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RAMIFICATION THEORY FOR EXTENSIONS
OF DEGREE p

SUSAN WILLIAMSON

Introduction. The notions of tame and wild ramification lead us to
make the following definition.

DErFINiTION.  The quotient field extension of an extension of discrete rank one
valuation rings ts said to be fiercely ramified if the residue class field extension has a
nontrivial inseparable part.

The purpose of this paper is to study ramification in Galois extensions
Kok of degree p. The ground field % is the quotient field of a complete
discrete rank one valuation ring R of unequal characteristic, and » denotes
the characteristic of R. Assume furthermore that R contains a primitive
p*™ root of unity, from which it follows that the absolute ramification index
a of R is divisible by » — 1.

Observe that a Galois extension of degree p may be unramified, wild,
or fierce. In order to study the properties of such an extension relative to
ramification we established a technique for computing the integral closure
S of R in K.

The computation of S is facilitated by a judicious choice of the element
of & whose p°* root defines the extension. Let U® for i=0 denote the
usual filtration on U(R), and let UV denote the set of prime elements of
R. In Section 1 we associate to each Galois extension KDk of degree p an
integer x with —1<<2 =< p called the field exponent of the extension such that
K = k(b/?) for some element b of U™ (see Prop. 1.6).

The ring R[b'/?] where b is in U™ is contained in the integral closure
S, but equality need not hold. In Section 2 we present a technique for
computing S which entails the construction of a chain (S;) with 0=<i<g
of simple ring extensions S; of R where S,= R[b'?], S,.,CS;, and S,<S.
The integer g satisfies the inequality 0==g¢g=(a/p —1) —1 and is called the
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conductor number of Kok. By examining the terminal ring S, of the chain
one can determine if Kok is unramified, wild, or fierce and obtain an ex-
pression for the integral closure S (see Prop. 2.6).

The importance of the conductor number g of a Galois extension of
degree p is demonstrated in Sections 3 and 4.

In Section 3 we obtain an expression for the ramification number i of
Kok in terms of the conductor number g. Namely, i = (ap/p —1) —gp — ¢
with 0=<< t<p —1 when K>k is wild, and i =(a/p—1)—g—1 when K>k
is fierce.

In Section 4 we present expressions for the differential exponent d(K/k)
of a Galois extension KDk of degree p in terms of the conductor number
g. From this we obtain the following criterion for ramification in terms of
the differential exponent.

Propostrion.  Let d(K[k) denote the differential exponent of a Galois exiension
Kok of degree p, let g denote its conductor number, and let a denote the absolute
ramification index of k. Then

1) Kok is unramified if and only if d(KJk) =0
il) Kok is fierce if and only if d(K/k)=a—g(p —1)
il) Kok is wild of and only if d(K[k) >a— g(p —1).

Finally, in Section 5 we present examples to show that a cyclotomic
extension of degree p may be unramified, wild, or fierce.

The following notation shall be in use throughout the paper. The set-
theoretic difference of sets X and A shall be denoted by X—A. If R is a
ring, then its multiplicative group of units shall be denoted by U(R) and
its radical by rad R. If ¢ is an element of an overring T of R, then R[¢]
shall denote the intermediate ring obtained by adjoining ¢ to R; if m is an
element of an R-module M, then R(m) denotes the R-submodule of M
obtained by adjoining m to R. If R is a local ring, then R shall denote
its residue class field.

The filtration U on the group of units of a discrete rank one valuation
ring R is defined for i =0 by U® = U(R) and U® =1+ z'R for i >0 where
= denotes a prime element of R (see p. 19 of [6]). For convenience of no-
tation (see Section 1), we shall let UtD = zU®,

For the definition of the i** ramification group G, we refer the reader
to p. 97 of [6], and for the definition of ramification number to p. 294 of
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[8]. The definitions of tame and wild ramification may be found on pp.
88 — 89 of [6], and the definition of differential exponent on p. 298 of [8].

Unless otherwise stated, R shall always denote a complete discrete rank
one valuation ring of unequal characteristic containing a primitive p** root
of unity where p denotes the characteristic of R, and S shall denote the
integral closure of R in a Galois extension K of degree p over the quotient
field k¥ of R; z shall denote a prime element of R and II a prime element
of S. The definition of the absolute ramification index a« of R is given on
p. 45 of [5].

1. The field exponent. Let & denote the quotient field of a complete
discrete rank one valuation ring R of unequal characteristic, and assume
that & contains a primitive p* root of unity. The main purpose of this
section is to define for each Galois extension K>k of degree p an integer
¢ with — 1<z <p which we shall call the field exponent of Kok (for the
definition see the end of Section 1). The notion of the field exponent shall
be used in the rest of the paper for studying ramification.

Consider an extension KDk where K = k(»?) and & is in R, and let
B8 =10b"?. Observe that the ring R[f] is contained in the integral closure of
R in K and that this inclusion may be proper or improper; observe also
that R[A] is a local ring (see p. 9 and p. 105 of [4]).

In the case when 5 is in U® the unique maximal ideal of R[5] is gene-
rated by = and 8—1. The following proposition presents technical infor-
mation about the ring R[8] when g =5 is in U® which shall be useful
throughout the paper.

ProposrtioN 1.1, Let b denote an element of U®W and let g = b2, The
element (B — 1)® of RIB] is of the form

B=1"=0b—-1+up—1)

where u is an element of the R-module R(1,B, - - +,p7"%) and satisfies the congruence
= — 1 mod (p,f — 1)R[A].

Proof. In the case when p=2 an easy computation shows that
B—12=(0b—1)+ (—12(B—1). Therefore g —1 satisfies an equality of the
desired form with » = — 1.

Assume now that p is an odd (positive) prime number. Expanding (8—1)
according to the binomial theorem one obtains that (8 —1)® = (b—1)— B,8*"!
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+ o+ (—=1)BpFi+ -+« + B,_,8 where B, denotes the i** binomial coef-
ficient. By combining terms with the same binomial coefficient one obtains
the equality (B—1)? = (b— 1)+ X (— 1) B,(fP~% — 1)f" with 1=<i=<(p—1)/2.
Define A;=(—1)'B,/p. Expressing p-%—1 in the form pP-%—1 = (?-2-1 4
«e- 4+1) (8—1) we get that (83— 1) = (b—1) + p(8—1) 23 4,(Br~%"1 4 -+ - +1)f°
from which it follows that # = 31A,pr~"'+ ... + ), Since there are
p —2i summands in the expression p?~i~1+4 ... 4 g the element (B7-i-!
4+ kB —(p—2i)is in (B—1R[Bl. For 1<i=<(p—1)/2 let s; denote the
element of R[F] defined by (fr~i14 -+« +8)—(p—2i)=(B—1s;. Then
u=B—1)2As; + 2 A(p—2i). Now XJA(p —2i)=—1 mod (p) (see Lem-
ma 2.8 of [7]); we have shown therefore that (8 — 1)® satisfies an equality of
the desired form with # = —1 mod (p,8 — 1)R[B].

It remains to show that # is in the R-module R({,8,--:,8772). For
each { with 1<i<(p —1)/2, the element g~ 4 ... + g isin R(1,B8, - - -,
B’~%) because p—i —1=<<p—2 when 1=<<i. Since u =3 A4, 1+ . .+8),
it now follows that # is in R(1,8, - - -,B°-?) and this completes the proof.

We proceed to prove propositions preliminary to the definition of the
field exponent.

LemMA 1,2, Let k denote the quotient field of a complete discrete rank one
valuation ring R of unequal characteristic, and let a denote the absolute ramification
index of R. If b is in U™ for n= (ap/p — 1)+ 1, then b has a p"™ root in k.

Progf. Let p=10"? where b=1+z"r denotes an element of U™, and
define the element 7 of k(8) by 7 = (8 — 1)/z%/*-1, Since k(r) = k(B) it suffices
to prove that deg,7<p in order to prove the lemma (see Prop. p. 121 of
[1]). The equality (8—1? = (b —1)+ up(f —1) established in Prop. 1.1
together with the definition of 7 implies by an easy computation that
7? = ar + uvr where v is the element of U(R) defined by vz® = p. Since u
is in the R-module R(1,8, . -,8772) according to Prop. 1.1, it follows at
once from the definition of 7 that # is in the R-module R({,7, - - -,7772),
Therefore the equality 7? = zr + uvr gives rise to a monic polynomial f(X)
in R[X] with £()=0. Since u=—1 mod (p,8 —1)R[8], and R[f] = R, we
have that f(X)= X? + X in R[X]. We have assumed that R is complete;
therefore the factorization f(X)= X(X?"!+ %) implies that f(X) is reducible
over R by Hensel’s lemma. Hence deg,7 < p, and so we may conclude
that g is in R.



RAMIFICATION THEORY 153

The preceding lemma shall be useful for proving the following existence
statement.

ProposiTioN 1.3.  Let k denote the quotient field of a complete discrete rank
one valuation ring R of unequal characteristic which contains a primitive p*™ root of
unity, and let Kok be a Galois extension of degree p where p = char R. Then K
is of the form K = k(b'/?) jfor some element b of U™ — U@+ (set-theoretic difference)
with —1<z<p.

Proof. Since k contains a primitive p"* root of unity, a Galois extension
K>k of degree p is of the form K = k(c/?) for some element ¢ of k. Using
the division algorithm it is easy to see that such an element ¢ may always
be chosen in 7*U(R) for some p with 0=<< p < p.

We next observe that if ¢ is in z*U(R) with 1< p < p — 1, then there
exists an element » in zU(R) such that k(c“/?) = k(b/?). For there exist inte-
gers m and n such that mp + np =1 because p and p are relatively prime.
Let b = ¢"z™?, and observe that 4 is in zU(R). Since n is relatively prime
to p we may conclude that k(cV?) = k(b/?) by Lemma 3 p. 90 of [3].

It remains to consider the case when p =0, i.e. when K = k(c'/® with
¢ in U(R). Write ¢ in the form ¢=1+7z¢ with y=0 and ¢ in U(R).
Observe that k(c?) = k((cd?)/?) for every non-zero element d of k. The
proof shall depend upon the proper choice of the element d. Recall that
the absolute ramification index a of k satisfies a==p —1 because we have
assumed that % contains a primitive p** root of unity. If a=p—1, then
the assumption thet [K :k]= p implies that 0=y =<p according to Lemma
1.2. We may therefore restrict our attention to the case when a>p—1
and y >p. Let d =1+ and let b= cd®”. Since y >p and a==p, an easy
computation yields that » is of the form » =1+ z» with » in U(R), and
this completes the proof.

CoRrROLLARY 1.4. Let KDk be Galots of degree p. If K =k(dY?) for some
element b of U™ such that b has a p'™™ root in R, then there exists an element b,
in UD — Ut with 1<x<p such that K = k(b,?).

Proof. Since b is in U(R) and b has a p™ root in R, there exists an
element ¢ in U(R) such that ¢? =5 mod zR, and so we may consider an
element w of U(R) and a positive integer y such that b = ¢® + z'w. Define
c: = b/c” and observe that ¢, is in U? — U%*) with y >0. The proof of
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Prop. 1.3 shows that there exists an element b, in U® — UG+) with 1<x<p
such that k(c,'/®?) = k(b,1/?).

In order to prove the desired uniqueness property of the integer =z
whose existence is guaranteed by Prop. 1.3 and Cor. 1.4 we first prove a

lemma.

Lemma 1.5. 1) If b, and b, are elements of k such that

by is in UC? — U™ with 1<, <7p

by 15 in U — Ut wpth 1< 2, <p
and k(blllp) = k(bgl/p), t[lEn X1 = Lo,

1) If b is in UCY, then E(BY") # k(b V?) for every by, in U(R).
i) If by ts in U®, b, s in UD, and k(") = k(b,"/?), then b, has a p™
root in R.

Proof. The assumption that k(b,'/?) = k(b,/?) implies that b,=b,"c® where
n denotes a positive integer relatively prime to » and ¢ is in U(R) (see
Lemma 3 p. 90 of [3]). It is easy to verify that 4," is of the form &," = 14 7w
where w is in U(R). The assumptions that b, and b, are in U® imply that
c is in UM and so we may write ¢ in the form ¢=1+z¢t with ¢ in R.
Then b, = (1 + z®2w) (1 + x¢)® and so b, satisfies the congruence b, =1+ %
mod z?R since the absolute ramification index @ of & satisfies a=p —1. If
2, < p, it now follows that z, = z,. If z,=p, then the above expression
for b, implies that x,=p. Since we have assumed that xz,< p, we conclude
that z, = z, = p.

The proof of part ii) is by contradiction. Assume that k(b/?) = k(b,/?)
for some element b, of U(R). Then & = 5,"c? for some element ¢ of R and
some integer n relatively prime to p. So ¢® = b/b," is in zU(R) from which
it follows that ¢ is in zR and & is in z”R which contradicts the assumption
on b.

It remains to prove part iii). Since k(b,"/?) = k(b,/?) and b, and b, are
in U(R) we may consider an integer » relatively prime to p» and an element
¢ of U(R) such that b, = b,"c®. Now b, =1 because b, is in U®, Therefore
b, =¢.

The next proposition follows at once from the preceding lemma and
Prop. 1.3 together with its corollary.
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ProrosiTioN 1.6. Let k denote the quotient field of a complete discrete rank
one valuation ring R of unequal characteristic and let p = char R.  Assume that k
contains a primitive p*" root of unity, and let K Dk denote a Galois extension of
degree p. Then there exists a unique integer x such that K Dk s of one of the
Jollowing forms :

1) K = k(b?) for some element b of U™ with x = —1
i) K =Fk(v?) for some b in U® —Ue*Y with x =0 and such that the
polynomial XP — b is irreductble over R

i) K =k(dv?) for some b in U® — U™ with 1<z < p.

DeriniTION.  Let K Dk denote a Galois extension of degree p. The unique
integer x(K|k) = x between — 1 and p defined by Prop. 1.6 is called the field ex-
ponent of K Dk.

2. The conductor number. Consider a Galois extension K Dk of
degree p where K = k(8) and 8 = b is in k. According to Section 1 we may
assume that the element b is in U® where z = 2(K/k) denotes the field ex-
ponent of K Dk.

In this section we present a method for computing the integral closure
S of R in K by constructing a sequence (S;) (0=<i<g) of ring extensions of
R in S such that Sy = R[g], S;-1<S;, and S,&S. The number g satisfies
the inequality 0<<g=(a/p — 1) — 1 and shall be called the conductor number
g(K/k) of K>ok. Its importance shall be seen in the results of Sections 2,
3, and 4 of this paper.

We proceed to define the chain of rings (S;) which shall be used for
the construction of S. For the sake of clarity we shall consider separately
the cases z<<p and z = p.

DEeFINiTION.  If the field exponent x = x(K[k) of K Dk s such that x < p,
we define the conductor number g = g(K[k) to be zero.

When z(K/k) < p we therefore have S, = R[BlcS. In Prop. 2.6 A we
construct S from S, for such z.

We now restrict our attention to the case of an extension K Ok for
which « = z(KJ/k)=p. The construction of the integral closure S is facilitated
by a separate consideration of the case when the absolute ramification
index @ of k equals p —1. When a=9—1 and z(K/k) = p we shall define
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the conductor number g¢(K/k) to be zero. In Prop. 2.6 B we construct S
for the case when 2 = p and a=p —1 and prove that such an extension is
always unramified.

It remains to consider extensions K Dk with field exponent p for which
the absolute ramification index @ of k satisfies a=p. The following lemma
shall be used for proving Prop. 2.2. which is technical in nature.

LemMmA 2.1. Let R denote a discrete rank ome valuation ring of unequal
characteristic whose absolute ramification index a satisfies the inequality a=1p where
p=char R. If X* —7 =0 has a solution in R, then there exists an element r, in
R such that v* — v is in otR — ot*'R with 1<t < p.

Proof. Let 7, denote a solution of the equation X? —7=0. If »’—7
is in #tR — zt*'R for some ¢ with 1<¢<p, then we may take r,=r,. If
75 —r=0 mod z?*'R, then we may write 7, —7 = ar?*! with « in R. Define
71 =r,+ = and observe that »? —7 =7 —r +x” + zpr for some element 7
in UR). So r® —r = ar?* 4 z? 4+ zo*1y7 where v is the element of U(R)
defined by z% = p. The assumption that ¢a=p now implies that »> — 7 is
in z?R — z?*'R,

ProposiTioN 2.2, Let K Dk denote a Galois extension of degree p whose field
exponent x(K[k) is p, and for which the absolute ramification index a of k satisfies
a=p. There exisis a pair of sequences (c;) and (¢p;) with 0<<i<g such that

i) each ¢; is in UR), co=—0b, and ¢, = —r where b=1+ z°r
i) each ¢; is in US), ¢o=248, and ¢, = (¢o— L)z
i) l1=g<(@p—1-—1

and such that for every i >0 the pair of elements ¢, and c; satisfy a congruence of
the form

¢f = — ¢; + B i@ D 4 Aze=ie=Dg, mod 7o ¢;R($;-)

where A; is in U(R[B]), B; is in R[$;], and R(¢;-.) denotes the R-module R(1,$;-y,

.. .’¢i_1p-2).

Proof. Observe that when i =0 we have ¢, = —¢,. For i =1, Prop.
1.1 implies that ¢,” =[(8 — 1)/z]° = [2?7 4+ up(8 — 1))/z* = r + uvz®~?*'¢, where
v is the element of U(R) defined by z% = p and # is in U(R[B]). Therefore
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¢f = — ¢+ Aae~@V¢, with A, = uv, and so ¢, satisfies a congruence of the
desired form with B; = 0.

We proceed to define the pair of sequences (¢,) and (c¢;) inductively.
So assume that ¢; and ¢; have been defined for some ¢ with 1< i<(a/p—1)—1,
and that an R-module congruence of the form

¢ = — ¢; + Bgomi@ O 4 A;ze-ie-Ng, mod x4 PG, R(¢;-1)

holds for some element A; of U(R[B]) and some B; in R[¢;].

If the polynomial X? + ¢, is irreducible over R, then we terminate the
sequences, i.e. we do not define ¢;,; and ¢;4y.

On the other hand, if X? 4 ¢; is reducible over R, then it has a root
in R (see Thm. 7 p. 66 of [8]). According to Lemma 2.1 we may therefore
consider elements y; and &;,, of U(R) such that y,? + ¢;=¢,. % with 1<<¢,<p.
Consider the element g; of R(1,¢;-1, + * +,¢:-1?~%) defined by

¢i1? =—q + Bin.a—i(p—l)ﬂ + Aiﬂa‘_i(p—l)gé,; + giﬂa_p+l¢i

whose existence is guaranteed by the inductive hypothesis. Form the element
é; — y; of R[$;] and observe that

(s —y)" =6 — 1y’ mod p(p; — ¥:i)R(¢:)
= — &yt + Bomio D 4 (A, 4 gzli=De=D)y ga=itp=1)
+ (A + gastDED) (g, — ypemieD
mod p(¢; — ¥:)R(4,).

In order to define A,,;, observe that a computation like the one used
in the proof of Prop. 2.9 shows that 2G-D@-DR[g, ] is contained in R[S].
Since ¢; is in R[¢;-,] and A; is in U(R[B]) it now follows that the element
Azyy defined by A= A, + gné D@0 is in U(R[B]). (Note that A4, = A,
because g, = 0).

Recall (see the beginning of Section 1) that R[] is a local ring whose
maximal ideal is generated by z and f—1 and whose residue class field is
R. Since ¢,=(B—1)/r is in S because we have assumed that xz(K/k) = »,
the element #—1 is in zR[¢,]. Therefore we may consider elements a; of
U(R) and A; of R[¢,] such that A,,,y; = a;, + A;z. Define the element B; of
RI$;]1 by B;=B; + A; and observe that the definitions of A,,; and B; together
with the congruence established above imply that
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(¢Z — yi)p = — Gt A+ @meTie-h 4 Biﬂ.a—i(p—l)-ﬂ

+ At (¢ — yo)re~¥ 2D mod p(¢; — y,)R(¢:).

The above congruence shall be denoted by (*).

Now we may complete the definition of the sequences (¢;) and (¢;). If
i=(a/p—1)—1 or if ;< p then we terminate the sequences.

However, if ¢, = p and i < (a/p —1) — 1 we define ¢,,, = (¢, — ¥;)/z. The
congruence () established above implies at once that

Bier” = — Ciaq + @maTi@TD7P 4 Ei”a—(“l)w”l)

+ Agy e @e=Dg, . mod z¢7?*g,. R(¢;).

The ring R[¢.] is a local ring with residue class field R whose maximal ideal
is generated by = and ¢, —y;. We may therefore consider elements b, of
R and B, of R[¢,.,] such that B; = b, + B;,;z. Define the element c¢;.; of
U(R) by the equality — c;41 = — 41 + @r@ #@D=2 4 pgo-tthe-b, Then

Pint” = — Cia1 + Byyme@GO@DN L 4, gemi4D0-Dg, mod 7272, 1 R(4;)

and this completes the proof.
Statement (*) of the above proof shall be useful for the construction of
S and so we present it as a corollary.

CoroLLARY 2.3. If the polynomial X® + ¢, is reducible over R for some
1221, then the element ¢, — vy, of S satisfies a congruence of the form

(Bs — Yo)* = — Eppm® + ame=i@~V - Bypa~ite=h+l
+ Ajii(@; — yy)note=D mod p(¢; — Y;)R($:)
where a; is in UR), B; is in Rl¢;] and 1< t,< p.

Prop. 2.2 enables us to define the conductor number of an extension
with field exponent p.

DEerINITION.  Let K Dk denote a Galois extension of degree p whose field ex-
ponent x is p. If a=p—1 we define the conductor number g(KJk) to be zero. If
az=p, consider a sequence (¢;) (0<<1i=<g) of elements whose existence is guaranteed
by Prop. 2.2. The integer g depends only upon the extension K Dk (see Cor. 3.2)
and we call g = g(K/k) the conductor number of K Dk.
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We have now defined the notion of conductor number for each Galois
extension K Dk of degree p. Note that g(K/k) >0 if and only if x(K/k)=p
and ¢=p. In the case when g =0 we define ¢, = 5.

The elements ¢; defined above give rise to a sequence of subrings (S;)
of S in the following way. Let S, = R[], and let S;.;=S.[¢;..] for 0=<i <g;
observe that S; = R[¢,] for each i. We have now defined for each Galois
extension K Dk of degree p a chain of rings

RcS,c-..cS;cS;c- - - CS,E8.

The inclusion RcS, is strict and so is each inclusion S;cS;,;. However, S,
may equal S.

The rest of this section is devoted to the task of computing S from its
subring S, and to studying the ramification properties of K Dk. The reader
may refer to the introduction for the definition of fierce ramification.

LEmMMA 2.4. Let k denote the quotient field of a complete discrete rank one
valuation ring R of unequal characteristic, let p = char R, and let S denote the
integral closure of R in an extension K Dk of degree p.

1) If there exists an element a in S such that «® = An?~'e + Cn? where A
is an element of U(S) present in the R-module R(1,e, + + »,a?"2) and C is an element
of Rlal, then K Dk is unramified and S = R[0] where 0 = a/x.

ii) If there exists an element « in S such that o is in z'U(S) where y is a
positive integer relatively prime to p, then K Dk is wildly ramified and S = R[1I]
where 11 = a™z™ and m and n are integers satisfying mp + ny = 1.

i) If 0 is an element of S such that § is not in R but §° is in R, then
K Dk is fiercely ramified and S = R[6].

Proof. The definition of 4 together with the assumption on « implies
that ¢* = A6+ C. Since A is in R(1l,a, -+ +,a?"?) and « =76, the equality
6” = A9 + C gives rise to an irreducible monic polynomial f(X) having 6 as
a root. Consider the polynomial f(X) of R[X] and observe that f(X) =
X? —AX—C. Since f(X)=—A and A=£0 because A is in U(S), the
polynomial f(X) can have no repeated roots. If F(X) were reducible over
R it would follow by Hensel’s lemma (since R is complete) that f(X) is
reducible over R which is a contradiction. Therefore f(X) is an irreducible
separable polynomial over R, and S = R(§). Prop. 1 p. 25 of [3] now implies
that K Dk is unramified and S = R[#]. This completes the proof of part i).
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The assumption on « in part ii) implies that we may consider an
element s of U(S) such that o® =z's. Since ny + mp =1, an easy compu-
tation shows that II?=zs" where ll=a"z™. Therefore II is a prime element
of S, the extension K Dk is wild, and S = R[II] (see Cor. 3-3-2 of [6]).

The hypothesis of part iii) implies at once that SOR is purely insepar-
able of degree p and that S = R(#). Therefore K Dk is fiercely ramified,
and so z is a prime element of S. The fact that S = S/zS together with
the fact that R is a local ring implies that S = R[4] (see for example p. 270
of [2]).

CoROLLARY 2.5. If KDk is an extension of degree v, then the extension
SOR is simple; i.e. there exists an element 6 of S such that S = R[6].

The main result of the paper is presented in the three statements of
Prop. 2.6. Recall that £ denotes the quotient field of a complete discrete
rank one valuation ring R of unequal characteristic which contains a primitive
pth
of degree p may be written K = k() where g =5 is in U and =z denotes
the field exponent of K Dk.

root of unity where p = char R. Recall that a Galois extension K>k

ProrosiTiON 2.6 A.  Let K Dk be Galois extension of degree p with x(K/k)<p.

1) If 2(Kjk) = — 1, then K Dk is wildly ramified and S = R[B].
i) If x(K/k) =0, then K Dk is fiercely ramified and S = R[B].

i) If 1< x(K/k)<p, then K Dk is wildly ramified and S = R[II] where
O =(@—1"" and m and n are inlegers satisfying nx + mp = 1.

Proof. If x(K/k) = —1 then g? = zr for some element » of U(R), so that
Bis a prime element of S, the extension K ok is wildly ramified, and S= R[S].

If 2(K/k) =0, then X? — % is irreducible over R according to the defi-
nition of the field exponent. By applying Lemma 2.4 we conclude that
K ok is fiercely ramified and S = R[A].

In the case when 1<z <p, an application of Prop. 1.1 shows that
(B—1)? is in z°U(S). The desired result now follows from Lemma 2.4.

ProrosiTioN 2.6 B. Let K Dk be a Galois extension of degree p such that
x2(Kjk)=p and a=p—1. Then K Dk is unramified and S = R[6] where 0 = (8 —1)/x.

Proof. Since x = p we may write b in the form =1+ z’» with 7 in
U(R), and since a = p—1 we may write p==?"'9 with v in U(R). Let
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a=8—1. Prop. 1.1 implies that o = uvz?~'a + z°r where u is a unit
present in R(1,8, -+ -,8772). Since uv is in R(l,a, -+ -,a??) we may now

conclude from Lemma 2.4 that K ok is unramified and that S = R[a/x].

The notation used in the statement and proof of Prop. 2.6 C has been
introduced in Prop. 2.2,

ProrpostrioN 2.6 C. Let K ok be a Galois extension of degree p such that
2(Klk) =D and a=1p, and let g denote the conductor number of K Dk.

1) If X? + ¢, is irreducible over R, then K Dk is fiercely ramified and S=S,.

i) If XP + ¢, ts redcible over R and g<(a/p —1) —1, then K Dk is wildly
ramified and S = R[II] where I = (¢, — y,)"z™ and m and n are integers satisfying
nt, +mp = 1.

i) If X? + ¢, ts reducible over R and g = (a/p —1)—1, then K Dk may be
either wild or unramified. In particular, if t,=p—1 and — 1 + a, is a non-unit
of R than K Dk s unramified and S = R[] where 0 = (¢, — y,)/x.  Otherwise
K Dk s wildly ramified and S=R[U] where M =(g,—y,)"z™ for suitable integers m
and n (see the proof below).

Proof. Note first of all that the congruence established in Prop. 2.2
implies that @? + ¢, =0 for each i because a—i (p—1)>0 when 0<i<
(a/p—1)—1. The assumption that X? + ¢, is irreducible over R implies that
$, is not in R since ¢, +¢,=0. Lemma 2.4 now implies that K Dk is
fiercely ramified and that S = R[¢,]. This completes the proof of part i).

The hypothesis for part ii) implies that ¢, < p. For, if ¢, were equal
to p, then ¢,,, would be defined because g<(a/p—1)—1 and X? +¢, is
reducible over R (see the proof of Prop. 2.2). Also, the assumption that
g<(a/p —1) —1 implies that a — g(p —1)=p» and so (¢, — y,)” is in =zt U(S)
by Cor. 2.3. Since 1<t¢,<p—1, an application of Lemma 2.4 gives the
desired result.

In part iii) the assumption that g=(a/p—1)—1 implies that a—g(p—1) = p—1.
Define the integer ¢t by ¢=1¢, if {;,=<p—1 and t=p—11if ¢;,=9p. If
t,# »—1, then Cor. 2.3 implies that (¢, — y,)” is in z*U(S). An application
of Lemma 2.4 now shows that K ok is wildly ramified and that S = R[II]
where II = (¢, — y,)"z™ and nt¢ + mp = 1.
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If t,=p—1and —¢&ui+a is in U(R), them Cor. 2.3 implies that
(py — ¥p)® 1s in x?~'U(S). So K Dk is wildly ramified and S = R[II] where
I = (¢, — y,)"a™ and n(p — 1) + mp = 1 according to Lemma 2.4.

Finally, in the case when ¢,=p—1 and —¢,,+a, is a non-unit of
R, let @ = ¢, — y, and note that « satisfies an equation of the form «? =
Arn?'a + Ca? with A = Ay, in U(S,) and C in S, according to Cor. 2.3. In
order to apply part i) of Lemma 2.4 it remains to verify that A, is in the
R-module R(1,¢, * + +,8,27%). Since A; = uv is in R(1,B, - - -,p?"%) (see Prop.
1.1) and A, is defined by A, = A; + 2% D@D, one can show by an
inductive argument that each A;,, for 0<<i < g is in R(1,8, - - -,p?"2) because
each g; is in R(1,$;-1, * + +,¢;-1?"%) according to its definition in the proof
of Prop. 2.2. The inclusion R(1,8, -+ +,B22)CR(1, ¢y * * +, 4,772 now implies
that a = ¢, — y, satisfies an equation of the desired form because R(1,ea, - - -,
a??) = R(1,¢4 « + *.$,*7%). We conclude therefore by Lemma 2.4 that Kok
is unramified and that S = R[(¢, — ¥,)/x].

The statements of Cor. 2.7 follow at once from Prop. 2.6.

COROLLARY 2.7. Let K Dk denote a Galois extension of degree p.

1) If K ok is unramified, then the conductor number g(K|k) is (a/p —1) — 1.

il) If the field exponent x(K[k) ts relatively prime to p, then K Dk is wildly
ramified.

iil) If K Dk s fiercely ramified, then S = S,.

The next proposition motivates the naming of the conductor number
of an extension.

ProrosiTiON 2.8. Let g denote the conductor number of a Galois extension
K Dk of degree p. Then Cp=n#*"DR where Cp is the ideal of R defined by
Cp = {c in R|cS,CSo}.

Progf. If g=0 then Cr = R and the assertion is true. It follows by an
easy computation from the definitions ¢; = (¢;-y — y;-1)/z for 1<=i=<g (where
Yo = 1) that ¢, = (1/z°)¢o — 2y,-4/z* with 1=<i<g. Observe that an element
¢ of R is in Cg if and only if ¢¢,” is in S, for 1=<<i<p—1. By expanding
¢t = [(1/a")po — XYg-s/n'1?1 according to the binomial theorem and using
the fact that {1,¢o, - + -, 407!} is a free basis for K over k, one may conclude
that an element ¢ of R has the property that ¢¢,»~* is in S, if and only if
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¢ is in z°@~DR, Tt is easy to see that cg,” is in S, for 1=<i<p—1 when
¢ is in 79»"YR, and this completes the proof.

3. The ramification number. Consider a Galois extension K Dk of
degree p, where k denotes as usual the quotient field of a complete discrete
rank one valuation ring R of unequal characteristic which contains a pri-
mitive p'™ poot of unity where p = char R. Let i denote the ramification
number of K Dk; ie. let { denote the discontinuity in the sequence of
ramification groups of K Dk. (Explicitly, i is the integer with i=—1 for
which G = G, and G,,, = (1) where G is the Galois group of K ok and G;
denotes the j** ramification group of K Ok.)

The purpose of this section is to give an expression for the ramification
number i in terms of the conductor number. (In the case when z(K/k)=—1
hte ramification number of K Dk is well known (see Exercise 4 p. 79 of [5])).

In the following proposition, g denotes the conductor number of K Df,

x denotes the field exponent of K Dk, and @ denotes the absolute ramification
index of k.

ProposiTiON 3.1. Let i denote the ramification number of a Galois extension
K Dk of degree p.

i) If K ok is unramified then i = — 1.
i) If Kok s wildly ramified then i =ap/p—1 when x=-—1, and
i=(ap|p—1)—gp—1t when x+=—1 where 1<t <p—1 and rad S,= (z, 1’SNS,)S,.

Furthermore, t = x when 1<x<7p — 1.

ii) If K Dk s fiercely ramified then i = (ajp — 1) —g— 1.

Proof. The equality G_,=G(K/k) always holds. When K>k is unramified
it is well known that G, = (1).

If Kok is wildly ramified and x» = —1, then g is a prime element of
S and an easy computation shows that the discontinuity in the sequence of
ramification groups occurs at i = ap/p — L.

In the case when Kok is wildly ramified and 2 >—1 (so that gis a
unit), recall that the element ¢, — y, of S, has the property that (¢, — y,)?
is in #tU(S,) for some integer ¢ with 1<¢=<p—1 (see Props. 2.6 A and
2.6 C). An easy computation shows that (¢, — y,)S = II'S. Since rad S, is
generated by = and ¢, — y, we may now conclude that rad S, = (z, I’'SNS,).
(Using the assumption that K Dk is wild together with the fact that
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l<t<p—1, one can show that ¢ is the unique integer satisfying the
equality rad S, = (7, II’'SNS,)S,.)

We proceed to compute the ramification number i of K>k. Consider
positive ingeters » and w such that nt —wp =1, and recall that S = R[II]
where II = (¢, — y,)"/z* is a prime element of S. Let ¢ denote a primitive
p'™ root of unity and let ¢ be the element of G(K/k) defined by «(B) = £B.
It follows from the definition of II that ¢ is in the :** ramification group
G, if and only if

lo(¢g — ¥g) — (¢ — Y)Ilo(Pg — Yg)"™* + « + + + (g — Yo" V"

is in II**'S. Observe that o(¢,—y,)» 14+ « « +(P;—y,)*™* is In n(g,—y,)* U(S)
because a(¢, — ¥,) = ¢, — y, mod IIS,. Since = is relatively prime to », we
now have that gis in G; if and only if (a(¢,)—¢,) ($,—¥,)"/z is in (p,—y,) IT1*1S.
The definition of II together with the fact that (¢, — y,)S = II’S implies
that ¢ is in G, if and only if o(¢,) — ¢, is in II¢*S, Use the equality
b, = (1/z%)B — Jy,-i/z* with 1==i=<g (see the proof of Prop. 2.8) to obtain
that o(¢,) — ¢, is in(& — 1)/z°U(S). We may now conclude that ¢ is in G; if
and only if ¢ < (ap/p —1) — gp — ¢ and this completes the proof of part ii).

When KDk is fiercely ramified, S =S, according to Cor. 2.7. Let ¢
and ¢ be as above, and note that ¢ is in G; if and only if «(g,) — ¢, is in
zi*1S.  The equality ¢, = (1/2°)8 — Xyy-i/r* with 1=i=<g now implies that ¢
is in G, if and only if (£ —1)/z° is in z¢*U(S), i.e. if and only if i < (a/p —1)
—g—1.

COROLLARY 3.2. The conductor number g(K|k) is uniquely defined.
Proof. The proof follows at once from Cor. 2.7 and Prop. 3.1.

4. The different. Throughout this section K ok shall always denote
a Galois extension of degree p where £ is the quotient field of a complete
discrete rank one valuation ring R of unequal characteristic containing a
primitive p** root of unity where p = char R, and S shall denote the integ-
ral closure of R in K. The object of this section is the computation of the
diferent D(S/R) in terms of the conductor number g¢(Kjk). From this we
shall establish a criterion for determining if K>k is unramified, wild, or
fierce in terms of the differential exponent and the conductor number.

The assumption on the degree of K>k implies that SOR is a simple
extension (see Cor. 2.5). It is well known in the case of an extension with
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a separable residue class field extension, that the ramification groups yield
an expression for the differential exponent. A similar expression holds for
any Galois extension LDk with the property that the integral closure S of
R in L is a simple ring extension of R. The proof of the following lemma
may be obtained at once from pp. 33-34 of [3], and for the convenience of
the reader we present it here.

LemMA 4.1. Let L denote a Galois extension of the quotient field k of a
complete discrete rank one valuation ring R suck that the integral closure S of R in
L is a simple ring extension of R. Then the differential exponent d = d(LIK) is
given by

d=3g;,—1) with 0<<i<<oo

where g, denotes the order of the i*" ramification group of LDk.

Proof. The assumption that SOR is a simple ring extension means that
we may write S = R[a] for some element « of S, so that D(S/R) = g'(a)S
where g(X) denotes the minimal polynomial of « over k£ (see Prop. 6 p. 17
of [3]). From this it follows that d(L/k) = v (Il(« — a°)) where ¢ ranges over
the set G(L/k) — {1} and v, denotes the valuation of L. The homomorphic
property of v, now implies that d(L/k) = Jv (e — &) with ¢ ranging over
G(Llk) — {1}.

Let g, denote the order of the i** ramification group of L>k. If an
element ¢ of G(L/k) is in G;_, — G;, then v (a* —a)=1i. The above expres-
sion for d(L/k) now implies that d(L/k) = 2}i(g;-y — ¢;). From the equalities
26(gse1— 93) = 20 (91— 1) — 2i(g, — 1) = X(g; — 1) with 0==i<oo we may
now conclude that d(Ljk) = 3Xg, — 1).

By combining Prop. 3.1 with Lemma 4.1 we may now compute the
differential exponent of a Galois extension of degree p. In the following
proposition, ¢ denotes the integer between 1 and p — 1 defined in the state-
ment of Prop. 3.1.

ProposiTiON 4.2. Let KDk denote a Galots extension of degree p with
differential exponent d, conductor number g, and field exponent x. Let a denote the
absolute ramification index of k.

i) If Kok is unramified, then d = 0.
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ii) If Kok is wildly ramified, then d =ap+ (p—1) when x=—1, and
d=ap—gpp—1)—(t —1) (p—1) when 1<z <7,

1) If KDk is fiercely ramified, then d = a— g(p —1).

Proof. For the unramified case the assertion is well known.

Consider the case when Kok is wild. If x = —1, then d=3Yg,—1)
with 0= i <ap/p — 1 by Lemma 4.1 since ap/p — 1 is the ramification number
of K>k (see Prop. 3.1); therefore d=ap + (p—1) since g;=p for 0=<i<<ap/p—1.
If i1<2x<yp, then the ramification number of K>k is (ap/p —1)—gp — ¢,
so that d = 3Y(g, — 1) with 0<<i<(ap/p —1) — gp — ¢, from which it follows
that d =ap —gp(p — 1) — (¢t — 1) (p — 1).

In the case when K Dk is fierce, the ramification number is (¢/p—1)—g—1.
So d=3Yg9,—1) with 0<i<(a/p—1) —9g—1, from which it follows that
d=a—g(p—1).

ProrosiTiON 4.3. Let d(Klk) denote the differential exponent of a Galois

extension K Dk of degree p, let g denote its conductor number, and let a denote the
absolute ramification index of k. Then

1) K>k is unramified if and only if d(K[k) =0
ii) KDk is fiercely ramified if and only if d(K[k) =a— g(p —1).
i) Kok is wildly ramified if and only if d(K/k)>a— g(p — 1).

Proof. Statement i) is well known (for example combine Prop. 1 p. 25,
Prop. 6 p. 17, and Thm. 1 p. 21 of [3]).

We proceed to prove that d(K/k) >a — g(p — 1) when K>k is wild. The
proof shall depend upon the expression for d(K/k) presented in part ii) of
Prop. 4.2. If the field exponent & of KDk is —1 then g=0 (see Section
2) so that the desired inequality holds because d(K/k)=ap+ (p—1) a. If
on the other hand, 1<x<7p, then dK/k)=ap—gp(p—1)—(t —=1)(p—1)
where ¢ satisfies 0<¢—1=<p—2. An easy computation shows that
d(Klk)>a—g(p—1) if and only if a—g(p —1) — (£ —1) >0. The inequalities
g=<(a/p—1)—1 (see Prop. 2.2) and t—1=<p—2 together imply that
a—g(p—1)—(¢t—1) >0, and we may conclude therefore that d(K/k) >a—g(p—1)
whenever Kok is wild.

If Kok is fierce, then d(K/k) =a— g(p — 1) by part iii) of Prop. 4.2.
Conversely, if d(K/k) =a— g(p — 1) then K>k cannot be unramified because
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a—g(p—1)>0 and KDk cannot be wildly ramified according to the above
observation concerning the differential exponent in the wild case.

To complete the proof of the proposition it suffices to observe that if
d(Klk) >a— g(p — 1) then K>k can be neither unramified nor fierce.

5. Cyclotomic extensions. The following definition may be found
on p. 41 of [1].

DEerFINITION,  Let | be any field. The extension obtained by adjunction of all
roots of unity shall be called the maximal cyclotomic extension of k and any intermediate
Jfield a cyclotomic extension of k.

Let % denote the quotient field of a complete discrete rank one valuation
ring R of unequal characteristic. Assume that R contains a primitive p**
root of unity where p = char R and let KDk denote a cyclotomic extension
of degree p. Prop. 2.6 gives criteria for detemining the ramification properties
of such an extension. The following examples demonstrate the existence of
unramified, wildly ramified, and fiercely ramified cyclotomic extensions of
degree p.

ExampLE 5.1, Let Z denote the ring of integers and let Z[X], denote
the localization of the polynomial ring Z[X] at the prime ideal (2). Through-
out this example R, shall denote the completion of Z[X], and £k, shall
denote the quotient field of R,.

In order to produce an unramified cyclotomic extension of degree p we
shall take the ground ring R to be an extension of R,. Namely, let R be
the integral closure of R, in the extension k = koy/3 ) of k. (Observe that
1—¢/3 is a prime element of R.) We shall show that the cyclotomic ex-
tension k(i)Dk is unramified of degree 2 where i denotes a primitive fourth
root of unity. For consider the element 6 = (/3 —i)/22—y3") of k(7). It
is easy to verify that f(X)= X2+ [(2—¢/3)/(TV3 — 121X + [i/(7/3 —12)] is the
minimal polynomial of ¢ over k. By applying Prop. 1 on p. 25 of [3] we
may now conclude that k(i)>k is unramified.

Again let i denote a primitive fourth root of unity. The element (—1 of
ko(i) is a root of an Eisenstein polynomial over R, from which it follows
that ko(i)Dk, is a wildly ramified cyclotomic extension of degree 2.

Finally, in order to exhibit the existence of a fiercely ramified cyclotomic

extension, consider the integral closure R of R, in the extension k = ko(y/2X)
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of ko. Observe that R = RJ[y/2X] and that y2X is a prime element of R.
1

The extension k(i)ok has residue class field extension R(X2)>R whose in-
separability implies that k({)Dk is a fiercely ramified cyclotomic extension.

The above examples motivate us to determine sufficient conditions on
the ground ring R in order that a cyclotomic extension obtained by the

h

adjunction of a p° ** root of unity be wildly ramified. For this we shall

make use of the following definition.

DErFINITION.  Let R be a complete discrete rank one valuation ring of unequal
characteristic.  Then R is said to be absolutely tamely ramified if a is relatively prime
to p where a denotes the absolute ramification index of R and p denotes the character-
istic of R.

PROPOSITION 5.2. Let R denote an absolutely tamely ramified complete discrete
one valuation ring containing a primitive p*™ root of unity ¢, and let k denote the
quotient field of R. Let & denote a primitive p° ** root of unity. Then the extension
k(&)Dk is wildly ramified of degree p*.

Proof. The hypothesis implies that a/p —1 and p*! are relatively prime
where a denotes the absolute ramification index of R. We may therefore
consider integers m and # such that ma/p —1+4 np~t=1. Let = denote a
prime element of R, and define the element II of k(&) by II =(&—1)"z".
A straightforward computation shows that II#**' =au for some unit # of
k(€), from which it follows that k(€)Dk is wildly ramified of degree p*~'.
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