Shinji Yamashita Nagoya Math. J. Vol. 40 (1970), 33-37

CONTINUATIONS OF ANALYTIC FUNCTIONS OF CLASS S AND CLASS U

SHINJI YAMASHITA

1. Introduction. Let f be of class U in Seidel's sense ([4, p. 32], = "inner function" in [3, p. 62]) in the open unit disk D. Then f has, by definition, the radial limit $f(e^{i\theta})$ of modulus one a.e. on the unit circle K. As a consequence of Smirnov's theorem [5, p. 64] we know that the function

$$\frac{1+f(z)}{1-f(z)}$$

belongs to the Hardy class H_p for any p with $0 (and we note that this does not necessarily belong to <math>H_1$). This implies that

$$\int_{I} \left| \frac{1 + f(e^{i\theta})}{1 - f(e^{i\theta})} \right|^{p} d\theta < \infty \quad (0 < p < 1)$$

for any open arc $I = (e^{i\alpha}, e^{i\beta})$ with $\alpha < \beta$, $\beta - \alpha \leq 2\pi$, of K, where \int_{I} is an abbreviation of \int_{1}^{β} .

Now, what can we say about f if

(1)
$$\int_{I} \left| \frac{1 + f(e^{i\theta})}{1 - f(e^{i\theta})} \right| d\theta < \infty$$

for an open arc I of K? One aim of this note is to verify that the condition (1) allows f(z) to possess a meromorphic extension into D_1 , the complement of K-I with respect to the extended z-plane (Theorem 2).

For the above purpose we prove a theorem (Theorem 1) concerning analytic extensions of functions of class S (= N^* in [2], D in [5] and N_* in [6], cf. also [7] and [8] for the definition) to a simple rectifiable arc in the *z*-plane, which gives us an extension of Theorem 1 in [8].

Received June 16, 1969.

2. Polubarinova-Kočina's Theorem.

As a small modification of P.J. Polubarinova-Kočina's theorem [5, p. 80] we prove first

LEMMA. Let f(z) be in the class S(G) of a Jordan domain G in the z-plane with the rectifiable boundary Γ . Assume that f has the finite asymptotic value $f(\zeta)$ along a simple arc in G terminating at a.e. point $\zeta \in \Gamma$, i.e., except for a set of linear measure zero on Γ . Furthermore assume that

(2)
$$\int_{\Gamma} |f(\zeta)| |d\zeta| < \infty.$$

Then f belongs to the class $E_1(G)$ (cf. [5, p. 145 ff.] and [8]).

Proof. Let z = z(w) be a one-to-one conformal map of the disk D onto G. Then the function F(w) = f(z(w))z'(w) is of class S(D) since both the composed function f(z(w)) and the derived function z'(w) of z(w) are of class S(D). Let $\zeta = z(e^{i\theta})$ be the natural extension of the map z = z(w) to the circle K. Then we can easily show, by means of Bagemihl's ambiguous point theorem [1], that

$$f^*(e^{i\theta}) = f(\zeta)$$
 for $\zeta = z(e^{i\theta})$

a.e. on K, where $f^*(e^{i\theta})$ is the radial limit of f(z(w)) at $e^{i\theta}$, the existence of which follows from the fact that f(z(w)) is of bounded type in D. Thus the condition (2) implies that

$$\int_{K} |F(e^{i\theta})| d\theta = \int_{K} |f^{*}(e^{i\theta})z'(e^{i\theta})| d\theta < \infty,$$

where $F(e^{i\theta})$ $(z'(e^{i\theta})$ resp.) is the radial limit of F(w) (z'(w) resp.) at $e^{i\theta}$. Therefore by Polubarinova-Kočina's theorem [5, p. 80], F(w) is of class H_1 , so that f(z) is of class $E_1(G)$.

3. Continuation of functions of class S.

We now prove the following

THEOREM 1. Let G_1 and G_2 be mutually disjoint Jordan domains in the plane and let I be an open arc lying on the non-empty common boundary of G_1 and G_2 such that the closure of I is rectifiable. Let f_1 and f_2 be analytic functions of class $S(G_1)$ and class $S(G_2)$ respectively. Suppose that for a.e. point ζ of I there exist simple arcs L_{ζ_1} and L_{ζ_2} lying in G_1 and G_2 respectively except for their common terminal point ζ such that

(3)
$$\lim_{z\to\zeta}f_1(z) = \lim_{z\to\zeta}f_2(z) = \omega_{\zeta} \neq \infty,$$

where the limits are taken along $L_{\zeta,1}$ and $L_{\zeta,2}$ respectively. Furthermore suppose that

 (4) the function φ(ζ) = ω_ζ defined a.e. on I is integrable there. Then we can find an analytic function F(z) in the domain G₁∪I∪G₂ such that F(z) ≡ f_j(z) in G_j for j = 1, 2.

Proof. We assert first that

(5)
$$f_j(\zeta) = \varphi(\zeta)$$
 a.e. in $I_j(\zeta) = \varphi(\zeta)$

where $f_j(\zeta)$ is the asymptotic value of $f_j(z)$ at $\zeta \in I$ along the normal $c_{\zeta,j}$ from the interior of G_j to ζ (j = 1, 2). For, corresponding to any point ζ_0 of I we can find a Jordan domain G_0 satisfying the following conditions:

(6) G_0 contains ζ_0 and the domain $G_1 \cup I \cup G_2$ contains the closure of G_0 ; (7) $G_{0,j} = G_0 \cap G_j$ is a Jordan domain with the rectifiable boundary (j = 1, 2)(cf. e.g. [8]).

Then the restriction of f_j to $G_{0,j}$ belongs to the class $S(G_{0,j})$, so that f_j can be represented as the quotient of two bounded analytic functions in $G_{0,j}$ (j = 1, 2). It now follows from the generalized Fatou's theorem [5, p. 129] that f_j has the finite asymptotic value along $c_{\zeta,j}$ at a.e. point ζ of $I_0 = G_0 \cap I$ (j = 1, 2). Since ζ_0 is arbitrary, our assertion (5) follows from Bagemihl's ambiguous point theorem [1] and hypothesis (3).

We take an arbitrary point ζ_0 of I again and construct a Jordan domain G_0 satisfying the properties (6) and (7) with the additional property that

(8) the Jordan arc $\gamma_j = G_j \cap (\text{the boundary of } G_0)$ is normal to *I* at both its terminal points ζ_1 and ζ_2 and that f_j has the finite asymptotic values $\varphi(\zeta_1)$ and $\varphi(\zeta_2)$ at ζ_1 and ζ_2 respectively along γ_j (j = 1, 2).

Then (8) implies that the restriction of f_j to r_j is integrable there (j = 1, 2), so that combining (4) with (5) we obtain (2) in Lemma with $G = G_{0,j}$ (j = 1, 2). On the other hand, we know that f_j is in $S(G_{0,j})$ (j = 1, 2). Therefore by Lemma we obtain $f_j \in E_1(G_{0,j})$ (j = 1, 2). Applying now the lemma in [8] to $G_{0,1}$, $G_{0,2}$, I_0 , f_1 and f_2 we can find an analytic function in G_0 which is identical with f_j in $G_{0,j}$ (j = 1, 2). Since ζ_0 is chosen at will, the proof is complete.

Remark. As a consequence of the present theorem we may replace the word "bounded" in the condition (b) of Theorem 1 in [8] by the word "integrable".

4. Continuation of functions of class U.

Returning to section 1 we now consider the function f(z) of class U satisfying the condition (1). We set

$$f_1(z) = i \left\{ \frac{1+f(z)}{1-f(z)} \right\}$$
 in D

and

$$f_2(z) = \overline{f_1(1/\overline{z})}$$
 in $D^* : 1 < |z| \le \infty$.

Then f_1 and f_2 are of class S(D) and class $S(D^*)$ respectively because H_p (p > 0) is a subclass of S (cf. e.g. [5] and [7]). For any point $e^{i\theta}$ of the arc I we may construct a sufficiently small disk d with the centre $e^{i\theta}$ and we set $V_1 = D \cap d$ and $V_2 = D^* \cap d$, so that we can apply Theorem 1 to V_1 , V_2 , $I \cap d$, f_1 and f_2 . Since $e^{i\theta}$ is arbitrary, it follows that $f_1(z)$ has an analytic continuation into D_1 . We have thus established

THEOREM 2. Let f(z) be of class U in the open unit disk D. Assume that (1) in section 1 holds for an open arc I of the unit circle K, where $f(e^{i\theta})$ is the radial limit of f at $e^{i\theta}$ of K. Then there exists a meromorphic function F(z) in the complement of the closed arc K-I with respect to the extended z-plane, such that $F(z) \equiv f(z)$ in D.

Remark 1. The converse is not true as the following simple example shows: f(z) = z and I contains 1.

Remark 2. If

$$\int_{\kappa} \left| \frac{1+f(e^{i\theta})}{1-f(e^{i\theta})} \right| d\theta < \infty,$$

then f must be a constant. For, in this case, the function $f_1(z)$ must be a constant by Liouville's theorem.

36

References

- F. Bagemihl, Curvilinear cluster sets of arbitrary functions, Proc. Nat. Acad. Sci. U.S.A., 41(1955), 379–382.
- [2] F.W. Gehring, The asymptotic values for analytic functions with bounded characteristic, Quart. J. Math. Oxford, 9(1958), 282-289.
- [3] K. Hoffman, Banach spaces of analytic functions, Englewood Cliffs, N.J., 1962.
- [4] K. Noshiro, Cluster sets, Berlin-Göttingen-Heidelberg, 1960.
- [5] I.I. Privalov, Randeigenschaften analytischer Funktionen, Berlin, 1956.
- [6] W. Rudin, A generalization of a theorem of Frostman, Math. Scand., 21(1967), 136-143.
- [7] S. Yamashita, On some families of analytic functions on Riemann surfaces, Nagoya Math. J., 31(1968), 57-68.
- [8] ——, Some remarks on analytic continuations, Tôhoku Math. J., 21(1969), 328-335.

Mathematical Institute Tôhoku University Sendai 980, Japan

Added in proof. A modified form of the lemma in section 2 is stated without proof in p. 70 of G. C. Tumarkin and S. Ya. Havinson's monograph: "Classes of analytic functions in multiply-connected domains", Researches on contemporary problems of the theory of functions of a complex variable, edited by A.I. Markusevic, Moscow, 1960, pp. 45-77, in Russian.