΣvL(aσ — a) with σ ranging over

Let gt denote the order of the ith ramification group of LzDk. If an

element σ of G{Ljk) is in G _̂i — Gu then vL(aσ — a) - i. The above expres-

sion for d{Llk) now implies that d(L/k) = Σ3ί(&-i — &)• From the equalities

Σί(flri-i-flri) = Σ f ( f l f i - i - l ) - Σ f ( Λ - l ) = Σ ( Λ - l ) with 0<£i<oo we may

now conclude that d(L\k) = Σ(& — 1).

By combining Prop. 3.1 with Lemma 4.1 we may now compute the

differential exponent of a Galois extension of degree p. In the following

proposition, t denotes the integer between 1 and p — 1 defined in the state-

ment of Prop. 3.1.

PROPOSITION 4.2. Let K^>k denote a Galois extension of degree p with

differential exponent d, conductor number g, and field exponent x. Let a denote the

absolute ramification index of k.

i) If Kz)k is unramifiedy then d = 0.
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ii) If Ki)k is wildly ramified, then d = ap + (p — 1) when x - — 1, and

d — ap — gp(p — 1) — (t — 1) (p — 1) when l^Lx^p.

iii) If Kz>k is fiercely ramified, then d — a — g{p — 1).

Proof For the unramiίied case the assertion is well known.

Consider the case when Kz)k is wild. If x = — 1, then d = Σ(& — 1)

with 0 :< i :< #p/p — 1 by Lemma 4.1 since αp/p — 1 is the ramification number

of K~3k (see Prop. 3.1); therefore d-ap + (p—1) since & = # for O^i^apjp—1.

If 1 ̂  # ̂  #, then the ramification number of KiDk is {apjp — ϊ) — gp — t,

so that J = ΣliQi — 1) with O^Li ^ (apjp — 1) — gp — t, from which it follows

that d = ap — gp(p — 1) — (/ — 1) {p — 1).

In the case wheni£=)Hs fierce, the ramification number is (ajp—1)—g— 1.

So J = Σ(& — 1) with 0 ̂  ί < (fl/p - 1) — flr — 1, from which it follows that

PROPOSITION 4.3. Z^ί d(Kjk) denote the differential exponent of a Galois

extension Kz^k of degree p, let g denote its conductor number, and let a denote the

absolute ramification index of fc. Then

ϊ) KzDk is unramified if and only if d(Kjk) = 0

ii) Kz)k is fiercely ramified if and only if d(Kjk) = a — g(p — 1).

iii) Kuk is wildly ramified if and only if d(Kjk) >a — g(p — 1).

Proof Statement i) is well known (for example combine Prop. 1 p. 25,

Prop. 6 p. 17, and Thm. 1 p. 21 of [3]).

We proceed to prove that d(Kjk) >a — g(p — 1) when Kz>k is wild. The

proof shall depend upon the expression for d(Kjk) presented in part ii) of

Prop. 4.2. If the field exponent x of Kz)k is —1 then # = 0 (see Section

2) so that the desired inequality holds because d(Kjk) = ap + (p — 1) a. If

on the other hand, 1 < x ^L p, then d(Kjk) — ap — gp(p — 1) — (t — 1) (p — 1)

where t satisfies O^t — l^p — 2. An easy computation shows that

d(Kjk) >a— g(p — 1) if and only if a—g(p — 1) — (t — 1) > 0 . The inequalities

g :< (ajp — 1) — 1 (see Prop. 2.2) and t — 1 ̂  p — 2 together imply that

a—g(p—l)—(t—ϊ) > 0 , and we may conclude therefore that d(Kjk) >a—g(p—l)

whenever Kz^k is wild.

If K'Ώk is fierce, then d(Kjk) = a — g(p — 1) by part iii) of Prop. 4.2.

Conversely, if d(Kjk) — a — g(p — 1) then Kz)k cannot be unramified because
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a — g{p — 1) >0 and Kz)k cannot be wildly ramified according to the above

observation concerning the differential exponent in the wild case.

To complete the proof of the proposition it suffices to observe that if

d{Klk) >a — g(p — 1) then KDJC can be neither unramified nor fierce.

5. Cyclotomic extensions. The following definition may be found

on p. 41 of [1],

DEFINITION. Let k be any field. The extension obtained by adjunction of all

roots of unity shall be called the maximal cyclotomic extension of k and any intermediate

field a cyclotomic extension of k.

Let k denote the quotient field of a complete discrete rank one valuation

ring R of unequal characteristic. Assume that R contains a primitive pth

root of unity where p = char R and let Kz>k denote a cyclotomic extension

of degree p. Prop. 2.6 gives criteria for detemining the ramification properties

of such an extension. The following examples demonstrate the existence of

unramified, wildly ramified, and fiercely ramified cyclotomic extensions of

degree p.

EXAMPLE 5.1. Let Z denote the ring of integers and let Z\_X\2) denote

the localization of the polynomial ring Z\X\ at the prime ideal (2). Through-

out this example Ro shall denote the completion of Z[X](2) and k0 shall

denote the quotient field of Ro.

In order to produce an unramified cyclotomic extension of degree p we

shall take the ground ring R to be an extension of Ro. Namely, let R be

the integral closure of Ro in the extension k = ko{i/3~) of k0. (Observe that

1 —1/3~ is a prime element of R.) We shall show that the cyclotomic ex-

tension k(i)nk is unramified of degree 2 where i denotes a primitive fourth

root of unity. For consider the element θ = (/3~ - z)/2(2 - /3~) of jfc(ι). It

is easy to verify that f(X) = X2 + [(2 - i/ΊΓ)/(7i/3" - 12)]X+ [t'/W3~-12)] is the

minimal polynomial of θ over k. By applying Prop. 1 on p. 25 of [3] we

may now conclude that k{i)iDk is unramified.

Again let i denote a primitive fourth root of unity. The element i—1 of

ko(i) is a root of an Eisenstein polynomial over Ro, from which it follows

that ko{i)z^ko is a wildly ramified cyclotomic extension of degree 2.

Finally, in order to exhibit the existence of a fiercely ramified cyclotomic

extension, consider the integral closure R of Ro in the extension k = ko{i/2X)
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of k0. Observe that R = R0[i/2X ] and that -J2X is a prime element of R.
1

The extension k(i)z>k has residue class field extension R{X2)z)R whose in-

separability implies that k{i)z)k is a fiercely ramified cyclotomic extension.

The above examples motivate us to determine sufficient conditions on

the ground ring R in order that a cyclotomic extension obtained by the

adjunction of a pt th root of unity be wildly ramified. For this we shall

make use of the following definition.

DEFINITION. Let R be a complete discrete rank one valuation ring of unequal

characteristic. Then R is said to be absolutely tamely ramified if a is relatively prime

to p where a denotes the absolute ramification index of R and p denotes the character-

istic of R.

PROPOSITION 5.2. Let R denote an absolutely tamely ramified complete discrete

one valuation ring containing a primitive pth root of unity ζ, and let k denote the

quotient field of R. Let ξ denote a primitive p* th root of unity. Then the extension

is wildly ramified of degree p*"1.

Proof. The hypothesis implies that a\p — 1 and pι~x are relatively prime

where a denotes the absolute ramification index of R. We may therefore

consider integers m and n such that majp — 1 + np*'1 = 1. Let π denote a

prime element of R, and define the element Π of k(ξ) by Π = (ξ — l)mπn.

A straightforward computation shows that Π p ί l = πu for some unit u of

k(ξ), from which it follows that k{ξ)z)k is wildly ramified of degree p^1.
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