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INVARIANTS OF CERTAIN GROUPS P

TAKEHIKO MIYATA2)

Let G be a group and let k be a field. A ^-representation p of G is

a homomorphism of G into the group of non-singular linear transformations

of some finite-dimensional vector space V over k. Let K be the field of

fractions of the symmetric algebra S{V) of V, then G acts naturally on K

as ^-automorphisms. There is a natural inclusion map V-* K, so we view

V as a &-subvector space of K. Let #!, z;2, , vn be a basis for V, then

if is generated by vl9 v2, , υn over k as a field and these are algebraically

independent over k, that is, if is a rational field over k with the transcen-

dence degree n. All elements of K fixed by G form a subfield of ϋΓ. We

denote this subfield by KG.

We say that p has the property [R] if KG is a rational field over k.

Kuniyoshi proved that if G is a finite p-group and if k is a field of

characteristic p, the regular representation has the property \_R\ ([3]).

Gaschutz generalized this result to an arbitrary representations ([2]). We

shall give other generalizations of their results.

Let G be a group and let p be a ^-representation of G. Let V be the

underlying space of this representation, p is called triangularizable if there

exisrs a G-invariant flag3) in V.

Followings are examples of triangularizable representations:

(1) G is a finite commutative group of exponent m and k is a field

whose characteristic does not divide m and which contains a primitive m-th

root of unity. Then every Z -representation of G is triangulariazble.
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(2) G is a finite p-group where p is a prime number and k is an ar-

birtary field of characteristic p. Then every fc-representation of G is

triangulariazble.

Since there is no adequate reference, we give a sketch of a proof. Let

V be a representation space of G. I t suffices to show that there exists a

non-zero G-invariant element in F. Since G is a p-group, there exists an

element g of order p in the center of G. It is immediate that (p(g))—l)p = θ.

Therefore, there exists an integer i {0^i<p) such that V = {p{g)—iYVφQ

and {p{g)) - l)Vr = (p(flr) - l ) ί + 1 F = 0. An element in F ' is G-invariant. Let

F o be the subspace consisting of all G-invariant elements in F o . Since g is

in the center of G, G/<#> acts on F o naturally. By mathematical induction

on the order of G, F o has a non-zero G/<#>-invariant (hence, G-invariant)

element.

(3) (Lie-Kolchin) G is a connected solvable algebraic group over an

algebraically closed field. Then any rational representation of G is triangu-

larizable. ([1], Theorem 10.4).

(4) G is a connected solvabletopological group. Then every continuous

representation on a finite dimensional vector space over the complex number

field is triangularizable. ([6], Theorem 5.1*, Lemma 5.11).

THEOREM 1. Let G be a group and let k be a field. Then every triangulariz-

able k-representation of G has the property (/?).

By the triangularizability, the problem reduces by induction to proving

LEMMA. Let G be a group acting on a field K. If G acts also on a polynomial

ring of one variable K[t] in the following way:

g(t) = λ(g)t + μ(g)9

where λ{g) (ψ 0) and μ(g) belong to K, then there exists an element x in K[t] such

that K{K{t)G) = K(x).

Proof First of all we show that the field of fractions K! of K\tf is

K(t)G. Let FILsΞK(t)G, F, L^K\f\. We prove that FjL belongs to K by

the induction on deg (F) + deg (L) where deg. means the degree in t. If

deg(F) or deg(L) is zero, there is nothing to prove. Suppose that deg(F)

and deg (L) are positive and that F and L are relatively prime. Since K[t~\

is a unique factorization domain, we have
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g(F) = x(g)F. g(L) = x(g)L9

where χ(g) is a character of G with values in K*. We may assume deg(F)

ϊ^deg(L). Dividing F by L we have

F=S-L + R deg(R)<deg(L).

applying g in G, we get

Since deg (F) = deg (g(F)) and deg (L) = deg (#(£,)), we see that g(S) = 5 and

flf(J?) = Z(flf)i? by the uniqueness of division. By the induction assumption,

RIL<=K', hence F\L belongs to K.

Now this observation shows us that if K[t]°cK% then K(t)GcK. If

KltfaK, there is nothing to prove. If K[t]a<£K, then choose xeK[t]σ—K

such that deg(#) is minimal. Then by an argument similar to that in the

above observation, we can show that an element in K[t~\G is a polynomial

in x with coefficients in KG, that is, K[t]G = KG[x], q.e.d.

Remark 1. This lemma is a generalization of Hubert's Theorem 90. In

fact, let G be a finite group of field automorphisms of K and let μ(g) (resp.

λ(g)) be an additive (resp. multiplicative) cocycle of G with values in K

(resp. K*). Then by defining g(t) = t + μ(g) (resp. g{t) = λ(flf)/) G acts on

the polynomial ring ίΓ[Y]. It is easy to see that K(K{t)G) = K(t) by the

fundamental theorem of Galois theory. By Lemma there is an element x

in K[tf such that K(t) = K(x). x must be linear in t, say αί + b, a, b^K.

Now at + b= g{a)g{t) + flr(δ), for all g in G, so at + ft = #(α) {t + jκ(flr)) + fl^(ft)

(resp. at + ft = g(a)λ(g)t + 0(δ)). Hence /̂ (g) = ft/α - flr(ft/α) (resp. A(g) =ag(a)-1).

This means H1(G,K)= (0) (resp. HKG9K*)= (1)).

Remark 2. One might be tempted to formulate the lemma in the fol-

lowing way;

Let i^! be a subfield of a rational field K(t) of one variable [Kλ not

necessarily containing K). Then there is an element x in ϋΓi such that

K(Kύ = K(x).

Unfortunately this is not true in general.

Let K= K(s) be a rational field of one variable over a field fc. Let

Ki= kit2, tz Λ-s), where t is an indeterminate. Then this is a counter

example.
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Proof We note that k{s) U2, t* + s) = k{s9t). Suppose that we find an

element x in Kλ such that k(s) (Kλ) = k{s) {x). Then.

x= aδ-βΠ=0, a,β,r,δζΞk[s\.

We may assume that αf=0. Put u = t2 and υ— t3 + s. We can write

F/L= {at + β)l(ϊt + δ) where F and L belong to K[u,υ\. Let Fo, Lo be the

constant terms in F, L as polynomials of t then since

(Tt + δ)F{u, v) Ξ= (αί + mod (f2),

we get that δF0=βL0 and rF0 = aL0. Therefore (ad - βT)F0= a(δF0)-β{rF0) = 0 .

This is a contradiction, if Fo ψ 0.

If Fo = 0, then F(u,v) = Fr(u,v)um where F ' has non-zero constant term.

In fact, write.

F{u,υ) = F'(u,v)u + F"(ι;), F'eίΓ[ίί,t;], F^efcM.

Since F has no non-zero cnostant term as a polynomial in ί, 0 = F(0,s) =

F"{s), hence F " Ξ O . NOW by this observation we may assume that FOT^O.

q.e.d.

Remark 3. Let V be an underlying space of a ^-representation of a

finite group G, Suppose that V has a faithful sub-G-module W which has

the property (/?), then F has the property (R).

Proof Let wu w2, , wm be a basis for W. We may identify the

symmetric algebra S(W) with the polynomial ring k[wuw29 , ^ J . Let i ί

be the field of fractions of S(W). Let υu v2, , vn be vectors in V such

that they together with wί9 w2, , wm form a basis for F. Let K! be the

field of fractions of S{V) = fe[κ;i, , wro, ^i, , vn~\. Then we show that

there exist n elements xί9x2, ,xn in iC/G! such that K{K/0) = K{xux29 •••,»»)

( = X;) In fact, the action of an element # in G on Kf is

{ 1 •0 0 I l )

where Ao{g)^GL(n,k)aGL(n,K) and a,L{g)<=K. Let H be the subgroup of
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ΓΛ *Ί
GL{n + 1, K) consisting of elements of the type . We let G act on

Lo l j
GL{n+l9K) coefficientwise, t h e n H is G-stable. I f we wήte(v) = ϋ{vl9 ,v Λ , l )

ΓA(flO * Ί
a n d i4(flr) = , then {hg) (v) =A{hg) {v) = h{g{v))= hA{g)A{h){v). There-

LO l j
fore, ί J - ^ ^ Γ 1 is a cocycle of G with values in H. There is an exact
sequence

(1) -> Kx XK-+H-+ GL(n, K) -+ (1)

^-tuples

Since Hλ(G,K) and H'{G,GL{h,K)) are trivial (by assumption, G is finite

and the action of G on K is faithful), H^G.H)^ (1) ([5], p. 133). This

means that there exists B^H such that A{g) = gB B~K If we set (x) = f(#!,

• , xn9l) = B~ι{v), then g{x) = gB~ι g(v) = gB~1A{g) {v) = B~ι(y) = (a;). xt

9s

satisfy the property. q.e.d.

THEOREM 2. A two dimensional representation has the property (R). A three

dimensional representation has the property (R) if k is algebraically closed.

This theorem is essentially due to Noether ([4], § 2)

Proof Let V be a representation space of a group G and let xl9 ,xn

be a basis of V.

K= k(V) = k(x2xτ\ , x^T1) (x1).

Since Kx= k(x2x^1, , ^^α Γ1) is G-stable and g{xλ) = {gix^x^Xu there exists

an element z^KG such that KG = Kl(z) by Lemma. If d i m F = 2 , the

theorem follows from Lύroth's theorem and if dim V = 3, the theorem follows

from Zariski-Castelnuovo's theorem. q.e.d.
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