Ed Cline*
Nagoya Math. J.
Vol. 41 (1971), 55-67

SOME GROUPS WHOSE $S_{3}-$ SUBGROUPS HAVE MAXIMAL CLASS

ED CLINE

1. Introduction

In this paper, we investigate several classes of groups, among which the most general is defined as follows:

Definition 1.1. A finite group G is a $S R$-group if it contains a subgroup P_{1} of order 3 satisfying:
(a) A / S_{3}-subgroup P_{2} of $N_{G}\left(P_{1}\right)$ is elementary of order 9 ;
(b) $N_{G}\left(P_{2}\right) / P_{2}$ acts semi-regularly by conjugation on the conjugates of P_{1} contained in P_{2}.

To emphasize the role of P_{1}, we sometimes say G is a $S R$-group with respect to P_{1}.

The main result of this paper is
Theorem 1.2. If G is a $S R$-group, then $0^{3}(G)$ is a proper subgroup of G.
It is clear that the definition of $S R$-groups can be easily generalized to primes other than 3, but the conclusion of Theorem 1.2 does not carry over to these primes.

The class of $S R$-groups contains several interesting subclasses, e.g., let X be a finite group, P_{1} a subgroup of $\operatorname{Aut}(X)$ such that $\left|P_{1}\right|=\left|C_{X}\left(P_{1}\right)\right|=3$. Then the semidirect product $G=P_{1} X$ is a $S R$-group. If $X=\operatorname{PSL}(3, q)$, where q is congruent to $1 \bmod 3$ but not $\bmod 9$, let α be the automorphism of X induced by the matrix $\left(\begin{array}{lll}0 & \lambda & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$, where λ is a primitive cube root of unity in the field with q elements. If P_{1} is the cyclic group generated by α, the semidirect product $G=P_{1} X$ is a $S R$-group.

Received November 5, 1968.

* This research was partially supported by NSF Grants GP-5434 and GP-8496.

The proof of Theorem 1.2 is given in section 2. In section 3, we consider a smaller class of groups called SRTI groups (cf. Def. 3.1), and characterize the 3 -solvable groups in this class. If we let G be a $S R T I$ group which is minimal subject to non-3-solvability, the results of this section yield an analogue to the maximal subgroup theorem (Theorem 8.6.3 of [5]) for G. However, we do not include this result here.

In section 4, we apply Theorem 1.2 to the theory of Frobenius Regular groups as defined by Keller in [7]. We recall G is a Frobenius Regular group if it contains a subgroup M such that $N_{G}(M)=M Q$ is Frobenius with kernel M, and M and Q are $T I$ sets in G.

Frobenius Regular groups may be viewed as a two parameter family of groups if we specify the number α of transitive constituents of $M Q$ which have length $|M|$, and the number β of constituents of length $|M Q|$. If this is done, we call a Frobenius Regular group G an (α, β) group.

Theorem 1.3. Let G be a $(2, \beta)$ group resrepented on the cosets of $M Q$. Let $\pi=\{2,3\}$, and consider the characteristic series,

$$
G \geq G_{1}=0^{\pi \prime}(G) \geq G_{2}=0^{3}\left(G_{1}\right)>1
$$

If $\tau=\left[G_{1}: G_{2}\right]$, then
(i) G_{2} is simple;
(ii) $\tau \leq 3$;
(iii) $\quad G_{2}$ is a $(2, \sigma)$ group on $M\left(Q \cap G_{2}\right)$, where $\sigma=\left[G: G_{2}\right] \beta$;
(iv) $N_{G_{2}}\left(Q \cap G_{2}\right)$ is a Frobenius group;
(v) $G=Q G_{2}$.

The notation in this paper is consistent with that of [4], with the exception that we use $V_{G}(X ; Y)$ to denote the weak closure of X in Y with respect to G.

2. Proof of Theoerm $\mathbf{1 . 2}$.

It is clear from the definition of $S R$-groups that the S_{3}-subgroups of an $S R$-group have maximal class. We use the following properties of such groups:

Lemma 2.1. (Blackburn [1]) Let P be a p-group, p a prime.
(i) If π is an element of order p in P such that $C_{P}(\pi)$ has order p^{2}, then P has maximal class.
(ii) If P has maximal class, the normal subgroups of P contained in P^{\prime} form a chain.
(iiii) If $p=3, P^{\prime}$ is abelian with at most 2 generators.
The key step in the proof of Theorem 1.2 is the following description of the Sylow 3 -structure of a $S R$-group.

Theorem 2.2. Let G be a SR-group with respect to P_{1}. Suppose P is a S_{3}-subgroup of G, has order 3^{n}, and contains P_{1}, then
(i) for each $i=1, \cdots, n$ there is a unique subgroup P_{i} of P such that $\left|P_{i}\right|=3^{i}$, and P_{i} contains P_{1};
(ii) if $1<i<n, P_{i+1}=N_{G}\left(P_{i}\right)$;
(iii) P has index at most 2 in its normalizer;
(iv) If ω is an involution in G which normalizes P, then ω acts regularly on $P / D(P)$;
(v) $N_{G}\left(P_{1}\right)$ has a normal 3-complement B. If $B \neq 1$, then $N_{G}\left(P_{1}\right) / P_{1}$ is Frobenius with kernel $B P_{1} / P_{1}$.

Proof. Part (b) of the definition of $S R$-groups says that if $P_{2}=N_{P}\left(P_{1}\right)$, then P_{2} is a self-normalizing S_{3}-subgroup of $N_{G}\left(P_{1}\right)$, so (v) is an immediate consequence of Burnside's theorem.

For the proof of (i) and (ii), we use induction on i, noting that (i) is obvious for $i=1$, while (ii) is vacuous. We may assume for any conjugate P_{1}^{μ} of P_{1} contained in P, that (i) holds for all $k \leq i$, and (ii) holds for all $j \leq i-1$. Of course, we assume $1<i<n$. Note first that
(2.1) $N_{G}\left(P_{i}\right) / P_{i}$ is semi-regular on the conjugates of P_{i-1} (under G) which are contained in P_{i}.

Suppose $\tau \in N_{G}\left(P_{i}\right)$ normalizes some conjugate P_{i-1}^{μ} of P_{i-1}, and that P_{i-1}^{μ} is contained in P_{i}. By (i), P_{i-1}^{μ} and P_{i} are the unique subgroups of orders 3^{i-1} and 3^{i} respectively of P which contain P_{1}^{μ}. By part (ii), $P_{i}=N_{G}\left(P_{i-1}^{\mu}\right)$ if $i>2$, so $\tau \in P_{i}$ and (2.1) follows if $i>2$. When $i=2$, (2.1) is part of the definition of $S R$-groups, so (2.1) holds in all cases.

Since $P_{1} \leq P_{i}$, Lemma 2.1 implies P_{i} has maximal class, hence $P_{i} / D\left(P_{i}\right)$ is elementary of order 9 , and it follows that P_{i} contains at most four conjugates of P_{i-1}. Since $i<n$, the index $\left[N_{G}\left(P_{i}\right): P_{i}\right]$ is divisible by 3. Since complete reducibility implies any involution in $N_{G}\left(P_{i}\right)$ must normalize at least two maximal sugroups of P_{i}, (2.1) implies $\left[N_{G}\left(P_{i}\right): P_{i}\right]=3$.

Let H be any subgroup of order 3^{i+1} of which contains P_{1}. The uniqueness of P_{i} implies P_{i} is a maximal subgroup of H, hence is normal in H, so $H=N_{G}\left(P_{i}\right)=P_{i+1}$ is unique. This completes the proof of parts (i) and (ii). We note that for $i=n,(2.1)$ is a consequence of (i) and (ii). If ω is an involution in $N_{G}(P), \omega$ normalizes at least two maximal subgroups of P. Since it cannot normalize P_{n-1}, (iii) follows at once from (2.1), and so does (iv).

Corollary 2.3. Assume the hypothesis of Theorem 2.2. If P contains an elementary subgroup E of type $(3,3,3$,$) , then P=P_{1} E$ has order 81 , and is selfnormalizing in G.

Proof. By Lemma 8.4 of [4], P has an abelian normal subgroup A with 3 generators. By Lemma 2.1, it follows that A is maximal in P, and we can assume $E=\Omega_{1}(A)$. Then P_{1} fixes exactly three elements of E, so $P_{1} E$ is isomorphic to the wreath product of a cyclic group of order 3 with itself. Here $P_{1}\left(P_{1} E\right)^{\prime}$ is the unique subgroup of $P_{1} E$ which is non-abelian of order 27 and exponent 3, hence is characteristic in $P_{1} E$. By Theorem 2.2, it follows that $N_{G}(P) \leq P_{1} E=P$, and the proof is complete.

As a second application of Theorem 2.2, we obtain more information about the 3-local subgroups of G in

Lemma 2.4. Let G satisfy the hypothesis of Theorem 2.2. Let A be a maximal abelian normal subgroup of P, and $C=C_{P}\left(Z_{2}(P)\right)$. If P has class at least 3, and P^{\prime} is not weakly closed in P, either
(i) $A=C=V_{G}\left(P^{\prime} ; P\right)$, or
(ii) $|P|=81$, and $C=A$ has type $(9,3)$.

In case (i), either $N_{G}(A) / C_{G}(A)$ is isomorphic to $S L(2,3)$, or P has order $81, A$ is elementary, and $N_{G}(A) / C_{G}(A)$ is isomorphic to A_{4} or the non-abelian group of order 39.

Proof. Since P^{\prime} is not weakly closed in P, Lemma 2 of [3] implies $A=C$. If $|P|>81$, the proof of Lemma 2 of [3] applies in this situation and yields

$$
A=V_{G}\left(P^{\prime} ; P\right)
$$

as well as

$$
\begin{equation*}
S L(2,3) \leq N_{G}(A) / C_{G}(A) \tag{2.2}
\end{equation*}
$$

By Corollary 2.3, A has two generators, so Theorem 2.2 implies equality in (2.2).

Suppose $|P|=81$, and $C=A$ does not have type $(9,3)$. Then A is elementary, and Corollary 2.3 implies P is self-normalizing in G. It follows that $N_{G}(A) / C_{G}(A)$ is a Frobenius group, and is isomorphic to a subgroup of $G L(3,3)$. The last statement of the lemma follows easily from this.

Remark. If $V=V_{G}\left(P^{\prime} ; P\right),|P|=81$, and A has type $(9,3)$, it is not difficult to see V must be non-abelian of order 27 and exponent 3. Here $N_{G}(V) / C_{G}(V / D(V))$ is isomorphic to $S L(2,3)$.

The proof of Theorem 1.1 is now easy. Grün's theorem, and part (iv) of Theorem 2.2 imply $N_{G}\left(P^{\prime}\right) / P^{\prime}$ has a proper 3 -factor group. If P has class 2 , or if case (ii) of Lemma 2.4 occurs, then $N_{G}\left(P^{\prime}\right)$ contains $N_{G}(C)$, and Theorem 1 of [3] implies

$$
\left.\left.0^{3}\left(N_{G}\left(P^{\prime}\right)\right) \cap N_{G}(C)\right)<N_{G}(C)\right) .
$$

By Lemma 2.4, $0^{3}\left(N_{G}(C)\right.$ in all cases, so Theorem 1.1 follows from Theorem 1 of [3].

3. SRTI groups.

If G is a 3 -solvable $S R$-group, Lemma 1.2 .3 of [6] and Lemma 2.1 show that if P is a S_{3}-subgroup of G, then P^{\prime} is contained in $0_{3^{\prime 3}}(G)$. By the Frattini argument,

$$
\begin{equation*}
G=N_{G}\left(V_{G}\left(P^{\prime} ; P\right)\right) 0_{3^{\prime}}(G) . \tag{3.1}
\end{equation*}
$$

It is not hard to show (3.1) is the best possible result for 3 -solvable $S R$ groups, so we consider a slightly stronger set of conditions which yield an improvement of (3.1).

Definirton 3.1. A group G is a $S R T I$-group if it contains a subgroup P_{1} of order 3 which satisfies:
(a) If P_{2} is a S_{3}-subgroup of $N_{G}\left(P_{1}\right), P_{2}$ is elementary of order 9;
(b) P_{2} is self-centralizing in $N_{G}\left(P_{1}\right)$;
(c) if $B=0_{3}\left(N_{G}\left(P_{1}\right)\right)$, then $Q=P_{1} \times B$ is a $T I$ set in G.

Remark: Throughout this section, we use the notation introduced in Definition 3.1. If G is a SRTI-group, and π is the set of primes dividing the order of B, Frobenius' theorem on normal complements shows G satisfies D_{π}.

Our first lemmas provide some basic properties of SRTI-groups.
Lemma 3.2. If G satisfies (a) and (c) of Definition 3.1, either G has a normal 3-complement, or G is a SRTI-group.

Proof. Since $Q=P_{1} \times B$ is a TI set in $G, C_{G}\left(P_{2}\right)=P_{2} \times C_{B}\left(P_{2}\right)$. If for some μ in $G, Q^{\mu} \cap P_{2}>1$, then $C_{G}\left(P_{2}\right) \leq N_{G}\left(Q^{\mu}\right)$, hence

$$
C_{B}\left(P_{2}\right) \leq B^{\mu} \cap B
$$

If $C_{B}\left(P_{2}\right)$ is non-trivial, it follows that μ normalizes Q, hence exactly one conjugate of Q intersects P_{2} non-trivially. Since $N_{G}\left(P_{2}\right)$ permutes these conjugates among themselves, $N_{G}\left(P_{2}\right) \leq N_{G}(Q)$, and Burnside's theorem implies G has a normal 3-complement.

Lemma 3.3. If G is a SRTI-group, it is also a SR-group.
Proof. Suppose $P_{1}^{\mu} \leq P_{2}$, and an element σ of $N_{G}\left(P_{2}\right)$ normalizes P_{1}^{μ}. Then P_{1}^{μ} is contained in $Q^{\mu} \cap Q^{\mu \sigma}$, so σ normalizes Q^{μ}. Thus σ lies in $N_{G}\left(Q^{\mu}\right) \cap N_{G}\left(P_{2}\right)$. By part (b) of Definition 3.1, P_{2} is self-normalizing in $N_{G}\left(P_{2}\right)$ so σ lies in P_{2}, and G is a SR-group.

For the remainder of this section, we let G be a $S R T I$-group with respect to P_{1}, and let P be a S_{3}-subgroup of G which contains P_{1}. Since G is a $S R$-group, we let P_{i} be the unique subgroup of P which contains P_{1} and has order 3^{i}. We are interested in the properties of the subgroups of G which are normalized by P_{i} for various choices of i.

Lemma 3.4. Let X be a group whose S_{3}-subgroup P^{*} has maximal class. If every abelian subgroup of P^{*} has two generators, and if P^{*} is self-normalizing in X, then X has a normal 3-complement.

Proof. Let $C=C_{P^{*}}\left(Z_{2}\left(P^{*}\right)\right)$. By Theorem 1 of [3], and induction, we may assume C is normal in X, and if C is non-abelian, we may assume $P^{* \prime}$ is normal in X. Furthermore, if $Y \leqslant\left\{C, P^{* \prime}\right\}$, we know that X / Y has a normal 3-complement H / Y. Since Y is generated by two elements, $H / C_{H}(Y)$ is isomorphic to a 2 -subgroup of $S L(2,3)$ which is normalized by a S_{3} subgroup of $S L(2,3)$. Since P^{*} is self-normalizing in X, it follows that $H=C_{H I}(Y)$ has a normal 3-complement, and the proof is complete.

Lemma 3.5. (a) Let μ be an element of G, and X a subgroup of G such that $P_{1}^{\mu} \leq X \leq G$. One of the following occurs:
(i) $|X|_{3}=3 ; X$ has a normal 3-complement;
(ii) $3<|X|_{3}<|G|_{3} ; X$ has a normal 3-complement; X is a SRTI-group;
(iii) $|X|_{3}=|G|_{3} ; X$ is a $S R T I$-group.
(b) If N is normal in G, and 9 divides the index [$G: N$], then G / N is a $S R T I$-group with respect to $P_{1} N / N$.

Proof. (a) Clearly, we can assume $P_{1}^{\mu}=P_{1}$. Also (i) is obvious, so suppose P^{*} is a S_{3}-subgroup of X, and \widetilde{P} a S_{3}-subgroup of G satisfying $P_{1}<P^{*}<\tilde{P}$. Since G is a $S R$-group, Theorem 2.2 implies P^{*} has index 3 in its normalizer in G, thus P^{*} is self-normalizing in X. By Lemma 2.1, P^{*} has maximal calss, and by Corollary 2.3, P^{*} satisfies the hypotheses of Lemma 3.4. It follows that X has a normal 3 -complement.

Now $B^{\prime}=0_{3}\left(N_{X}\left(P_{1}\right)\right)=B \cap X$ is the normal 3-complement of $N_{X}\left(P_{1}\right)$. If $\mu \in X$ is chosen so that $Q^{\prime}=P_{1} \times B^{\prime}$ satisfies $Q^{\prime} \cap\left(Q^{\prime}\right)^{\mu}>1$, then $\mu \in N_{X}\left(P_{1}\right) \leq$ $N_{X}\left(Q^{\prime}\right)$, so Q^{\prime} is a $T I$ set in X. All other parts of the definition are clearly satisfied, so (ii) follows. Since this paragraph applies equally well to part (iii), (a) holds.

For the proof of (b), we denote homomorphic images in G / N by barring the appropriate letter, e.g., $\bar{G}=G / N$. Assume first 3 divides the order of N. Theorem 2.2 implies $N_{\bar{G}}\left(\bar{P}_{1}\right)$ is elementary of order 9 , since 9 divides the order of \bar{G}, so in this case Definition 3.1 holds.

If N is a 3^{\prime}-group, we can use the Frattini argument to show $N_{G}\left(P_{1} N\right)$ $=N_{G}\left(P_{1}\right) N$, so (a) and (b) of the definition are clear. Also \bar{B} is the normal 3-complement of $N_{\bar{G}}\left(\bar{P}_{1}\right)$, and we need only show \bar{Q} is a $T I$ set in \bar{G}.

Suppose for $\bar{\mu}=N \mu, \bar{Q} \cap \bar{Q}^{\bar{\mu}}>\overline{1}$. Then $Q N \cap Q^{\mu}>1$. Since $Q N$ is a Frobenius group with Q as the subgroup fixing a letter, if π is the set of
primes dividing the order of $Q, Q N$ satisfies D_{π}, so there is an η in N such that $Q^{\mu} \geq Q N \cap Q^{\mu}$. It follows that $Q^{\eta}=Q^{\mu}$, and this completes the proof, since $\bar{Q}^{\mu}=\bar{Q}^{\eta}=\bar{Q}$.

We have already noted G is a $S R$-group, and introduced the subgroups P_{i}. We now state a uniqueness property for the P_{i} which is useful for the investigation of the subgroups normalized by the P_{i} :

$$
\begin{equation*}
\text { If } i \geq 2, \text { and } P^{r} \geq P_{i}, \text { then } P^{r}=P \tag{3.2}
\end{equation*}
$$

To see this, note that for some $j \geq i, P^{\tau} \cap P=P_{j}=\left(P^{\tau}\right)_{j}$ by Theorem 2.2. If $j<n$, Theorem 2.2 implies $P_{j+1}=\left(P^{\tau}\right)_{j+1}$ which is impossible, so (3.2) follows.

Lemma 3.6. Suppose $i \geq 2$, and P_{i} normalizes the subgroup U of G. Suppose $U \cap P_{i}=1$. Then U is a 3^{\prime}-group, and P_{i}^{\prime} centralizes U. If $i>2,|U|$ is prime to $\left|N_{G}\left(P_{1}\right)\right|$, and U is nilpotent of class at most 2.

Proof. Let S be a S_{3}-subgroup of U chosen so that P_{i} normalizes S. If P^{*} is a S_{3}-subgroup of G containing $P_{i} S$, (3.2) implies $P^{*}=P$, and if $S>1, S \cap P_{i} \geq Z(P)$, a contradiction. Thus U is a 3^{\prime}-group.

Since P_{2} is abelian, we may assume $i>2$, and let π be the set of primes dividing the order of B. We show U is a π^{\prime}-group. If not, let $T>1$ be a S_{t}-subgroup of U for some prime t in π. Since U is a 3^{\prime}-group, we may assume T is normalized by P_{i}. Since G is a $S R T I$-group, G satisfies D_{π}, so for some σ in $G, T \leq B^{\sigma}$. Since B is a $T I$ set in G, it follows that P_{i} normalizes B^{σ}, which contradicts the fact that a S_{3}-subgroup of $N_{G}\left(B^{\sigma}\right)$ has order 9. If P_{1}^{μ} is any conjuagte of P_{1} contained in P_{i}, then P_{1}^{μ} must act Frobeniusly on U, hence the main theorem of [8] implies U is nilpotent of class at most 2.

Let W be the kernel of the representation of P_{i} on U, and suppose $W<P_{1}^{\prime}$. Consider the action of $\bar{E}=\bar{P}_{1} \times Z\left(\bar{P}_{i}\right)$ on U, where barring a letter denotes taking homomorphic images in P / W. Since \bar{E} is properly contained in \bar{P}_{i}, Theorem 2.2 implies \bar{E} contains exactly three conjugates of \bar{P}_{1}. The last sentence of the preceeding paragraph shows that these conjugates all act Frobeniusly on U. The remaining cyclic subgroup of \bar{E} is $Z\left(\bar{P}_{i}\right)$, and since \bar{E} acts cyclicly on every irreducible submodule of $U / D(U)$, it follows that $Z\left(\bar{P}_{i}\right)$ centralizes $U / D(U)$, hence also U. This contradicts the faithfulness of \bar{P}_{i} on U, hence W contains P_{i}^{\prime}.

We obtain a corollary,

Lemma 3.7. (i) Suppose $2<i<n$, P_{i} normalizes U, and $U \cap P_{i}=1$, then $P_{i} \cap P^{\prime}$ centralizes U.
(ii) If 27 divides the order of G, and P_{2} normalizes $U, U \cap P_{2}=1$, then either $U \leq N_{G}\left(P_{1}\right)$, or $U \leq C_{G}(Z(P))$. In either case U is nilpotent.

Proof. (i) The fact that $i<n$ insures P_{i} / P_{i}^{\prime} contains three conjugates of $P_{1} P_{i}^{\prime} / P_{i}^{\prime}$ under action by P_{i+1}, so the same argument applies.
(ii) We know U is a 3^{\prime}-group. Let $Q^{*}=Q \cap U$, so Q^{*} is a selfnormalizing Hall subgroup of U which is a $T I$ set. Either $U=Q^{*}, Q^{*}=1$, or $U=Q^{*} K$ is Frobenius with kernel K. If U is Frobenius, it follows that all conjugates of P_{1} contained in P_{2} act Frobeniusly on K, hence, as above, we obtain $K \leq C_{G}(Z(P))$. However, the definition of $S R T I$-groups shows that $Z(P) Q^{*}$ is a Frobenius group which normalizes K. Since Q^{*} is nontrivial on $K, Z(P)$ does not centralize K, and we have a contradiction.

If $Q^{*}=1, Z(P)$ centralizes U, so the proof of (ii) is complete. In both cases, U is nilpotent of class at most 2 .

We can now apply these results, which hold in general for SRTI-groups, to characterize 3 -solvable SRTI-groups.

Theorem 3.8. Let G be a 3-solvable SRTI-group with S_{3}-subgroup P. Then $V_{G}\left(P^{\prime} ; P\right)$ is normal in G. If $U=0_{3^{\prime}}(G)$, and 27 divides the order of G, U is nilpotent of class at most 2 , and $B=1$. If $|G|_{3}=9$, either G has a normal 3complement U, and there is a nilpotent normal subgroup K of G contained in U such that $P_{1} U=Q K$, and $Q \cap K=1$, or U is nilpotent of class at most 2 , and $B=1$, or U. The possibilities for G / U are given in Theorem 2.2, and Lemma 2.4.

Proof. By (3.1), to show $V_{G}\left(P^{\prime} ; P\right)$ is normal in G, it suffices to show P^{\prime} centralizes U, but this follows from Lemma 3.6. If 27 divides the order of G, it is clear that U is nilpotent of class at most 2 . Now B is a Hall subgroup of G, and it follows from (3.1) and Lemma 2.4 that B is contained in U, hence $B=1$.

Suppose $|G|_{3}=9$. If P_{2} is self-normalizing in G, G has a normal 3complement U. If $U>B>1$, it is a nilpotent self-normalizing $T I$ set in U, so U is a Frobenius group with kernel K, and the second statement of Theorem 3.8 is obvious. This completes the proof since Theorem 2.2 and Lemma 2.4 are essentially an analysis of the possibilities for G / U.

4. Proof of Theorem 1.3

Throughout this section, let G be a $(2, \beta)$ group on $M Q$. The proof of Theorem 1.3 consists of the following lemmas.

Lemma 4.1. Let X be a (α, β) group on $\tilde{M} \widetilde{Q}$. If α is even, $T=S_{2}(Q)$ is cyclic. If T is non-trivial, then $X=F(X) \tilde{M} \widetilde{Q}$.

Proof. Suppose T is non-trivial. By Lemma 2.2 of [7], the index $\left[N_{X}(Q): Q\right]=\alpha+1$ is odd. Since $N_{X}(T)$ is contained in $N_{X}(Q)$, it follows that T is a S_{2}-subgroup of X. It is well known that T is either quaternion or cyclic (cf. Theorem 10.3.1 of [5]). If T is quaternion, a result of Brauer and Suzuki [2] implies $Z\left(X / 0_{2 \prime}(X)\right)$ has order 2, hence $\tilde{M} \leq K=0_{2 \prime}(X)$. The definition of (α, β) groups implies \tilde{M} is not normal in G, and since \tilde{M} is a Hall subgroup of G, \tilde{M} is not normal in K.

By the famous theorem of Feit and Thompson [4], there is a prime p such that $0_{p}(K)=K_{1}$ is not the identity. Clearly $\tilde{M} \cap K_{1}=1$, so $\tilde{M} K_{1}$ is a Frobenius group. However, \tilde{M} is nilpotent of odd order, so it follows that \tilde{M} is cyclic. Since this contradicts ths fact that $T \tilde{M}$ is Frobenius and T is quaternion, it follows that T must be cyclic.

Now K is a normal 2-complement for X. Suppose T is non-trivial, and $F(X) \tilde{M} \tilde{Q}<X$. Since \tilde{M} is not normal in $X, F(X) \cap \tilde{M} \tilde{Q}=1$, hence $F(X)=F(K)$ has order prime to $|\tilde{M} \tilde{Q}|$. Let K_{1} be a normal subgroup of K minimal with respect to the containments $K \geq K_{1}>F(X)$. If $M_{1}=\tilde{M} \cap K_{1}>1$, then M_{1} is a Hall subgroup of K_{1}, and the Frattini argument implies $X=F(X) N_{X}\left(M_{1}\right)$, a contradiction since $N_{X}\left(M_{1}\right)$ is contained in $\tilde{M} \tilde{Q}$. Thus it follows that $\tilde{M} K_{1}$ is a Frobenius group, hence by [9], K_{1} is nilpotent, a contradiction to $K_{1}>F(X)=F(K)$.

Corollary 4.2. The order of Q is odd.
Proof. If $T=S_{2}(Q)$, then $G=F(G) M Q$ by Lemma 4.1. Since M is a Hall subgroup of G, and is non-normal in G, we obtain $F(G) \cap M Q=1$. If Y is any $M Q$-invariant section of $F(G)$, then $C_{Y}(Q)>1$, since $M F(G)$ is a Frobenius group, and $|F(G)|$ is prime to $|M Q|$. Since $\left[N_{G}(Q): Q\right]=3$, it follows that $F(G)$ is an elementary 3-group, and $M Q$ acts irreducibly on $F(G)$. In particular, Q acts as a multiple of the regular $Z_{3}(Q)$-module (here Z_{3} is the field with three elements). Since $\left[N_{G}(Q): Q\right]=3$, it follows that
$|F(G)|=3|Q|$. Since the smallest prime q dividing M is at least 5 , the Frobenius group $M Q$ does not have a faithful irreducible representation of degree $|Q|$ over Z_{3}, so the corollary follows.

This corollary shows the Sylow subgroups of Q are cyclic, hence in particular, Q has a normal 3-complement B by Burnside's theorem. Let U be a S_{3}-subgroup of $N_{G}(Q)$, and let $V=U \cap Q$ be the corresponding S_{3} subgroup of Q.

Lemma 4.3. Either G has a normal 3-complement, or U is elementary of order at most 9.

Proof. Suppose U is not elementary of order at most 9. Then it follows that V contains a characteristic subgroup K of U such that $K>1$. Since Q is a $T I$ set in $G, N_{G}(U) \leq N_{G}(Q)$ and it follows that U is a $S_{3^{-}}$ subgroup of G. Since $N_{G}(Q)$ has a normal 3-complement, if $C>1$ is any characteristic subgroup of U contained in V, our previous argument shows $N_{G}(C)$ has a normal 3-complement. If U is abelian, G has a normal 3complement by Burnside's Theorem.

Suppose U is non-abelian, then U contains an abelian subgroup of type $(3,3)$ so there is an element σ of order 3 in U such that $U=\langle\sigma\rangle V$. Since σ is an automorphism of V of order 3, a simple computation shows

$$
U^{\prime} \leq Z(U)=D(V)=D(U)<U
$$

This implies U has class 2, hence $\Omega_{1}(U)$ has exponent 3 . Since U does not have exponent $3, \Omega_{1}(U) \leq\langle\sigma\rangle \times D(U)$. If A is an abelian subgroup of U for which the minimum number of generators is maximal, then $\Omega_{1}(A)=\Omega_{1}(U)$ and since U is non-abelian, we have $U>A D(U) \geq\langle\sigma\rangle \times D(U)$. The maximality of $\langle\sigma\rangle \times D(U)$ in U implies A is contained in $\langle\sigma\rangle \times D(U)$. If $J(U)$ is the subgroup of U generated by all abelian subgroups of U for which the minimum number of generators is maximal, then

$$
\begin{equation*}
J(U)=\langle\sigma\rangle \times D(U) \tag{4.1}
\end{equation*}
$$

Since $Z(T)$ is contained in V, our remarks in the first paragraph show $C_{G}(Z(T)) \leq N_{G}(Q)$ has a normal 3 -complement. If $|(U)|>3$, then the subgroup $\Omega_{1}(D(U))$ is characteristic in $J(U)$, so $N_{G}(J(U))$ is contained in $N_{G}(Q)$, and it has a normal 3-complement. By Thompson's theorem [9], G has a normal 3 -complement.

Suppose $J(U)$ is elementary. Then U has order 27 by (4.1). $C_{G}(J(U))$ is contained in $N_{G}(Q)$, hence has odd order. If R is the normal 3-complement in Q, it follows that $C_{G}(J(U))=J(U) \times R^{\prime}$, where $R^{\prime}=C_{R}(J(U))$. Since R^{\prime} is a normal 3-complement in $C_{G}(J(U))$, if $R^{\prime}>1, \quad N_{G}\left(U C_{G}(J(U)) \leq N_{G}(Q)\right.$, and if $R^{\prime}=1, \quad N_{G}\left(U C_{G}(J(U))\right)=N_{G}(U) \leq N_{G}(Q)$, so in any case it has odd order. Since $\bar{N}=N_{G}(J(U)) / C_{G}(J(U))$ is isomorphic to a subgroup of $G L(2,3)$, our preceeding statement shows $\bar{U}=U C_{G}(J(U)) / C_{G}(J(U))$ is a self-normalizing S_{3}-subgroup of \bar{N}. This implies $\bar{N}=\bar{U}$, hence $N_{G}(J(U))$ has a normal 3complement and so does G by Thompson's Theorem.

Lemma 4.4. G does not have a normal 3-complement.
Proof. Let H be a normal 3-complement for G. Since $N_{G}(M)=M Q$ is Frobenius, it follows that M is contained in H. Since M is a nilpotent Hall subgroup of G, the results of [10] allow us to use the Frattini argument to obtain $G=Q H$. In particular, Q contains a S_{3}-subgroup of G which is not the case.

Consider the structure of $N_{G}(Q)$. Corollary 4.2 implies Q is metacyclic, so if we let Q_{1} be the maximal normal cyclic Hall-subgroup of $Q, Q=R Q_{1}$ where R is a cyclic Hall-subgroup of Q. We note that Lemmas 4.3 and 4.4 imply V is central in Q, hence R is a 3^{\prime}-Hall subgroup of G. Choose R so that U normalizes R, then $U R$ is represented on Q_{1}. Since Q_{1} is cyclic, and R is non-trivial on Q_{1}, the group $U R$ must be abelian. If Φ is the set of primes dividing the order of R, Burnside's theorem implies G has a normal Φ-complement G^{*}, and clearly $G=Q G^{*}$. Let $Q^{*}=Q \cap G^{*}$, and let $B^{*}=0_{3}(Q)$. If $C=C_{B^{*}}(U)$, then C is a Hall subgroup of G^{*}, and for the set of primes $\tilde{\Phi}$ dividing $|C|, G^{*}$ has a normal $\tilde{\Phi}$-complement G_{1}. Clearly $Q G_{1}=G$, and since G / G_{1} has order prime to $6, G_{1}$ contains $0^{\pi \prime}(G)$. The proof of Theorem 1.3 will be complete if we can show G_{1} satisfies parts (i)(iv) of Theorem 1.3 since this also implies $G_{1}=0^{\pi \prime \prime}(G)$. Let $Q_{1}=V \times \tilde{B}=Q \cap G_{1}$.

Lemma 4.5. If $V>1, G_{1}$ is a SRTI-group.
Proof. Consider $V=P_{1}$ by Lemmas 4.3, and 4.4, V is cyclic of order 3, $Q_{1}=V \times \tilde{B}$ is a $T I$ set in G_{1}, and an S_{3}-subgroup P_{2} of $N_{G_{1}}\left(P_{1}\right)$ is elementary of order 9. If $\tilde{B}>1$, the discussion above shows $P_{2} B / P_{1}$ is a Frobenius group, hence P_{2} is self-centralizing in $N_{G_{1}}\left(P_{1}\right)$, and the lemma follows.

By Theorem 1.2, either $V=1$, or there is a subgroup G_{2} of index 3 in G_{1} which is normal in G_{1}, and which satisfies $V G_{2}=G_{1}$.

Lemma 4.6. $\tilde{B}>1$.
Proof. If $\tilde{B}=1, Q \cap G_{2}=1$. Since M is not normal in G, it is not normal in G_{2}, hence $G_{2}=K M$ is a Frobenius group, and $G=K M Q$.

As in Corollary 4.3, K is an elementary abelian group of order $3^{|2|}$, and $M Q$ operates faithfully and irreducibly on K. Thus M is cyclic and $|M|$ is prime to 6 . The same contradiction obtained in Corollary 4.3 applies here, so the lemma holds.

The next lemma completes our proof.
Lemma 4.7. G_{2} is simple.
Proof. Let N be a non-identity normal subgroup of G_{2}. Since $\tilde{B}>1$, $N_{G_{2}}(\tilde{B})$ is a Frobenius group. From this it follows that $M \cap N>1$. By the Frattini Argument, and the fact that M is a $T I$ set, $G=N M Q$. If $N<G$, G / N is isomorphic to a factor group of $M Q$, and this contradicts the fact that $N_{G_{2}}(B)$ is Frobenius. Thus $N=G$ is simple.

The simplicity of G_{2} implies $G_{2}=0^{3}\left(G_{1}\right)$, and $G_{1}=0^{\pi^{\prime}}(G)$. The fact that G_{1} and G_{2} are $(2, r)$ groups for the appropriate choices of γ is trivial. The fact that $\left[G_{1}: G_{2}\right] \leq 3$ follows immediately from the statement $G_{1}=V G_{2}$. This completes the proof.

Refeernces

[1] Blackburn, N. On a special class of p-groups, Acta Math., 100 (1958) 45-92.
[2] Brauer, R., and Suzuki, M. On finite groups of even order whose 2-Sylow subgroup is a quaternion group, Proc. Nat. Acad. Sci., 45 (1959) 1757-1759.
[3] Cline, E. A transfer theorem for small primes, to appear.
[4] Feit, W., and Thompson, J.G. Solvability of groups of odd order, Pac. Jour. Math., 13 (1963), 775-1029.
[5] Gorenstein, D. Finite Groups, Harper and Row, New York, 1968.
[6] Hall, P., and Higman, G. The p-length of a solvable group and reduction theorems for Burnside's problem, Proc. London Math. Soc., 7 (1956) 1-42.
[7] Keller, G. A characterization of A_{6} and M_{11}, to appear.
[8] Neumann, B.H. Groups with automorphisms that leave only the neutral element fixed, Arch. Math., (1956) 1-5.
[9] Thompson, J.G. Normal p-complements for finite groups, Jour. Alg., 1 (1964) 43-46.
[10] Wielandt, H. Zum Satz von Sylow, Math. Zeit., 60 (1954) 401-408.

