CONTINUATIONS OF ANALYTIC FUNCTIONS OF CLASS S AND CLASS U

SHINJI YAMASHITA

1. Introduction. Let f be of class U in Seidel's sense ([4, p. 32], $=$ "inner function" in [3, p. 62]) in the open unit disk D. Then f has, by definition, the radial limit $f\left(e^{i \theta}\right)$ of modulus one a.e. on the unit circle K. As a consequence of Smirnov's theorem [5, p. 64] we know that the function

$$
\frac{1+f(z)}{1-f(z)}
$$

belongs to the Hardy class H_{p} for any p with $0<p<1$ (and we note that this does not necessarily belong to H_{1}). This implies that

$$
\int_{I}\left|\frac{1+f\left(e^{i \theta}\right)}{1-f\left(e^{i \theta}\right)}\right|^{p} d \theta<\infty \quad(0<p<1)
$$

for any open arc $I=\left(e^{i \alpha}, e^{i \beta}\right)$ with $\alpha<\beta, \beta-\alpha \leqq 2 \pi$, of K, where \int_{I} is an abbreviation of \int_{α}^{β}.

Now, what can we say about f if

$$
\begin{equation*}
\int_{I}\left|\frac{1+f\left(e^{i \theta}\right)}{1-f\left(e^{i \theta}\right)}\right| d \theta<\infty \tag{1}
\end{equation*}
$$

for an open arc I of K ? One aim of this note is to verify that the condition (1) allows $f(z)$ to possess a meromorphic extension into D_{1}, the complement of $K-I$ with respect to the extended z-plane (Theorem 2).

For the above purpose we prove a theorem (Theorem 1) concerning analytic extensions of functions of class $S\left(=N^{*}\right.$ in [2], D in [5] and N_{*} in [6], cf. also [7] and [8] for the definition) to a simple rectifiable arc in the z-plane, which gives us an extension of Theorem 1 in [8].

2. Polubarinova-Kočina's Theorem.

As a small modification of P.J. Polubarinova-Kočina's theorem [5, p. 80] we prove first

Lemma. Let $f(z)$ be in the class $S(G)$ of a Jordan domain G in the z-plane with the rectifiable boundary Γ. Assume that f has the finite asymptotic value $f(\zeta)$ along a simple arc in G terminating at a.e. point $\zeta \in \Gamma$, i.e., except for a set of linear measure zero on Γ. Furthermore assume that

$$
\begin{equation*}
\int_{\Gamma}|f(\zeta)||d \zeta|<\infty \tag{2}
\end{equation*}
$$

Then f belongs to the class $E_{1}(G)$ (cf. [5, p. 145 ff .] and [8]).
Proof. Let $z=z(w)$ be a one-to-one conformal map of the disk D onto G. Then the function $F(w)=f(z(w)) z^{\prime}(w)$ is of class $S(D)$ since both the composed function $f(z(w))$ and the derived function $z^{\prime}(w)$ of $z(w)$ are of class $S(D)$. Let $\zeta=z\left(e^{i \theta}\right)$ be the natural extension of the map $z=z(w)$ to the circle K. Then we can easily show, by means of Bagemihl's ambiguous point theorem [1], that

$$
f^{*}\left(e^{i \theta}\right)=f(\zeta) \text { for } \zeta=z\left(e^{i \theta}\right)
$$

a.e. on K, where $f^{*}\left(e^{i \theta}\right)$ is the radial limit of $f(z(w))$ at $e^{i \theta}$, the existence of which follows from the fact that $f(z(w))$ is of bounded type in D. Thus the condition (2) implies that

$$
\int_{K}\left|F\left(e^{i \theta}\right)\right| d \theta=\int_{K}\left|f^{*}\left(e^{i \theta}\right) z^{\prime}\left(e^{i \theta}\right)\right| d \theta<\infty,
$$

where $F\left(e^{i \theta}\right)$ ($z^{\prime}\left(e^{i \theta}\right)$ resp.) is the radial limit of $F(w)\left(z^{\prime}(w)\right.$ resp.) at $e^{i \theta}$. Therefore by Polubarinova-Kočina's theorem [5, p. 80], $F(w)$ is of class H_{1}, so that $f(z)$ is of class $E_{1}(G)$.

3. Continuation of functions of class S .

We now prove the following
Theorem 1. Let G_{1} and G_{2} be mutually disjoint Jordan domains in the plane and let I be an open arc lying on the non-empty common boundary of G_{1} and G_{2} such that the closure of I is rectifiable. Let f_{1} and f_{2} be analytic functions of class $S\left(G_{1}\right)$ and class $S\left(G_{2}\right)$ respectively. Suppose that for a.e. point ζ of I there exist
simple arcs $L_{6,1}$ and $L_{\xi, 2}$ lying in G_{1} and G_{2} respectively except for their common terminal point ζ such that

$$
\begin{equation*}
\lim _{z \rightarrow \xi} f_{1}(z)=\lim _{z \rightarrow \zeta} f_{2}(z)=\omega_{\zeta} \neq \infty \tag{3}
\end{equation*}
$$

where the limits are taken along $L_{\zeta, 1}$ and $L_{\xi, 2}$ respectively. Furthermore suppose that
(4) the function $\varphi(\zeta)=\omega_{\zeta}$ defined a.e. on I is integrable there.

Then we can find an analytic function $F(z)$ in the domain $G_{1} \cup I \cup G_{2}$ such that $F(z) \equiv f_{j}(z)$ in G_{j} for $j=1,2$.

Proof. We assert first that

$$
\begin{equation*}
f_{j}(\zeta)=\varphi(\zeta) \text { a.e. in } I \tag{5}
\end{equation*}
$$

where $f_{j}(\zeta)$ is the asymptotic value of $f_{j}(z)$ at $\zeta \in I$ along the normal $c_{\zeta, j}$ from the interior of G_{j} to $\zeta(j=1,2)$. For, corresponding to any point ζ_{0} of I we can find a Jordan domain G_{0} satisfying the following conditions:
(6) G_{0} contains ζ_{0} and the domain $G_{1} \cup I \cup G_{2}$ contains the closure of G_{0};
(7) $G_{0, j}=G_{0} \cap G_{j}$ is a Jordan domain with the rectifiable boundary $(j=1,2)$ (cf. e.g. [8]).

Then the restriction of f_{j} to $G_{0, j}$ belongs to the class $S\left(G_{0, j}\right)$, so that f_{j} can be represented as the quotient of two bounded analytic functions in $G_{0, j}$ ($j=1,2$). It now follows from the generalized Fatou's theorem [5, p. 129] that f_{j} has the finite asymptotic value along $c_{\zeta, j}$ at a.e. point ζ of $I_{0}=G_{0} \cap I$ ($j=1,2$). Since ζ_{0} is arbitrary, our assertion (5) follows from Bagemihl's ambiguous point theorem [1] and hypothesis (3).

We take an arbitrary point ζ_{0} of I again and construct a Jordan domain G_{0} satisfying the properties (6) and (7) with the additional property that
(8) the Jordan arc $\gamma_{j}=G_{j} \cap$ (the koundary of G_{0}) is normal to I at both its terminal points ζ_{1} and ζ_{2} and that f_{j} has the finite asymptotic values $\varphi\left(\zeta_{1}\right)$ and $\varphi\left(\zeta_{2}\right)$ at ζ_{1} and ζ_{2} respectively along $\gamma_{j}(j=1,2)$.

Then (8) implies that the restriction of f_{j} to γ_{j} is integrable there ($j=1,2$), so that combining (4) with (5) we obtain (2) in Lemma with $G=G_{0, j}(j=1,2)$. On the other hand, we know that f_{j} is in $S\left(G_{0, j}\right)(j=1,2)$. Therefore by Lemma we obtain $f_{j} \in E_{1}\left(G_{0, j}\right)(j=1,2)$. Applying now the lemma in [8] to $G_{0.1}, G_{0,2}, I_{0}, f_{1}$ and f_{2} we can find an analytic function in G_{0} which is
identical with f_{j} in $G_{0, j}(j=1,2)$. Since ζ_{0} is chosen at will, the proof is complete.

Remark. As a consequence of the present theorem we may replace the word "bounded" in the condition (b) of Theorem 1 in [8] by the word "integrable".

4. Continuation of functions of class U.

Returning to section 1 we now consider the function $f(z)$ of class U satisfying the condition (1). We set

$$
f_{1}(z)=i\left\{\frac{1+f(z)}{1-f(z)}\right\} \text { in } D
$$

and

$$
f_{2}(z)=\overline{f_{1}(1 / \bar{z})} \text { in } D^{*}: 1<|z| \leqq \infty .
$$

Then f_{1} and f_{2} are of class $S(D)$ and class $S\left(D^{*}\right)$ respectively because H_{p} $(p>0)$ is a subclass of S (cf. e.g. [5] and [7]). For any point $e^{i \theta}$ of the arc I we may construct a sufficiently small disk d with the centre $e^{i \theta}$ and we set $V_{1}=D \cap d$ and $V_{2}=D^{*} \cap d$, so that we can apply Theorem 1 to V_{1}, V_{2}, $I \cap d, f_{1}$ and f_{2}. Since $e^{i \theta}$ is arbitrary, it follows that $f_{1}(z)$ has an analytic continuation into D_{1}. We have thus established

Theorem 2. Let $f(z)$ be of class U in the open unit disk D. Assume that (1) in section 1 holds for an open arc I of the unit circle K, where $f\left(e^{i \theta}\right)$ is the radial limit of f at $e^{i \theta}$ of K. Then there exists a meromorphic function $F(z)$ in the complement of the closed arc $K-I$ with respect to the extended z-plane, such that $F(z) \equiv f(z)$ in D.

Remark 1. The converse is not true as the following simple example shows: $f(z)=z$ and I contains 1 .

Remark 2. If

$$
\int_{K}\left|\frac{1+f\left(e^{i \theta}\right)}{1-f\left(e^{i \theta}\right)}\right| d \theta<\infty
$$

then f must be a constant. For, in this case, the function $f_{1}(z)$ must be a constant by Liouville's theorem.

References

[1] F. Bagemihl, Curvilinear cluster sets of arbitrary functions, Proc. Nat. Acad. Sci. U.S.A., 41(1955), 379-382.
[2] F.W. Gehring, The asymptotic values for analytic functions with bounded characteristic, Quart. J. Math. Oxford, 9(1958), 282-289.
[3] K. Hoffman, Banach spaces of analytic functions, Englewood Cliffs, N.J., 1962.
[4] K. Noshiro, Cluster sets, Berlin-Göttingen-Heidelberg, 1960.
[5] I.I. Privalov, Randeigenschaften analytischer Funktionen, Berlin, 1956.
[6] W. Rudin, A generalization of a theorem of Frostman, Math. Scand., 21(1967), 136-143.
[7] S. Yamashita, On some families of analytic functions on Riemann surfaces, Nagoya Math. J., 31(1968), 57-68.
[8] , Some remarks on analytic continuations, Tôhoku Math. J., 21(1969), 328-335.

Mathematical Institute

Tôhoku University
Sendai 980, Japan

Added in proof. A modified form of the lemma in section 2 is stated without proof in p. 70 of G. C. Tumarkin and S. Ya. Havinson's monograph: "Classes of analytic functions in multiply-connected domains", Researches on contemporary problems of the theory of functions of a complex variable, edited by A.I. Markusevic, Moscow, 1960, pp. 45-77, in Russian.

