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REMARKS ON THE ANGULAR DERIVATIVE^

S.E. WARSCHAWSKI

Introduction. Suppose that Ω is a simply connected domain in the

w-plane, w = u + iv, and that w^ is an accessible boundary point of Ω

located at w = oo. Suppose w = W(z) = U{z) + iV(z) maps the strip

Σ = {z = x + iy: — co < # < oo, 0< y <π} conformally onto Ω such that

lim W(x + i -^-) = zί oo. If in any sub-strip {2 = x + ZT/: — 00 < x < 00,
as-»+oo \ Z /

lim [WU) — £] = A: exists and is finite, (1)

then W{z) is said to have an angular derivative at z = + oo.υ The problem

of finding geometrical conditions on Ω which ensure the existence of the

angular derivative has received considerable attention ever since Caratheo-

dory introduced this notion in the study of the boundary behavior of con-

formal maps in 1929 (cf. [5], Chapter III, [4], Chapter VI, in particular

pp. 204-217, and [6], Theorem 6). In this note we present another such

criterion, which for a wide class of domains yields a sharper sufficient

condition than the earlier results. The basis for this criterion is the follow-

ing more special result.

Suppose {un}, {vn}, {Vn} are sequences of real numbers such that

un+ί — un ^ d > 0, lim vn = 0, lim vf

n-π (2)
n->oo n—><x>

and let S denote the interior of the union of the rectangles
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χ) If Ω is mapped conformally onto a domain D such that w^ corresponds to a finite

boundary point of D and 2 onto the unit disk {| ζ | < 1} such that % = + so corresponds to
ζ = 1, then the conformal mapping of the disk onto D has a non-vanishing finite derivative
at ζ=l for approach in a Stolz angle.
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Sn = [w = u + in: un<u ^un+l9 vn^v ^Vn}, n — 1,2,

and the half-strip

So= {w = u + iv: — oo < u <ul9 Vx<v ^vi],

i.e.

S = Int U Sn. (3)

Suppose w = W{z) = {Uz) + iV(z) maps 2 conformally onto S such that

lim u(x + i -£-) = + co and lim t/fα + ί -^-) = — co. Then we prove first

the following theorem:

T H E O R E M 1. 2>ί βn = vή- vn and λ n = Max[\vn+1 — vn\, \υ'n+1 — ι ;£ | ] .

l
(a)

(b) Σ
n=l

then, for unrestricted approach for

lim ίW(z) — z} = re exists and — co < κ < + oo. (i')

The essential step in the proof of this theorem is an estimate of the

oscillation ω{x) of U{x + iy) on a vertical segment ίftz — x of 2 (Lemma 2).

The above mentioned criterion for more general domains is then ob-

tained from Theorem 1 by using S as an "interior comparison domain"

(Theorem 2, section 4). To indicate the scope of Theorem 1 we mention an

example considered by J. Ferrand in [2] and jointly with J. Dufresnoy in

[3], viz. the special case of the domain S where υr

n = vn + π, so that θn^π
CO

and \vn+ί —vn[ = \vή+i —Vn\ = λn. In [3] they proved that Σ\λS < oo is
v = l

oo

necessary for the existence of (1') and that a sufficient condition is Σ ^ 3 / 2 < oo.
v = l

All present criteria known to the author do not appear to yield a sharper
00 1

sufficient condition. Theorem 1 shows that Σ ^ 2 l o g - y - < o o is sufficient for the
existence of (]/).
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1. Semiconformality. Since the boundary curves of S have the

lines υ = 0 and v = π as asymptotes as u -* + °° it follows that \im{V(z)—y)=0

exists, uniformly for 0^y<π; in particular, the mapz-+W{z) is semicon-

formal at z = + °°. This has a number of useful consequences. Let

z=Z(w) = X{w) + iY(w) be the inverse function of W{z). Then for any wf, wf/^S,

?ft{w') = u', 3t(«;") = w", ur < u",

X(w") — X(w') = (1 + o{uf, u")) {uf/ — uf) + o(u\ u") (1.1)

where o{uf,u")->Ό as u' -> + oo, uniformly in S. This follows e.g. from Corol-

lary 1 of Theorem la and Theorem 2 of [6],

Let wn and wt denote the vertices un + ivn-x and un + f#Λ on the lower

boundary of 5 and wή9 wή* those on the upper, un + ivή-i and un + /<,

respectively (w^2). Under the map w~^Z(w), wn, w% correspond to points

ΛΛ #ί> ίCn < ί»ί, and Wn, w'n* to points ίĉ  + iπ, x'n* + /π with xή < xf*. Since

un+1 — un^d >0 we have from (1.1) for all sufficiently large n

Λ + l 71 = = ^ 71+1 71 = ^

and therefore there exists a constant k>0 such that for all n = 1,2,

Furthermore, (1.1) shows that the octagon

ί - i d )

{w = u + iv : W<ΞS, \U - un\ ^-γ\

is mapped onto a curvilinear rectangle contained in the rectangles

\z = x + iy : \x — xn\ ^-^-d9 0 ̂ y <π\

and (1.3)

= x + iy : \ x - x ' n \ ̂ -%-d, O^y^
o

provided n is sufficiently large, say n > NQ.

We also assume iV0 so large that λn<-^- and \θn — π\ <-f- for n>N0.
lb o

Finally, it follows from Theorem 5 of [6], under the hypothesis (a) of

Theorem 1 (which ensures condition (5.1) of [6]), since lim θn = π that for
w>oo

lim [Z{w) - w\ = A (1.4)
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exists and that — oo < Λ^ + oo. It remains thus for us to show that
oo 2.

jl < _j_ oo if 2 λl log -y- converges.

For the proof we shall need two lemmas.

LEMMA 1. Let an = -ί- (Wn + ^ *), n> NQ, If

Zl

w',w"<={\w — an\ ^r}Γ)S, where 2r ^r0 = Min {—-, -^-Y (1.5)

then

2π
I Z(w') - Ziw") I < cr where c =

Iog2

An analogous statement holds for ar

n = - i - (w;̂  + wt*) in place of an. In par-
Zl

ticular, Lemma 1 implies that

%t — xn < cλn, xή* — %ή< cλn for n > No. (1.6)

Proof Let Tp = {\w — aΛ\ = p} f)S for p^r0; because of the symmetri-

cal location of an, ϊp is a semicircle. If lp denotes the length of Γp = Z(ϊp)

we have

lp=(\ \Z'{an+ peiθ)\pdθ)2 ^
Tp

and therefore (r < r0)

π^ \\Zf(an + peiθ)\pdθdp=πA(r) (1.7)

where A(r) is the area of the domain Δr bounded by Γr and a segment of

the real axis which contains Z(an). We reflect Γr with respect to the real

axis obtaining an arc Γr and consider the interior of the closed Jordan

curve bounded by Γr\jΓr. By the isoperimetric inequality:

2A{r) ̂  ^ 2 / )

4π

and thus

or % ^
ή — r\
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Since for r<r0, Δr is surely contained in the rectangles (1.3), A(rQ)<2πa

and therefore, for any r ^ r0

4

Thus, from (1.7), for 2r < r0

Hence there exists a pl9 r < p1<2r, such that

Now, if wf and w" satisfy (1.5), Z{w')9 Z{w")^ΔPι whose diameter is <lPι^cr,

c = ~~-Λ/ , O > 1. This proves the conclusion,
' o V l o g z

2. Estimate of the oscillation ω{x). We return to the function

w = W(z) = U{z) + iV{z) and define for — oo < x < oo

ω(α) = Max [t/(& + z » - C/(α + iy')\.

Clearly

Jo 0*2/ Jo
(2. i)

by the Cauchy-Riemann differential equation. We obtain an estimate for

ω{x) by estimating the latter integral.

LEMMA 2. Suppose, for some n, x is a point in the interval

k k

which has at least the distance δ, 0 < δ < -^- from the intervals In — [xn9 xf] and

Iti = [Xn,xή*~l' Here k is the constant defined in (1.2). Then there exists an N

such that for n > N

ω(x) ^ - |

oo

where σn > 0, lim σn = 0 and Σ o ̂ ^,, converges if Σ\λl converges. In fact, if

Σlλl = A, then
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(2.3)

/. Since V(z) is harmonic and bounded in 2 and has continuous

boundary values, except when # - ^ ± o o , we have by the Poisson integral

V(z) = J L Γ arctan _1_ Γ
f ^ a r c t a n

Since lim V{ξ) = 0, lim V(ξ) = ^ , lim V(ξ+ iπ) = π9 lim V(ξ + /π) = v[ we

obtain by integration by parts, with 2c = π — (υ[ — ̂ ) , 7rCj = vί — v l t

arctan

arctan -

ί- excosy

X

Hence

| + 3 ? siny dξ
dξ

fa)

β2x 2ι6^

eξ+x{— siny)

x

Using the equation -~— 1 we obtain

dV{ξ+iπ)
dξ

(2.4)

We note now that = 0 outside of /, and dV^dt
 iπ) =0 outside

of /»' (υ = 1,2, •); i n Λ and /„' V is a monotone function and

L, dV(ξ)
dξ

dξ ^ λv, ^λv [v = 1,2, (2.5)

We estimate therefore log
ex —

for fe/ v and fe/ ί . We choose N>N0

and so large that for n>N: \Xn-i~xn-i\ < - | - a n d δc^-i < fc. We consider
o

the cases v = n, v > n9 and v < n separately.

(a) Let it = n. Assume first fe/ Λ and

(2.6)
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which is a subinterval of \xn-ι -f ~r, xn+1 — -4-Ί Then either #* + 3 ^

^ xn + -— or #,, — — < x < xn — δ. In the first instance

Q < e* + e* ^ en 2 + / " ^ e2

* ^ — ~ eδ

and in the second, using (1.6),

If x is outside the interval (2.6) then for x ^ xn +

and for x ^xn — -~-
Δ

so that

H--*

& fc
1 + e 4 - ^4 + L ^ ^ i + L^Λ^ (2>7).A

41 - e

Thus (2.7) holds for y = n, fe/ p and α in (2.1).

When ζ^ilί we note that our assumption \x'n-ι — ̂ u-il < ~g~ for n> N

implies that for any x in (2.2) we also have x&xή^.1+-~, Xn+i ~ -f~Ί

Hence the same argument shows that (2.7) is satisfied for

(b) When v > n (and also when v < n) we use the inequality

log XΛ_U <2u ^a2 for 0 < t t ^ f l < l . (2.8)

For x in (2.2) and ?£/„, v > n, we have

A -A.
2 Λ 2
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Applying (2.8) with a = e 2 we have

k_

^ 2e 2

log
ex - #*-C»+Ό

When ξe/ί we observe again that for x in (2.2), we have x^[χή-i+ — 9

%ή+i j-Ί , and therefore

log ex+e*
ex—eζ = log <-

1-e*-* - Rv-n-χ
k\ '

Thus (2.9) holds for v>n for fe/^u//.

(c) When y < n and £ e / v we have for y ̂  n — 2

and for y = n —

Thus, by (2.8)

log e +
£X

1,

, .

2 <
x x k

: e

v + 1 n~ι 2

using (1.6),

f 1

^n-v-2 ^

1

sinhA

_ it

1
n h i

f-*(»-„-2)

, when y

when y

R

= n

2

n-v-2

_

- 1

When y — n and fe/ ί we have for — 2

and for i; = n — 1, again using (1.6),

(2.9)

(2.10)

Thus, again by (2.8)
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log ex + e*
e" —

sinhA
4

when v ̂  n — 2

when y = w — 1.
(2.11)

We obtain then from (2.1), (2.4), (2.7), (2.9), (2.10) and (2.11)

dy A

where

oo T 1 n—1
pw+i y i A " I ^ i

v=n+l -ft -ft v=l

It is easily seen that l im^ = 0 implies lim<τΛ = 0. To prove [2.3) we write
n > o o n>oo

Σ c / _ E>2 Γ_A2__ i _^3__

_il_ i _2±_ i . ̂ 6
i ? 5 ' i ? 6

and taking the sum on the right "by diagonals" we find

2_
^_l ΛnSn

 = Z.J Λvλv+ι ~Γ ΊD 2-1 Λvλv+2 "T D2 ^_J ΛyΛy+3 ~Γ
n=l v=l κ v=l κ v=l

Now, if J]λv = A then, by the Cauchy-Schwarz inequality,
v = l

Σ (λiU*) ̂  ( Σ ^2 Σ *.'+*) 2 ^

and therefore

i ? - l *
_ .

(2.12)

Similarly
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Λ ? ι ύ n
n=2

Taking again the sum "by diagonals" we find

CO OO OO I CO

Σ λns'ί = R Σ Uλ+i) + Σ (λλ+2) + -75- Σ
2 l l ^ l

(2.13)

The estimate for Σ(^Λ^n) follows now from (2.12) and (2.13).

3. Proof of Theorem 1. We choose JV^ No such that Lemmas 1

and 2 apply. Suppose for an n >N, InΠlή — Φ, so that either x*< x'n or

xή*<%n. Assume the former; then we assert: if %'n — xt > 2λn then

x'n-xt^ 4cμn where μn = — Iλjog - ^ - + (sinh -^Ύ'σJ .

If xή — x$ > 4cμn we choose an x^lx*, xή] at the distance ^ 2cμn from

both endpoints. If follows from Lemma 1 that the point W(x)^dS has a

distance > μn from w$. For if this distance were £ί μn then W(x) would

lie within a circle of radius (μn + -i- ^n J about an and, therefore, by Lem-

ma 1, we would have \x — x%\< c(μn + λn) < 2cμn. (Note that for n > No,

λn <-?£- a nd therefore 2 g > e2 so that jwΛ>An.) Now, by Lemma 2,
lb λnω{x)^μn, and therefore the image lx of the segment {zYStz^x

under the mapping z -> W(z) must lie in the half-plane 'Stw > un, since

$ϊW{x) >unΛ μn. This contradicts the fact that x* < x < xή implies that lx

must cross the line 'Sίw = un in S. Thus we must have xή — x% ^4cμn. (An

analogous result holds if xή*< xn.)

For each n> N let Jn denote the smallest interval containing In U In

(e.g. if x*< xή, Jn = [2Cn,a?n*]). We can choose N so large that the length

of Jn is < -4- for all n > N. If a is a point exterior to all Jv and between

Jn and / n + i , then /^ connects a point on {un ^u< un+l9 v = υn] to a point
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on {un^Lu<un+u v = υ'n} and therefore its length l(x)^θn. For

l(x) ^θn- 2λn.

Let xN< xf < x" and x\ x" exterior to any /„. Let {Jm}l=P be all of
q

these intervals contained in {x'9x"). The set [#', α/'Jxt) Jn consists of q—p+1

intervals J'n% n = φ — 1, φ, ,q% where ]r

v^ precedes Jp, and Jή follows

Jn> n = p, p + 1, 9q.

By the arc length-area inequality (see [1], p. 13)

Γ π[* [\W'{x + iy)\2dy dx<π2{u" - Uf) + π\ω(xf)

where

We write

u' = Max U{x' + iy), u" = Min U(x" + iy).

n=p—l
J'n

Now

and

^θldx^iπ + θn - π)2dx ^ [π2 + 2π(^ - π)] J
J'n J'n J'n

\ dx ̂  J (0» - 2Λn)
2rfa? ^ ( « - UJn) J J ^ '

/« /» Λ

π* j dx + L2π(θa -it)- Aλnθn-\ J ,
J, Λ

(3.1)

(3.2)

(3.3)

(3.4)

Thus from (3.2), (3.3), and (3.4), if m{Jn) and m{Jή) denote the lengths of

Jn and /ί,

r Σ
n = p - l
0 ^

(3.5)
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Since / ίcK,a; f t + 1 ] we have m{Jί) < xn+1-xt and since, for n > N, m(Jn)<-γ

and xn+1 — xt^-^- we have also m(Jn) < xn+1 — xt. Hence the absolute

value of the sum of the second and third terms on the right hand side of

(3.5) doses not exceed

4π Σ (π-θn)(xn+ί-x*).
n—φ—l

By (1.1), since un+ί — un^t d >0, we have

xn+1 — xt = (un+1 — un) (1 + ε J , lim εn = 0
n-»oo

and therefore

x^**(x"-x')-4π Σ {π-θn){un+ί-un){lΛ- εn)-2A
n=p—1 n=v

(recalling that m{Jn) ^ 6cμn). The last two series converge by hypotheses

(a) and (b). Thus by (3.1) for *' = xf + iy', z" = x" + iy/f^H

U(z") - x" ^ U(z') - xf - [ω(xf) + ω(x")] + δ(xf)

where δ{x')-±0 as aj'->oo. Since we already know from (1.4) that

lim(W(z) — z) = K < oo exists and that \ιmω{xrr) = 0, this shows that K > — oo

and Theorem 1 is proved.

4. Criterion for angular derivative. We come now to the appli-

cation of Theorem 1. Suppose Ω is a simply connected domain which has

a boundary point Wo* at w = oo, accessible along a ray L parallel to the

real axis, say L = lu^z u0, υ = -|-f c ίλ For u^u0 let 0tt denote the largest

open segment on the line $tw = u which intersects L and is contained in Ω

and θ(u) (^ oo) its length. We denote the endpoints of θu by v(u) and v'{u),

v(u)<vr{u). Let {uj be a sequence with un+1 — un^d >0, u1>u0 and let

υn = Sup V(M), < = Inf *;'(«), θn= υ'n — vn,

λn=Maκ\_\υn+ι-υn\, \vUi - vί\l

THEOREM 2. Suppose there exists a sequence {un} such that

(a) lim υn = 0, lim υ'n = π9
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(b) H{π-θn)(un+1-un)<oo,

(c) Σiilog4-<oo,
n=l An

and suppose that for all u > u0

(d) ^ (θ{t)-π)dt^M.
wo

If W(z) = U(z) + iV{z) maps the strip Σ conformally onto Ω such that

lim W(x + i ~) = We* then W{z) has an angular derivative at z= -f °°.

Remark. If S is the domain (3) constructed with the data {un}, vn, vή

of Theorem 2, then the part of S i n u^u1 is contained in Ω. For our

purposes it is no restriction of generality to assume that the whole domain

SaΩ. We note that S is not required to be contained in a parallel strip

of width π (a restriction frequently imposed on an "interior comparison

domain"). Under that restriction hypotheses (b) and (d) alone form a

sufficient condition for (1), and this is essentially the criterion given by

Ahlfors [1], p. 36, the first important criterion in the literature. In this
00

case (b) implies that Σ ^ < ° ° In our theorem that restriction has been
n=l

replaced by the considerably weaker assumptions (a) and (c). It is difficult

to compare directly our theorem with some other criteria which use a dif-

ferent geometrical characterization of dΩ (e.g. theoreme VI, 16a in [4] p.

208 and those derived from it pp. 209-211), but such comparisons may be

made in special cases to which both apply, such as the example described

in our introduction.

Proof of Theorem 2. Condition (a) implies that for every η, 0<η< -^-,

there exists an Rη ̂  u0 such that the half-strip Sv = {w = 11 + tv: u^R9

7] <v <π — η}dΩ. Let E+={u0^u< 00 : e{u) — π >0} and E-={uo<u< 00:

θ{u) - TΓ^O). Then it follows from (b) that

\ (θ(u) — π)du converges,

and therefore from (d) that
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(θ{u) - π) <M- J (0(«) -π)du< co.
£•_

Thus £? satisfies the hypotheses of Theorem 5 in [6], and if Z(w) = X(w)+iY{w)

is the inverse function of W(z), we have for w^Sv for any )?, 0 < r? <-—,

lim [Z(w) — w] = Λ exists and — oo < Λ ^ + °°.

As indicated above we may assume that SaΩ, where S is the domain (3)

constructed with the data of the theorem. If ZL{w) maps S conformally

onto Σ s u c h that lim ίflz/u + i -^-) = + oo, we know by Theorem 1, that
U—»-}-OO \ Δ '

for w<^S,

lim \Zx(w) — w']=A1 exists and is finite.

If Zx(w) is so normalized that, for some wo&S, Zi{wQ) = Z(w0), then SaΩ

implies A^.Aι< + °°. This completes the proof.
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