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HYPOELLIPTIC OVERDETERMINED SYSTEMS
WITH VARIABLE COEFFICIENTS
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1. Introduction
Let

(1) o(#,D)u = f

be a system of partial difierential equations. We shall say that p(x,D) is
hypoelliptic if the distribution solution # is in C* wherever feC> (cf. section
2, Definition 5.)

Here we shall give a sufficient condition for the hypoellipticity of over-
determined systems with variable coefficients.

For determined and overdetermined systems with constant coefficients
a necessary and sufficient condition was obtained by Lech [5], Hérmander
[1], Malgrange [6] and Matsuura [7]. On the other hand, Volevit¢ [8] gave
a sufficient condition for determined systems with variable coefficients. His
condition corresponds to the formally hypoelliptocity in the scalar case.
Furthermore, a more general sufficient condition. was obtained by Hérman-
der [2]. For overdetermined systems with variable coefficients, Kato [3] gave
a sufficient condition as an extension of the Volevi¢ condition.

As in [2] our method is to construct a left parametrix by pseudo-
differential operators. §2 is devoted to some properties of matrices of pseudo-
differential operators. In §3 we shall state a main theorem on a sufficient
condition for the hypoellipticity of overdetermined systems with variable
coefficients. We shall prove this theorem in §4.

2. Preliminaries

Let R™ be the n-dimensional Euclidean space with coordinates (z,, « + -, %,)
and Q an open subset in R*. We denote the set of all v-dimensional vec-
tors whose components are C™-functions in £ and those with compact sup-
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ports in @ by C= (2; C’) and by C;7 (2;C”), respectively.
Let p(z,D) be a pgxy matrix

(2) p(x, D) = ;aém a,(x)D°,

of partial differential operators, where « = (a;, -+ -,a,) (a; =0, integer) is

a multi-index, |a|=a;+ - -+ + ay,al=a!, -+ -, e,), D;j=—i a?c, (i =/—1,
j=1,+++,m), D=(Dy,+++,D,) and D*=D%...D, If we denote the
Fourier transform of #=Cj (2; C*) by d(¢) = Su(x)e‘i“'“dx where <z, &> =2,

++ 4 @,8s, then p(z,D) u is given by the p-dimensional vector
@) p(@, D)u(x) = (27:)""Sp(x,g)ﬁ(§>ei<x,e>ds_

Here we set p(x,€) = 2] a.(x)é".
The class of partial differential operators can be extended as follows.

DerFiniTiON 1. If m, p and & are real numbers with 1=p >0 and 6§ =0,
we denote by S;;(2; C’,C*) the set of all p(z,8)eC” (2x R"; C’,C*) such that
for every compact subset K in 2 and all multi-indices &, 8 we have with a
consatnt C, .«

|D:Dip(2,8)| = Capxc (1 + [§])"~*1*1*°1Pl, €K and §€R",
where | | denotes an operator norm of matrices from C* into C*. Set
US;'f; = S;,a and nS;’fa = Sm.
m m
It is easy to see that matrices of partial differential operators are con-

tained in S74(Q; C’,C*). For peS;(2; C’,C*) we define an operator p(z,D)
as follows:

DerintTiOoN 2. (See [2], for example.) For peSy,(Q;C’,C*) we can
define

(4) plx, D)u(x) = (22)" | p(w, 3)(E)e* < dg

where #€C5(2; C) and z€0.
Then we shall have the following properties for these operators, which
are extensions of the results obtained by Hérmander [2] for the scalar case.

ProrosiTioN 1. Let p(x,8)eSr(R;C",C*) and assume that 6<1. The
operator p(x,D) defined by (4) is then a continuous linear mapping of C3(2; C”) into
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C=(2;C"), and it can be extended to a continuous linear mapping of &'(2; C*) into
2'(2;CH.  The distribution kernel of p(x,D) ts a C>-function outside the diagonal
in QX Q; 1t is in CRxQ;C°,C* if j+m+n<0. For every usg’'(2;C"),

(5) sing supp v(x, D)ucsing supp u,

where sing supp u means the singular support of u.

Proof. 'The proof of this theorem is reduced to the scalar case in Hor-
mander’s paper [2].

Since p(x,D) = (9s;(%, D))sa1,eee prjmr, eern, it follows, by Hoérmander’s result
[2], that p;(x,D) is a continuous linear mapping of C3(Q) into C~(Q) and it
can be extended to a continuous linear mapping of £’(Q) into &2’(Q).
Hence p(x, D) becomes a contiunous linear mapping of C5(2; C”) into C=(2;C*),
and it can be extended to a continuous linear mapping of &’(2; C’) into
2’ (Q2; C". Furthermore considering the results for the scalar pseudo-
differential operator p.;(x,D), we obtain that the distribution kernel of
p(z,D) is a C>-function outside the diagonal in 2x2 and that it is in
clex;c,C" if j+m+n<06. Finally from the scalar pseudo-local pro-
perty, we have

sing supp »(x,D) ucsing supp #

for ue&’(2; ). Thus we have the proposition 1.
The following propositions are reduced to the scalar case in the same
way as in Proposition 1. Hence we shall not describe the details.

ProrosiTioN 2. The space Sp,(R; C°,C*) is a linear subspace. If peSp;
(2;C,C*) and q=S7s(2; C*,C’), then piReSpselal*lel (2;C,C*), and pgsSpi™
(@; 400, If p;esSy(2;C°,C"), j=0,1,2, -+ and m;—> — oo, one can find
pESy (2; C*,C*) such that for every k

(6) P— 2 pE80(2;C,CY
where my, = maz m;. The function p is uniquely determined modulo S;%(2; C*,C*).

We shall say that p has an asymptotic expansion Z%pj and we express
i=

oo

Prorosuton 3. If pEST, (2; C*,C*), the kernel of p(x,D) is in C tf and
only if peS;3(2;C",CH).
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ProrosttioN 4. Let p;eSN;(2;C*, C*), j=0,1,2,+ -+, and assume that
m;— — oo when j— oo, Let peC(QXR") and assume that for all multi-indices
o, B and compact sets K there exist some C and p depending on e, B and K such
that

Ip@ (@, 6)] = C(L+ €], zEK.
If there exist numbers p,—> — oo such that

(7) Ip(x,8) — J%Pj(x,f)l = Cral + €D, €K,
it follows that pe Sy (2; C*,C*), where m, = sup m; and that p~§‘_(.)p,.
j=

Prorposttion 5. (Letbniz’ formula) Let p e Syla (2; C’, C*) and q=Spilsn
(2; C,C) where ' < p'" <1. Set &= max(5',8"), p=min(p’,p'"") and choose
feC5 (2). Then there is an element r=SF3™'(Q2; C*, C*) such that r(x, D) u=gq(x, D)
fp(x,Du for usCs(2; C*), and

(8) r(x,&) ~ ? g (x,§) Di(f(x) p(x,§))/e!

where q@ denote the a-th derivative of q in &.
We extend the operators p(x,D) to the more general class.

DeriniTION 3. By L7s(2; C,C*) we denote the set of all continuous
linear mappings P: C5(2; C’) = C~(2; C*) such that for all feCy(Q) there
exists some p,eS™(2; C’,C*) with P(fu) = plz,D)u, for usCs(2; C*).

If p(x,&)eSr (@; C*,C), then p(x, D)e L™ (2; C*,CH).

To consider the multiplication of these operators, we shall impose the
following condition.

DeriniTION 4. We shall say that PeL};(2; C’,C*) is compactly sup-
ported if for every compact set K in 2 there is another compact set K’ in
2 such that if uC5(2; C’) and supp #cK it follows that supp PucK’, and
if #€C5(2; C") and u vansihes in K’ it follows that Pu vanishes in K.

The multiplication of compactly supported operators is also compactly
supported.

The following proposition is a representation formula for Pe L},
(2;C,CH.
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ProrosiTiON 6. Let P be a compactly supported operator of L™ (R; C*,C¥).
Then one can find p(x,&)eSrs (2; C*,C*) such that Pu = p(x,D)u. We shall call
p(x,&) a symbol of P.

Proof. This is shown easily by reducing to the scalar case, so we may
omit the detail here.

We consider the adjoint of a pseudo-differential operator. In doing so,
we write

(u,v) = ﬁ} Su,-(x) vi(x)dz, u,veCs5 (2; C*).

=1

ProrosITION 7. Let P be a compactly supported operator of L7 (2;C*,C*)
0=d<p=1). Then there is one and only one compactly supported operator
P*eL7; (Q; C*, C*) such that

(Pu,v) = (u, P*v), ucC7(2;C"), v&C5(2;C*);
the symbol o(P*) of P* is given by

(9) o(P*) ~ 2 Dip*@ (w,§)/ac!,

where p* s adjoint of the matrix p(x,€).
We can easily see that if P is compactly supported, then p* is so.

3. A sufficient condition on the hypoellipticity

To describe a sufficient condition for the hypoellipitcity of operators,
let us give its definition.

DeriniTION 5. Let P be a compactly supported operator of Ly s(2; C*,C*)
(0=d<p=1). Then we shall say that P is hypoelliptic if

(10) sing supp Pu« = sing supp # for ue ’'(2,C").

We can assert the following main theorem on a sufficient condition for
the hypoellipticity. We shall impose that all components of our operator
are of the same order.

THEOREM. Let P be a compactly supported operator of L7, (2; C’,C¥*) where
p >y and p(x,&) be its symbol. If there exists a compactly supported operator Q
in Lys (Q2; C*,C”) with symbol q(z,&) and if there exist two non-singular v Xy matrices
Alz,&) and B(x,&) satisfying following conditions (1) ~ (III), then P is hypoelliptic.
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@ [A(z,8) ¢ (%,8) &3 (2, §) B, §)]
= Ca_a,'ﬂ.ﬂ,'K(]_ + ISI)-p|a+a1[+a]p+5,|’
zeK,
1 | Bz, &) (q(x, &)p(x, 8)) Al §)7'| = Cx,

2K and |&] > Cyg,

(I11) there is a real number m'’ such that |A(x,€)| +
+ |B(2,8)| =< Cklé|™, x€K and || > Ck.

CoroLLARY. Let P be a compactly supported operator of Lys(2; C*,C*) where
¢ >v. If the symbol p(x,&) of P satisfies the following conditions (I)' ~ (III)’
Jor two non-singular vxv matrices A(x,&) and B(x,&), then P is hypoelliptic.

1Ty | Alz, &)p*) (2, &) 53 (2, €) Bla, &)
< Corarppr g (L |E])Plerer 4384
xEK,
(IT)’ | B(x, &)~ (p*(x, &) p(x, §)) " Alx, §)7!]

<Cg, x€K and |&| > Cg,

(III)"  there is a real number m' such that | A(x,8)| + |B(x,8)| < Ckl|€|™,
xeK and |&] > Cxk.

Remark 1. By the corollary we can easily see that if P is elliptic in
the sense of Komatsu [4] whose components are of the same order, then P
is hypoelliptic.

Remark 2. The conditions (I) ~ (III) of the main theorem is invariant
under diffeomorphisms of Q1 —p <5< p).
In the next section we shall prove the main theorem and the corollary.

4. Proof of the theorem

First we shall introduce the following:

DEerFINiTION 6.  Let P be a compactly supported operator of L7:(2; C*,C*)
(0<6<p=1). We shall say that P has a left parametrix if there exists a
compactly supported operator E€L}(2; C*, C*) for some real number '
such that the symbol of EP-I is identically equal to zero.
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Next we shall show that the existence of a left parametrix is a sufficient
condition for the hypoellipticity.

ProrosiTioN 8. (cf. [2]). Let P be a compactly supported operator of Lis
(2; C,CN 0=d<p=1). If P has a left parametrix, then P is hypoelliptic.

Proof. First we shall prove that sing supp P« C sing supp « for ue &’
(2,C). Let x,s(sing supp #)°. Since (sing supp #)° is open, we can
choose a neighborhood U, of =, such that sing supp #nU, = ¢. We take
a function ¢=Cj5 (U,) such that ¢ =1 in some neighborhood U,(e€U,) of ,.
Then u =o¢u+ (1—¢)u. Since ouesC;(U,,C"), we see Plou)=C=(2;C".
Hence, in particular, P(pu)eC”(U,C*). So we consider only the second
term P(1— ¢)u. Taking some neighborhood U; of x, such that U;eU,, we
consider the following bilinear form for veC5 (U,; C¥):

(P — @)u,v) = (1 — ¢)u, P*v).

Since P* has a pseudo-local property, i.e., (5), supp P*» can be contained
in some compact set K in 2. We take x€C5(2) such that z=1 in some
neighborhood of K. Then

(1 —@)u, P*) = ((1— ¢)u, XP*v) = (P11 — ¢)u,v).
Let ¢ be in C3(U,) and ¢ =1 in some neighborhood of U;. Then
(P(1 — ¢)u,v) = (PAL — ¢)u, $v) = ($PAUL — @)u,v).
Since the symbol of ¢Px(1 — ¢)u is identically zero, we have the following

estimate

[(¢Px(1 — @)u,v)| <Clwll, for veCiUs;C"),

where o]l = (27)-* S (14 [€]2°]5(6)[2d€)72.  Hence P(1 — ¢)uc H-,(Us,C*). As
s is an arbitrary real number, it follows that P(1 — ¢)ueC*(U,; C). Since z,
is an arbitrary point in (sing supp #)°, we see that sing supp Pu C sing
supp .

Hence to prove the hypoellipticity, it is sufficient to show that sing
supp # C sing supp Pu.

Set Pu= f and let E be a left parametrix for P. Then « can be
expressed by

#u=EPu— (EP—I)u=Ef— (EP—1u.
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Since E is a left parametrix for P, the symbol of EP-I is equal to zero.
Hence Proposition 1 implies that EP-I has a C"-distribution kernel. So
(EP-I'u € C*(2; C*). For the first term Ef we can use the pseudo-local
property for &'(2,C’) and we obtain that sing supp Ef csing supp f =
sing supp Pu. Thus we have the proposition.

Next due to Hérmander is a sufficient condition for the existence of a
left parametrix.

ProposiTioN 9. (¢f. [2). Let PeLy;(R;C",C*) (0=<5< p <1) and assume
that there exist vXxyv matrices A(x,€) and B(x,&) such that the symbol matrix p(x,€)
of P satisfies the conditions

(11) | A, &)p$8 (%, &) B(x,8)| < Cqp.x(1 + |&])P1912121,
xeK and E€R"

Jor any compact subset K of Q and any multi-indices a and B. Also assume that

(12) [ B(x, &) p(x,§) Az, §) | =< Ck,
2K and |&] > Ck

and that there is a real number wm' satisfying

(13) |Alz,8)| + |B(x,8)| = Ckl|&|™, =K and |&] > Ck.
Then there exists a left parametrix E€LY (2; C*,C*).

Now we can prove the main theorem and the corollary.

Proof of the main theorem.

Let P be an operator satisfying the conditions of the theorem. By
Proposition 5 it follows that the symbol 7(x,£) of the operator QP is given
by an asymptotic expansion

(14) r(x, &) ~ 23 q(x, &) Dip(x, 8)/al.

3

We shall show that r(x,£) satisfies the conditions of Proposition 9. Then
QP has a parametrix FeL}%"(Q; C’,C*). Setting E=FQ, we have E€ L™
(2; C*,C") and it becomes a left parametrix for P. Hence by Proposition
8, P is hypoelliptic.

To show that (11) is satisfied for », we can use the asymptotic expan-
sion
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(14) Ry(%,8) = r(x,§) - l%Vq(“)(oc,’c‘)Dé'cp(ac,E)/a!
esm+ml—1v(p-5) (Q; Cv’ Cu)'

Differentiate this equality « times in & and 8 times in x, we have, by the
Leibniz formula,

FR(@.8) = 3T CoranCralis” (. 8) B3R, )
T

+ Ry (2,6),
where C,,.r,5,» and C, are constants depending only on their subscripts.
Here Ry{3(x,&)e Spym-Ne-0-el«l+18l(Q; C*,C"). Operating A(z,£) from the left
and B(z,£&) from the right and considering Proposition 2, we have
| Alz, §)r&) (2, &) Blx, §)|
= 2 [CaarprCrA, £)qr™ (@, E)pET520 (2, §) B, ) |

TlrIN

+ | Ale, &) Ry@)(x, ) B(x,€)]

= Copon.x(l 4 |E])01o1+212]

+ Coupx(l + |&])mrmr+amr=No=D~s]a|+315]

If we choose N sufficiently large, then we have

| Az, &)ri(x, £)B(x, &) < C,p k(L + [&])F151F2121,
2EK.

It suffices to show that the conditions (12) and (13) in Proposition 9 are
satisfied for 7(x,£). The condition (13) holds evidently, because the condition
(IIT) of the main theorem are verified.

Finally we shall ascertain (12). Consider the asymptotic expansion (14)’
of 7(z,é&), i.e.,

r(w,§) = | IE<Nq“”(96,E)Di}o(x,fi:)/oz! + Ry(2, ),
where Ry(x,&)eSqim-¥¢-2(Q; C*,C*). Operating A(x,€) from the right and
B(x,¢&) from the left, we have, by the triangle inequality that
(15) | Az, &)r(x, )B(x, &) | = | Alw, §)q(x, §)p(w, §)B(w, &)

(=0 A, )w, e1p(x, 6Bz, )]

o<laj<N  al

— | A=, §)Ry(2, §)B(x, £)].
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The first term on the right hand side of (24) can be estimated as such as
(16) | Az, €)g(@, &)p(x,§)B(x,8)| = Cx, s€K and |§]| > Ck.

By the assumption (I) of the main theorem we can estimate the second
term of (15) as follows.

2 ](i)’“'/a!A(x,é)q("‘)(x,E)p(n)(x,E)B(x,é)l

0<]a[<N
ﬁ_l___ (a)
—kmea!lm%®q<LQWM%@BW£H
g 2 Ca,K(l + [EI)_(p_J)N§CN,K(1 + lel)—-(p-&),
0<]e|<N

zeK and [£] > Ck.
For the third term of (15), we have
(17) |A(z, &) Ry(%,8)B(,8)| < Cy x(L + [&])2m+mtm!=(e-2N,
xeK.

If we choose N sufficiently large and combine (15), (16) and (17), then we
obtain

| A, &)r(x, £)B(, )] = Cx — Cx(L + [&])7C7,
xeK and [€]| > Ck,

and we can choose C% so large that
Ck(L+ 1€ <2 Cx, 1¢] > Ck.

Consequently we have
| Az, &)7(x,8)B(%,€)| = Ck, x=K and [&] > Ck.

Hence the condition (12) of Proposition 9 is proved. Thus the theorem is
established.
The corollary of the main theorem is proved in the same way.

Proof of Corollary.

Let P be as in the theorem. By Proposition 7 it follows that the
symbol ¢(x,&) of the adjoint operator P* of P is given by an asymptotic
expansion

(18) q(z,&) ~ X Dip*(x, €)/a!,
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ie.,
(18)’ Ry(2,§) = q(x,§) — |a[?‘2’ND;p*(a)(x’ £)a!
eSm-e-N(Q: C*, C).
Substituting ¢ in (14)’, we have

—_ B m¥*(atp) a 151
r(z,§) laI<NZIBI<NDxp (@,&)Dsp(x,&)]a!B! +

+ ZNRS\‘P(OG,S)D‘;p(x,&)/a!-

fe[<

Since Ry(x,&)eSrVe-2(Q; C*,C*), by Proposition 2, we have ] |ZNR3(,‘>(x,E)
o<
D2p(x,&)|ale S2m-Ne=- (0. C* C*). Since N is arbitrary, we obtain that

r(w, &) ~ Z‘}3 Dip*=+P(x, &) Dip(x, &)l B!,

Using this asymptotic expansion instead of (14) we can easily see that #(x,§)
satisfies the conditions (11), (12) and (13) in Proposition 9, which proves the
corollary.
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