Takehiko Miyata**J
Nagoya Math. J.
Vol. 41 (1971), 69-73

INVARIANTS OF GERTAIN GROUPS $\mathbf{I}^{1)}$

TAKEHIKO MIYATA ${ }^{2}$

Let G be a group and let k be a field. $A k$-representation ρ of G is a homomorphism of G into the group of non-singular linear transformations of some finite-dimensional vector space V over k. Let K be the field of fractions of the symmetric algebra $S(V)$ of V, then G acts naturally on K as k-automorphisms. There is a natural inclusion map $V \rightarrow K$, so we view V as a k-subvector space of K. Let $v_{1}, v_{2}, \cdots, v_{n}$ be a basis for V, then K is generated by $v_{1}, v_{2}, \cdots, v_{n}$ over k as a field and these are algebraically independent over k, that is, K is a rational field over k with the transcendence degree n. All elements of K fixed by G form a subfield of K. We denote this subfield by K^{a}.

We say that ρ has the property $[R]$ if K^{G} is a rational field over k.
Kuniyoshi proved that if G is a finite p-group and if k is a field of characteristic p, the regular representation has the property [R] ([3]). Gaschütz generalized this result to an arbitrary representations ([2]). We shall give other generalizations of their results.

Let G be a group and let ρ be a k-representation of G. Let V be the underlying space of this representation. ρ is called triangularizable if there exisrs a G-invariant flag ${ }^{3}$ in V.

Followings are examples of triangularizable representations:
(1) G is a finite commutative group of exponent m and k is a field whose characteristic does not divide m and which contains a primitive m-th root of unity. Then every k-representation of G is triangulariazble.

[^0](2) G is a finite p-group where p is a prime number and k is an arbirtary field of characteristic p. Then every k-representation of G is triangulariazble.

Since there is no adequate reference, we give a sketch of a proof. Let V be a representation space of G. It suffices to show that there exists a non-zero G-invariant element in V. Since G is a p-group, there exists an element g of order p in the center of G. It is immediate that $(\rho(g))-1)^{p}=0$. Therefore, there exists an integer $i(0 \leq i<p)$ such that $V^{\prime}=(\rho(g)-1)^{i} V \neq 0$ and $(\rho(g))-1) V^{\prime}=(\rho(g)-1)^{i+1} V=0$. An element in V^{\prime} is G-invariant. Let V_{0} be the subspace consisting of all G-invariant elements in V_{0}. Since g is in the center of $G, G /\langle g\rangle$ acts on V_{0} naturally. By mathematical induction on the order of G, V_{0} has a non-zero $G /\langle g\rangle$-invariant (hence, G-invariant) element.
(3) (Lie-Kolchin) G is a connected solvable algebraic group over an algebraically closed field. Then any rational representation of G is triangularizable. ([1], Theorem 10.4).
(4) G is a connected solvabletopological group. Then every continuous representation on a finite dimensional vector space over the complex number field is triangularizable. ([6], Theorem 5.1*, Lemma 5.11).

Theorem 1. Let G be a group and let k be a field. Then every triangularizable k-representation of G has the property (R).

By the triangularizability, the problem reduces by induction to proving
Lemma. Let G be a group acting on a field K. If G acts also on a polynomial ring of one variable $K[t]$ in the following way:

$$
g(t)=\lambda(g) t+\mu(g), \quad g \in G
$$

where $\lambda(g)(\neq 0)$ and $\mu(g)$ belong to K, then there exists an element x in $K[t]$ such that $K\left(K(t)^{G}\right)=K(x)$.

Proof. First of all we show that the field of fractions K^{\prime} of $K[t]^{G}$ is $K(t)^{G}$. Let $F / L \in K(t)^{G}, F, L \in K\lceil t]$. We prove that F / L belongs to K^{\prime} by the induction on $\operatorname{deg}(F)+\operatorname{deg}(L)$ where deg. means the degree in t. If $\operatorname{deg}(F)$ or $\operatorname{deg}(L)$ is zero, there is nothing to prove. Suppose that $\operatorname{deg}(F)$ and $\operatorname{deg}(L)$ are positive and that F and L are relatively prime. Since $K[t]$ is a unique factorization domain, we have

$$
g(F)=\chi(g) F, \quad g(L)=\chi(g) L,
$$

where $\chi(g)$ is a character of G with values in K^{*}. We may assume $\operatorname{deg}(F)$ $\geqq \operatorname{deg}(L)$. Dividing F by L we have

$$
F=S \cdot L+R \operatorname{deg}(R)<\operatorname{deg}(L)
$$

applying g in G, we get

$$
\chi(g) F=\chi(g)(g(S)) L+g(R) .
$$

Since $\operatorname{deg}(F)=\operatorname{deg}(g(F))$ and $\operatorname{deg}(L)=\operatorname{deg}(g(L))$, we see that $g(S)=S$ and $g(R)=\chi(g) R$ by the uniqueness of division. By the induction assumption, $R / L \in K^{\prime}$, hence F / L belongs to K^{\prime}.

Now this observation shows us that if $K[t]^{a} \subset K$, then $K(t)^{a} \subset K$. If $K[t]^{a} \subset K$, there is nothing to prove. If $K[t]^{a} \not \subset K$, then choose $x \in K[t]^{a}-K$ such that $\operatorname{deg}(x)$ is minimal. Then by an argument similar to that in the above observation, we can show that an element in $K[t]^{G}$ is a polynomial in x with coefficients in K^{G}, that is, $K[t]^{a}=K^{G}[x]$. q.e.d.

Remark 1. This lemma is a generalization of Hilbert's Theorem 90. In fact, let G be a finite group of field automorphisms of K and let $\mu(g)$ (resp. $\lambda(g)$) be an additive (resp. multiplicative) cocycle of G with values in K (resp. K^{*}). Then by defining $g(t)=t+\mu(g) \quad(\operatorname{resp} . g(t)=\lambda(g) t) G$ acts on the polynomial ring $K[t]$. It is easy to see that $K\left(K(t)^{G}\right)=K(t)$ by the fundamental theorem of Galois theory. By Lemma there is an element x in $K[t]^{\alpha}$ such that $K(t)=K(x) . \quad x$ must be linear in t, say $a t+b, a, b \in K$. Now $a t+b=g(a) g(t)+g(b)$, for all g in G, so $a t+b=g(a)(t+\mu(g))+g(b)$ (resp. $a t+b=g(a) \lambda(g) t+g(b))$. Hence $\mu(g)=b \mid a-g(b / a)$ (resp. $\left.\lambda(g)=a g(a)^{-1}\right)$. This means $H^{1}(G, K)=(0)\left(\right.$ resp. $\left.H^{1}\left(G, K^{*}\right)=(1)\right)$.

Remark 2. One might be tempted to formulate the lemma in the following way;

Let K_{1} be a subfield of a rational field $K(t)$ of one variable (K_{1} not necessarily containing K). Then there is an element x in K_{1} such that $K\left(K_{1}\right)=K(x)$.

Unfortunately this is not true in general.
Let $K=K(s)$ be a rational field of one variable over a field k. Let $K_{1}=k\left(t^{2}, t^{3}+s\right)$, where t is an indeterminate. Then this is a counter example.

Proof. We note that $k(s)\left(t^{2}, t^{3}+s\right)=k(s, t)$. Suppose that we find an element x in K_{1} such that $k(s)\left(K_{1}\right)=k(s)(x)$. Then.

$$
x=\frac{\alpha t+\beta}{\gamma t+\delta} \quad \alpha \grave{\delta}-\beta \gamma \neq 0, \quad \alpha, \beta, \gamma, \delta \in k[s] .
$$

We may assume that $\alpha \neq 0$. Put $u=t^{2}$ and $v=t^{3}+s$. We can write $F / L=(\alpha t+\beta) /(\gamma t+\delta)$ where F and L belong to $K[u, v]$. Let F_{0}, L_{0} be the constant terms in F, L as polynomials of t then since

$$
(\gamma t+\delta) F(u, v) \equiv(\alpha t+\beta) L(u, v) \bmod \left(t^{2}\right)
$$

we get that $\delta F_{0}=\beta L_{0}$ and $\gamma F_{0}=\alpha L_{0}$. Therefore $(\alpha \tilde{\delta}-\beta \gamma) F_{0}=\alpha\left(\delta F_{0}\right)-\beta\left(\gamma F_{0}\right)=0$. This is a contradiction, if $F_{0} \neq 0$.

If $F_{0}=0$, then $F(u, v)=F^{\prime}(u, v) u^{m}$ where F^{\prime} has non-zero constant term. In fact, write.

$$
F(u, v)=F^{\prime}(u, v) u+F^{\prime \prime}(v), \quad F^{\prime} \in K[u, v], \quad F^{\prime \prime} \in k[v] .
$$

Since F has no non-zero cnostant term as a polynomial in $t, 0=F(0, s)=$ $F^{\prime \prime}(s)$, hence $F^{\prime \prime} \equiv 0$. Now by this observation we may assume that $F_{0} \neq 0$.
q.e.d.

Remark 3. Let V be an underlying space of a k-representation of a finite group G. Suppose that V has a faithful sub- G-module W which has the property (R), then V has the property (R).

Proof. Let $w_{1}, w_{2}, \cdots, w_{m}$ be a basis for W. We may identify the symmetric algebra $S(W)$ with the polynomial ring $k\left[w_{1}, w_{2}, \cdots, w_{m}\right]$. Let K be the field of fractions of $S(W)$. Let $v_{1}, v_{2}, \cdots, v_{n}$ be vectors in V such that they together with $w_{1}, w_{2}, \cdots, w_{m}$ form a basis for V. Let K^{\prime} be the field of fractions of $S(V)=k\left[w_{1}, \cdots, w_{m}, v_{1}, \cdots, v_{n}\right]$. Then we show that there exist n elements $x_{1}, x_{2}, \cdots, x_{n}$ in $K^{\prime G}$ such that $K\left(K^{\prime G}\right)=K\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ $\left(=K^{\prime}\right)$. In fact, the action of an element g in G on K^{\prime} is

$$
g\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n} \\
1
\end{array}\right)=\left(\begin{array}{ll}
& a_{1}(g) \\
\vdots \\
A_{0}(g) & a_{n}(g) \\
0 \cdots & 0
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
\\
v_{n} \\
1
\end{array}\right)
$$

where $A_{0}(g) \in G L(n, k) \subset G L(n, K)$ and $a_{i}(g) \in K$. Let H be the subgroup of
$G L(n+1, K)$ consisting of elements of the type $\left[\begin{array}{ll}A_{0} & * \\ 0 & 1\end{array}\right]$. We let G act on $G L(n+1, K)$ coefficientwise, then H is G-stable. If we write $(v)={ }^{t}\left(v_{1}, \cdots, v_{n}, 1\right)$ and $A(g)=\left[\begin{array}{ll}A_{0}(g) & * \\ 0 & 1\end{array}\right]$, then $(h g)(v)=A(h g)(v)=h(g(v))={ }^{h} A(g) A(h)(v)$. Therefore, $g \rightarrow A(g)^{-1}$ is a cocycle of G with values in H. There is an exact sequence

$$
(1) \rightarrow \underbrace{K \times \cdots \times K}_{n \text {-tuples }} \rightarrow H \rightarrow G L(n, K) \rightarrow(1)
$$

Since $H^{1}(G, K)$ and $H^{\prime}(G, G L(h, K)$) are trivial (by assumption, G is finite and the action of G on K is faithful), $H^{1}(G, H)=(1)$ ([5], p. 133). This means that there exists $B \in H$ such that $A(g)={ }^{g} B \cdot B^{-1}$. If we set $(x)={ }^{t}\left(x_{1}\right.$, $\left.\cdots, x_{n}, 1\right)=B^{-1}(v)$, then $g(x)={ }^{g} B^{-1} \cdot g(v)={ }^{g} B^{-1} A(g)(v)=B^{-1}(v)=(x) . \quad x_{i}{ }^{\prime} s$ satisfy the property.
q.e.d.

Theorem 2. A two dimensional representation has the property (R). A three dimensional representation has the property (R) if k is algebraically closed.

This theorem is essentially due to Noether ([4], § 2)
Proof. Let V be a representation space of a group G and let x_{1}, \cdots, x_{n} be a basis of V.

$$
K=k(V)=k\left(x_{2} x_{1}^{-1}, \cdots, x_{n} x_{1}^{-1}\right)\left(x_{1}\right) .
$$

Since $K_{1}=k\left(x_{2} x_{1}^{-1}, \cdots, x_{n} x_{1}^{-1}\right)$ is G-stable and $g\left(x_{1}\right)=\left(g\left(x_{1}\right) x_{1}^{-1}\right) x_{1}$, there exists an element $z \in K^{G}$ such that $K^{G}=K_{1}^{G}(z)$ by Lemma. If $\operatorname{dim} V=2$, the theorem follows from Lüroth's theorem and if $\operatorname{dim} V=3$, the theorem follows from Zariski-Castelnuovo's theorem.
q.e.d.

References

[1] Borel, A.; Groupes algébriques linéaires. Annals of Math. (2) 64, 20-82 (1956).
[2] Gaschutz, W., Fixkörper von p-automorphismengruppen rein transzendenter Korpererweiterungen von p-Charakteristik. Math. Z., Vol. 71 (1969).
[3] Kuniyoshi, H.; Certain subfields of rational function fields. Proc. International Sym. on Algebraic Number Theory, 241-243 (1955).
[4] Noether, E.; Gleichungen mit vorgebshriebene Gruppe. Math. Ann. 78, 221-229 (1916).
[5] Serre, J. -P.; Corps locaux. Paris.
[6] —— Lie algebras and Lie groupes. Benjamin,
Research Institute for Mathematical
Sciences, Kyoto University.

[^0]: Received September 29, 1969.
 ${ }^{1)}$ This is a part of the author's thesis written under the guidance of Professor Heisuke Hironaka at Columbia University.
 ${ }^{2)}$ The author wants to thank Professors H. Hironaka and H . Matsumura who encouraged him constantly during this research. He also wants to thank Professor R. Friedberg and Dr. L. Olson who helped the author in writing English.
 3) A flag F in V is a sequence of subspaces of $V F: V=V_{n} \supset V_{n-2} \supset \cdots V_{1} \supset V_{0}=(0)$ such that $\operatorname{dim} V_{i}=i(n=\operatorname{dim} V) . \quad F$ is G-invariant if $\rho(g)\left(V_{i}\right) \subset V_{i}$ for all $g \in G$ and all i.

