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LIFTINGS OF SOME TYPES OF TENSOR FIELDS
AND CONNECTIONS TO TANGENT BUNDLES

OF p’-VELOCITIES
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§ Introduction.

In the previous paper [6], we studied the liftings of tensor fields to
tangent bundles of higher order. The purpose of the present paper is to
generalize the results of [6] to the tangent bundles VY?M of p”-velocities in a
manifold M
explain the p”-velocities in a manifold and define the (1)-lifting of different-

notions due to C. Ehresmann [1] (see also [2]). In §1, we

iable functions for any multi-index 2 = (;, 2, * * *, 4,) of non-negative integers
2; satisfying >2, 7. In §2, we construct (-lifts of any vector fields and
(0-lifts of 1-forms. The <()-lift is a little bit different from the (2)-lift of
vector fields in [6].

In §3, we construct ()-lifting of (0, g)-tensor fields and then (2)-lifting
of (1, g)-tensor fields to CI‘pM for g=1. Unfortunately, the author could not
construct a natural lifting of (s, g)-tensor fields to "M for s=2.

Nevertheless, our (2)-liftings of (s, g)-tensor fields for s =0 or 1 are quite
sufficient for the geometric applications, because the important tensor fields
with which we encounter so far in differential geometry seem to be, fortu-
nately, only of type (s,q) with s =0 or 1.

As an application, we shall consider in §4, the prolongations of almost
complex structures and prove that if Mis a (homogeneous) complex manifold,
then TM is also a (homogeneous) complex manifold.

In §5, we consider the liftings of affine connections to TM and prove
that if M is locally affine symmetric then "M is also locally affine symmetric
with respect to the lifted affine connection.

In §6, we shall give a proof for the fact that if M is an affine sym-

r'p . .
metric space then TM is also an affine symmetric space.

Received June 17, 1969.
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In this paper, all manifolds and mappings (functions) are assumed to
be differentiable of class C*, unless otherwise stated.
We shall fix two positive integers » and p throughout the paper.

§1. Tangent bundles of p"-velocities.

Consider the algebra C=(R?) of all C"-functions on the p-dimensional
euclidean space R? with natural coordinates (¢,,¢,, + - +,¢,). For any p-tuple
v = (v, vy * » *,v,) Of non-negative integers »; we denote as usual by (9/d¢)"
the following partial differentiation

a v . av1+...+v,,f
(1.1) (5 )T st 7

for feC*(R?). We define |»| and »! as follows:
Il =w 4 o v oy =yl

We denote by N(p,7) the set of all p-tuples » = (v, +-+,»,) of non-
negative integers v; such that [v]<7». The set N(p,7) is a subset of the
additive group Z? of all p-tuples of integers.

Take two elements f,geC™(R?). We say f is r-equivalent to g if
8oty f = (8/ot)’g at t = (¢, + -+, ¢t,) =0 for every veN(p,r) and denote it by
f~yg. Clearly ~ is an equivalence relation in C(R?).

" Now, let M be an n-dimensional manifold. Consider the set S,(M) of
all maps ¢: R? -+~ M. Take two elements ¢,¢=S,(M). We say that ¢ is
r-equivalent to ¢ if fop~fo¢ for every feC>(M) and denote it by ¢~¢.
The relation ~ is also arn equivalence relation in S,(M). We denoter by
TM the set of all equivalence classes in S,(M) with respect to the equival-
ence relation ~. We denote by [¢], the equivalence class containing
¢=S,(M), and \:ze shall call it a p"-velocity in M at ¢(0). To introduce the
manifold structure in Y7QM, we define local coordinate system on M as fol-
lows: Take a coordinate neighborhood U in M with coordinate system
{z,, Ty + -,%,}. Define the coordinate functions {x{’|i =1, - « -, n; v N(p, 7)}
on r’.l’:U by

1.2) 2009l = L[ (G- @io0) |,

for [go],erng (cf. (1.1)). It is straightforward to see that r??M becomes a

manifold by the above coordinate systems {x{*}. The projection " defined
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by ri'l'q([@],-) = ¢(0) for peS,(M) is clearly a differentiable map of r'YeM onto M.

DeriniTioN 1.1, The differentiable manifold 7'M with projection = will
be called the tangent bundle of p”-velocities in M.

DeriniTION 1.2, For any feC*(M), we define the (2)-lift f® of f, for
every 1€ N(p,r), as follows:

(1.3) 70091 = = () o]

t=0

for [go],e?M. Clearly, f® is a well-defined differentiable function on r?eM.
We note also that (x,)* = ¢ holds on r,ng for the above coordinate system
{2y, <+ -, 2,}.

For the sake of convenience we define f® =0 for any 1€Z? such that
AEN(p, 7).

Lemma 1.3. The (2)-lifting f— f® is a linear map of C*(M) into
C"’(r??M) and satisfies the following equality

(1.4) (feg)® = 3 f® . g@-w

nezr

for every f,geC~(M) and i€ N(p,r).

Proof. Straightforward verification similar to the one of Lemma 1.2 [6].

§2. Liftings of vector fields and 1-forms.

Let (M) =39 M) be, as in [6], the tensor algebra of all tensor
fields on M.

Lemma 2.1, For any Xe 7 §(M) and any A€ N(p,r) there exists one and
only one X*>e g~ },(3?114) satisfying the following equality

2.1) X8 f0 = (X f)e-d
Jor every feC*(M) and peN(p,7).

Proof. Take a coordinate neighborhood U in M with coordinate system
{#,,+++,2,} and let X = Sa,-0/ox; (a,C(U)) be the local expression of X
in U. Consider the vector field X = X, on (rv'rp)"‘(U) defined by
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. . ” a
(2.2) X= 2  2a Ve

ueN(,7) j=1

We see that X(z¥) = a¢® = (Xx,)*? for j=1,2,++,n; p=N(p,7). Now,
making use of same arguments as in the proof of Lemma 1.4 [6], we can
prove that X(f®) = (Xf)*-® for every f€C~(U) and p=N(p,r). We can also
prove that if U’ is a coordinate neighborhood in M such that UnU’ = U"'+¢,
then Xy|U"” = X;/|U" holds. Thus we obtain a vector field X<*> on M
such that X <"l(r;z-m)“(U) =Xy for every coordinate neighborhood U in M.
This vecotr field X<*> clearly satisfies the condition (2.1) for every feC=(M)
and peN(p,r). The uniqueness of X< is also easily verified. Q.E.D.

CoroLLARY 2.2. Let {2, -+ +,2,} be a local coordinate system on a neigh-
borhood U in M. Then, we have

(2.3) <6 ) axu)

Sor every i =1, -,n and 2 N(p,7).

Proof. Clear from the expression (2.2) of X<*> in (r%p)“‘(U).

COROLLARY 2.3. Notations being as in Corollary 2.2, we have

(2.4 (L =2

Fr)

Jor every i =1, -,n and 2, p=N(p,7r).

Proof. By Corollary 2.2, we have

) (A=p)
‘gi“@“: 0N pw - ami) Q.E.D.

DeriniTioN 2.4. The vector field X<** in Lemma 2.1 will be called #ke

D-lift of X to M Jor 2&N(p,r). For the sake of convenience, we define
X< =0 for every 2€Z? such that 2&N(p,7). The (-lifting XX is a
linear map of 7 }(M) into 7~ .‘)(’:I?M) for every 1eZ”.

Lemma 2.5, For X, Ye 9 }M), we have
(2.5) (X<, Y] = [X, Y]+

Jor every 2, pN(p,r).
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Proof. Assume 2+ p=N(p,r). Then, for any geC*(M) and vN(p,7)
we have
[X4>, V<0 (g®) = X B2y <eog®) — y<u x<i>g®)
= XP(Yg)*=» — Y<#>(Xg)omn
= X<®(Yg)0mn — Y<#>(Xg) oD
= (XYg—YXg)t™» = ([X,V]g)
=[X, YT+ g0,
Since g=C*(M) and v=N(p,r) are arbitrary we get (2.5) if 2+ p=N(p,7).
Assume 2+ peN(p,r), then by our convention, we have [X,Y]¥*> =0.
On the other hand, for any geC~(M) and y=N(p,r) we have, by the same
calculation as above,
[X<, Y ]g® = (XY )=+ — (YXg)t™*™» = 0, since v — p— A& N(p,7).
Thus (2.5) is verified in any case. Q.E.D.

LeEMMA 2.6. For Xe 9 M) and fe 7 YM), we have
(2.6) (fX)P = 3 fw.xae>

veN(p,7)
Jor every 2 N(p,r).
Proof. For any g 7 }(M) and p=N(p,r), we have

f-X <1>g<p) = (fX-g) D = (f - Xg)#-»
= 3 fO - (Xg)#r = 31 fO . XAg®
vezr

= (D FOX)g0,

Since g and g are arbitrary, we get (2.6) for every 1€N(p,7). Q.E.D.

Remark 2.7. By our convention (cf. Def. 1.2) we can write (2.6) as
follows:

(2. 7) (f' X)<l> — yezzpf(,,)th».

Lemma 2.8, Let f,,0,€C(M) (i =1,+-+,k) be such that 31g,df, =0 on
M. Then the following equality

k
(2.8) 23 2gPdf¢™P =0
i=1 us 2

i=1 ?
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holds on 9‘3\4]’07 every A€ N(p,r).
Proof. Similar to the proof of Lemma 2.1 [6]. Q.E.D.
LemMa 2.9.  There is one and only ome lifting L;: 7 W(M)—> 7~ 9(77'?M) Sor
every 2 N(p,r) satisfying the jfollowing condition :

(2.9) L(f-dg) = 3] f®dgu=»

Aezr
Jor every f,9€ 7 {(M).
Proof. Similar to the proof of Lemma 2.2 [6].

Lemma 2.10. For fe o7 4M) and 6 7 §(M), we have

(2.10) (f-0)® = 31 f.g0u-m

Py
Jor every 2 N(p,r).
Proof. Similar to the proof of Corollary 2.4 [6].
Lemma 2.11. For 0 9 (M) and X T {(M), we have
(2.11) N (X<*) = (9(X)) ="
Sor every 2, peN(p,7).

Proof. Let 6 =3 f,dx, be the local expression of 4. Making use of
Lemma 2.1, we calculate as follows:

OD(X <) = (2] fida) D (X<*)
=2 Z‘:Zf Pda((X<)
=22 fOXaP) = 230 f( X))@
= 2121 fP(dx,(X)) ¢
=21 (fi-dxy (X)) = (6(X)) 4", Q.E.D.
§3. Lifting of (1, ¢-tensor fields.
Let (M) be the subalgebra of .77 (M) consisting of all covariant

tensor fields on M. We denote by %M the m(r,p) times direct sum of
%(TM), where m(r,p) denotes the number of elements in N(p,7). i.e.
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A =3 X (TTM),

a=0 AeN(p,7)

7P v,Pp

where (77 YTM)), = .7 YTM) for all a2 N(p,7).

Take two elements 6= (") and 7= (") in %(M}. We define the
multiplication § ®» of ¢ and 5 by the following:

(3.1) (@9 = > 0" Q@ pi*

#A—peN(p, »)

for 2eN(p,r). We can readily see that %(M) is an associative graded
algebra over C“(VTZ:M) by this multiplication ®.
We have defined, in Lemma 2.9, the lifting L, of 77 {(M) into 9~ ?(rng)

for 2&N(p,7). Define L: f‘}(M)——)},'Z(TM) by L(0) = (Li(0))ien(p,» for
0T M).

Lemma 3.1, There exists one and only one homomorphism L: Z (M) %%(M)
such that L\ 7 Y(M) = L.

Proof. Define L%: (7 {(M))*— Fo(M) by

Lq(017 ¢ ,0,1) = L(al) ® R ® L(ﬂq)

for 9, 77!M) i =1,2,+++,q. Then, L is a multilinear map satisfying the
following condition:

Lq(flav i °7fq0q) :L(fl' * ‘fq)®Lq(01, ¢ 'soq)

for 9, 77 YM) and f,e g M) i=1,--+,q from which we conclude that
there is a linear map L% of f?e YM) into Fx(M) such that

L0, Q¢+ +®0) = L) R+ - - ® L(0,)
for 6,7 'M), i =1, -++,q  Thus L%g=0) define a homomorphism
L F%M)— 7«M) such that L(9) = L(9) for o= )(M). Q.ED.

DeriniTION 3.2, For Ke o7 Y(M) we denote by K@ the i-component
of L(K) for 2&N(p,r), i.e.

L(K) = (KW),

We shall call K% the (2)-lift of K. For the sake of convenience we put
K® =0 for 2&€Z” such that 1¢ N(p,r).
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LemMA 3.3.  The notation a% being as in Lemma 3.7 [6), for any Ke 7 }(M)
and Xe 7 (M), we have

(3.2) abas KO = (ak K)®=D

Jor A, peN(p,»).

Proof. Using Lemma 2,11, we can prove the lemma in the same way
as the one of Lemma 3.7 [6].

COROLLARY 3.4, For K€ 7 YM) and X,€ 7 ¥M) i =1, +++,q, we have
KW (X502, o o o, X50%) = (K(X,, » + +, X))
Sor every 24, p,EN(p,7), i =1,+++,q.
Proof. We use Lemma 3.3 g-times. Q.E.D.

LEmMA 3.5. For any K 7 }M) and ve N(p,r), there is a unique

7, P

K=K»we 9 UTM) such that
(3.3) KX, oo o, X3007) = (K(Xy, » + +, X))

Jor every X, 7 {(M) and 2,EN(p,r), where 2=312;.

7D

Proof. Define L,: 774M) x 7 YM)— 7 LTM) by the following
(3.4) L(X,T) = EZ X<#¥> QT
neZr

for Xe 774(M) and Te 7 y(M). It is clear that L is a bilinear map over
R. We now assert that the following

(3.5) L(fX,T) = L(X, fT)

holds for every Xe 774(M), Te 7 yM) and fe 7 }(M). For, making use
of Remark 2.7 and Lemma 3.1, we calculate as follows:

I:,,(fX, T) = ? (fX)se+> @ T®
= E ; f(l)X<l+n+v> ® T®
n
=3 ;] f(x’-#-p)X<l/> @ T®
“ ’
=N XW Q fHrIT®
’ou
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= ;X<"> & (fT)H=
= %]Xd*"’@ (fT)® = L(X, fT),
which proves our assertion. Thus, we obtain a linear map L, of 7 }{(M)
into ‘rfp' NTM) such that
LX®T)= 23 X QT®
unezr
for Xe 77 {M) and Te 7 YM). Put K=L(K). Itis now sufficient to

prove (3.3) for K=X®7T with Xe 7 yM) and Te 7 §M). Using Corol-
lary 3.4 and Lemma 2.6, we can calculate as follows:

RX, oo o X$0) = ;T(#)(X§1x>, o, X)X
= ST(X,, - XD X

= ;.‘(T(Xl, Cee, X)) X ke k>

= (T(Xy, + » X))« X)H> = (K(Xy, » » ¢, X)),

The uniqueness of K is clear, since (3.3) holds for every X, 7 {(M) and
4EN(p,7). Q.E.D.

DeriniTION 3.6, For Ke 77 4M) and ye N(p,r), we denote K in
Lemma 3.5 by K= K® and call it the (v)-lift of K, i.e.

(3.6) KO(XF2, -« o, XP0) = (K(Xy, + - -, X))

for X, 9 {(M), 1,N(p,r), where 2 =2212. We call K© the complete lift
of K to rTI}W

LemMmA 3.7. For Ke 7 ¥M) (g=1) and Xe 7 {(M), we have
(3.7) ak<> K® = (af K)*+D

Jor k<gq and i, psN(p,r).

Proof. It suffices to prove (3.7) for K=Y ® T with Ye 7 {(M), Te 7 {(M).
Using Lemma 3.3, we calculate as follows:

a’§(<1>K(") = a’§<1>2 Yy <ve> ® Tw
v

= DY ® abar T
v
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= DY @ (k7)o

= 2 Y<u’+1+ll> ® (al%T)(,,)
= (Y ® a5 7)) = (af K)*+" Q.E.D.

CoroLLARY 3.8. We have
al<o>K® = (a K)®
Sor every Xe 774 M), Ke 7 {M) and psN(p,r).
§4. Prolongations of almost complex structures.

Lemma 4.1. For any A,B€ 9 (M), we have
(4.1) (Ao B)® = A® o B®,

Let Iye 7 (M) be the (1,1)-tensor field of identity transformations of tangent
spaces to M. Then, we have

(4.2) (I)® =1,,,
T™

Proof. Making use of (3.6), we have, for any Xe 77 }(M),
AW o BO(X<) = AO(BO(X<4))
= AO((B(X))***) = (ABX)**>
= ((Ao B)X)**” = (Ao B)"(X?)
for every 2&N(p,7). Therefore we get (4.1).

To prove (4.2), let Iy = >\(d/ox;) @dx,; be the local expression of Iy,
where {z;, -+ +,2,} is a local coordinate system. Then, we have

(L)@ = 2(52
i, 4 a

0
2 % 05 ®dz = IP e

which proves (4.2).

COROLLARY 4.2. For any polynomial P(x) of one variable x with real coeffi-
cients and for any Ae 7 (M), we have

(4.3) (P(A))® = P(AD).
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Proof. Use (4.1) and (4.2) repeatedly. Q.E.D.

TuroREM 4.3. Let J be an almost complex structure on M with its Nijenhuis
7P .
tensor Ny. Then, the bundle TM of p”-velocities in M has an almost complex
structure J© with its Nijenhuis tensor (N;)©®.

THEOREM 4.4. If a manifold M is a complex manifold with almost complex

. r’p .. - .
structure J, so is the bundle TM of p"-velocities in M with almost complex structure

Jo.

§5. Lifting of affine connections.

Let V be the covariant differentiation defined by an affine connection
of M.

. . 7P
THEOREM 5.1.  There exists one and only one affine connection of TM whose
covariant differentiation NV satisfies the following condition :

(5. 1) Vx<l>Y<'“> — (VXy)<1+p>
Jor every X, Ye 7 M) and A, p=N(p,7).

Proof. Take a coordinate neighborhood U with coordinate system
{#y, -+ -,2,} and let I'¥; be the connection components of V with respect to

{xls * ',xn}’ ie.

(5.2) Vo0 =5rt -0

for i,j=1,+++,n. Let I'i* be the connection components of V with respect
to another coordinate system {y,,---,y,} on U. Then, we have the fol-
lowing equalities:

1k — 0%y 0%, 0Yk pu %y 0Ys
(5.3) I a,Eb,c 0y, 0%; O0ig F”‘J“Zayiay, 0%,

for i,j,k=1,2,-++,n. (cf. for instance [3] p. 27). Let {a{’]i=1,-,n;
vEN(p,7)} (resp. {y¢’}) be the induced coordinate system on (:;13-1((]).
Define

(6.4 FEB G = ([0

for i,7,k=1,2,-+-,n; 2, ¢,vEN(p,7). We can now prove that there exists
a connection V whose connection components with respect to {#$’} are given
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by (5.4). For, we can verify (5.5) [6] for 2, z,v=N(p,#) in the same way as
the proof of (5.5) [6], since we can use the equalities

afr® _( af )(x—ﬂ)

o 0%,

for every 2, pN(p,r) and feC(U) (cf. Cor. 2.3).
Next, we shall verify the following

(5. 5) fovXj“) — (VXin)d“‘)

for every i,j=1,+++n and 1, pN(p,r), where we have put X, =L.

Making use of Lemma 2.6 we calculate as follows:

. - P = )
<p> —_ k.,
VX§1>XJ‘” =V 5 (axw) - yzkréi,i'?, Um0ty
J »

)
Frys 0Tk

e a a <LAtp+v>
= k) (v=2=t) = Yo __ Y
)l = RE(50)

— k a <Aip> — <Aip>
= (; Fij axk > = (VXiX.f) .

Now, we shall verify
(5.6) v(f-xi)<1>X§"> = (foth)«w>

for feC(U), i,j=1,++-,n and 2, p=N(p,7).
For, the left hand side of (5.6) is equal to

Vermpsren» X5 = 21 fOVpaarnX5#
= 2 (Vg X )M = (f+ Vg X4 = (Vo Xp) 42,
which proves (5.6). Thus (5.1) is proved for Y = a?c,- and for every
Xe 7 (M)
Finally, we shall verify (5.1) for ¥ =31 f,X,€ 9 {(M) as follows:
Vx> (2 f1.X))* = Vgers LX; FPX5e

= SUPTer X7 + XDLP X7

= 2 {f%”)(VXXj)<u+1+.“> + (ij) (v—l)X§v+p>}
R4

= E {(fs- Vij)<1+l-l> + (Xf;- Xj)<1+p>}

J

= (Vx (X3 fiX,))++>
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The uniqueness of V is clear, since (5.1) holds for every X,Ye 7 {(M) and
2, kEN(p, 7). Q.E.D.

7P
DEeFintTION 5.2, We denote V in Theorem 5.1 by V=V and call it
the complete Lift of V to ™.

ProposITION 5.3, Let T, R be the torsion and the curvature tensor field of
7, P
V=V. Then we have

(6.7 T=T® gnd R = R,
where T® and R are the complete lift of T and R (c¢f. Def. 3.6).

Proof. Using the relation (3.6), we calculate as follows:
T(o)(X<l>’ Y<p>) = (T(X, Y))<1+p>
= (VxY — Vp X — [X, Y]+
— VX<1>Y<‘“> . 7y<p>X<b _ [X<1>, Y<[l>] — T(Xd), Y<[A>>

for every X,Ye 7 }(M) and 2, N(p,r), which proves T® = T.
Similarly, we have:

R(O)(X<2>, Y</A>)Z(y) — (R(X’ Y)Z)<2+p+u>
= (VxVypZ — Vy V1 Z — V[X,y]Z)d'HH'")
= Ve Vy<so 277 — Vpeps Vy<rs 2> — V[X<1>ly<p>JZ<”>

— R’(X«b’ Y<y>)z<v>

for every X, Y, Ze 7 §M) and 2, g, vEN(p,r), which proves R® = R.

Q.E.D.
Prorosition 5.4. For any Ke 9 (M) (s =0 or 1) and X 7 (M), we
have
(5.8) Ve<o>K® = (VzK)®,
(5.9) VK® = (VK)®

Sor every peN(p,r).

Proof. 1t is sufficient to prove (5.8) for K=Y ®T, where Ye.7 §{(M),
Te 9 %M). Now, since K¥ = 1Y+ Q7T®, and since Vz<o> i1s a deriva-
tion of ‘%E (TM), it suffices to verify (5.8) in the special cases, where
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K=fe g )M) and K=Y 9 |(M) and K= 0 9 {(M).
If K= f, then we have

Vx<os f = X0 f) = (X f)®) = (Vy ),
If K=Y, then we have

Vi< Y% = (V, V) = (VxY)®,
If K=40, then we have, for g,veN(p,r) and Ye 7 }(M)
(Vx<00®)Y <> = Vy<o>(0MY <) — 0(Vy<05Y <)
= Vx<ox(8(Y))¥™ — 64((V2Y))*)
= (Vx0(Y)) =) — (8(VY))*»
= (Vx0Y)¥™) = (Vx0)(Y <),

and hence we get Vy<o>0® = (Vz)®,
To prove (5.9), using Corollary 3.8, we calculate as follows

ax<0>VK® = V30> K® = (V3 K)® = (ax(VK))® = ax<o>(VK)®,

Since (X<°),(Xe 7 {(M)) spans the tangent space to erM at [(p]rer’il?M, we
conclude that (5.9) holds. Q.E.D.
Combining Proposition 5.3 and 5.4 we have proved the following

THEOREM 5.5. Let T and R be the torsion and the curavture tensor field of
an affine connection V of M. According as T=0, T=0, R=0 or VR=0, we
have T = 0, V1o = 0, R® =0 or VRO =0. In particular, if M is affine locally

. . . Ny . r,D
symmetric with respect to V, so is TM with respect to V.

§6. Affine symmetric spaces.
Let @ : M— N be a map of a manifold M into another manifold N.
Then, the map @ induces a map To of TM into T'N as follows:

6.1) (70) ([01,) = [@ 0 o],

for [go],erfM. The map er¢ is a well-defined differentiable map, which will
be called the (7, p)-tangent to @. It is clear that if @ is a diffeomorphism

7P
then 70 is also a diffeomorphism.
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LemMa 6.1, For any feC~(N), we have
6.2) FOoT0 = (f 0 0)®
Sor every peN(p,r).
Proof. Take a point [go],erfleM. Then we have
(9 o 70) (61,) = 19100 ¢1,) = [ () (Fol@e o)),
=1 2 o o = o #
= (G Cemon] = Feael,). Q.E.D.

LemMMA 6.2, Let @ : M— N be a diffeomorphism of M onto N. Then for
any Xe 7 {M) we have

6.3) TT 0(X<%) = (TOX)

Sor every 2 N(p, ).

Proof. Take a function feC*(N). Then, by making use of Lemma 6.1
and 2.1, we have, for any peN(p,r):

Tr,yga(X<z>)f(p) — X<1>(f<“) o"j,{’¢) - X<1>(fo )@
= (X (f 0 @))¥D = (TOX)f)*™? = (TOX)*> f®.

Since feC=(N) and peN(p,7) are arbitrary, we get (6.3). Q.E.D.

LemMmA 6.3. Let V (resp. V') be an affine connection on M (resp. N) and let
@ : M— N be a diffeomorphism transforming V onto V', i.e. we have

TOV1Y) = V3oxTOY
Jor X,Ye 7 {(M). Then the map "71‘147 transforms er onto YVQ.
Proof. Put ¢ = TTo. Tt suffices to verify
(6.4) OVx<> Y = Vg x> @Y <#>

for every X,Ye 7 {(M) and A, pz=N(p,r). Now, by making use of Theorem
5.1 and Lemma 6.2, we see the left hand side of (6.7) is equal to
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TT OV7)%+ = (TO(V )+

7,

, D », 0 N
— (V/TQXTQY)GM» — V'(T¢X<1>(T@Y)<”> — V'Ex<1>@y<”>.
Q.E.D.

Lemma 6.4, Take a point x,&M and let @ be a diffeomorphism of M onto
utself such that O(x,) = x, and that T, @ = — Lp, Consider the constant map 7.,
of R? into M defined by 7,(u) =z, for ucR?. Put %,=[r,],. Then, we have
(r%qb) (%) = &, and that

(6 '5) TE TO = — 1T.; (Tj'pM).
0

Proof. Take an element [go]leT;o(anM ), where ¢ : R->r’TpM with ¢(0) = %,.
Making use of the same arguments as in the proof of Lemma 1.1 [5], we
can find a differentiable map ¢ : R?*'— M such that ¢(t) =[¢,], for small
t, where we have put ¢.,(u) = ¢(¢,u) for teR and usR”?. Put ¢*(¢) = ¢(t,u).
Then, since ¢(0) = [¢,], = &, = [I';,], we can assume that ¢(0,x) = », for small
ucsR? (cf. the expression of (¢) in the proof of Lemma 1.1 [5]). Take a
coordinate neighborhood U of %, with coordinate system {z, :--,2,}. Put
%, =2 for i =1, +,n and veN(p,7). Then {z,,} is a coordinate system
around %, We have to prove Ter(D([go],) = —[¢];,, i.e. to prove [r%(DogoL:
—[¢l,. To prove this, it suffices to prove the following

(6.6) (@ )OC TP 0 91) = — (2:,)0(e],)

for 1 =1,2,---,n and v N(p,7).
Since (t.l"pd)o o)) =r7?d)(go(t)) =’{i‘17di([¢t],) =[do ¢,],, we calculate as follows:

(2O TD0 01) = [-F (@0 o TO o )|, = |5 w0091 ]

o ([(—a%,—)' @e0og)]
=l (G ewemn] )],
=G (G =owran] )L,

Now, making use of our assumption 7,0 = — Ly, and the fact that ¢*(0)=
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&0, u) = x, for small = R?, we have
[ w0 N = 2P00 ¢"1) = 2T
t=0
= —2P($"1) = = [ 2w o)

Therefore, we can continue the above calculation as follows:

(xi.v)(l)([rj?Q °oply) = _—;17[(_731;)"([”687 xi¢u(t)]z=o>:’u=o

= __1~|: 0
v! L a¢

which proves (6.6). Q.E.D.

(2 @ ¢ﬁ>]u=o = — (2.,.)0([¢]y),

CoROLLARY 6.5. Let M be an affine symmetric space with affine connection V.
Let @ : M—~M be the affine symmetry at a point z, M. Then the (r,p)-tangent

7P . 7P . . .onp .
T to @ is also the affine symmetry of TM with affiine connection N at the point .

. . . r'p r’p . .
Proof. Since @ leaves V invariant, T¢ also leaves V invariant by Lem-

ma 6.3. Next, since ¢ is an affine symmetry we see that 7,0 = — 1y,
7D

Thus, by Lemma 6.4, we get (6.5), which means that 7¢ is the affine

symmetry at &,. Q.E.D.

_ LEmMA 6.6. Let V be an affine connection on a manifold M, and let X< 7~ }(M)
be an infinitesimal affine transofrmation of V. Then, the {)-lift X*> of X s also
an infinitesimal affine transformation of ¥ =¥ on' M Sor every 2= N(p,7).

Proof. A necessary and sufficient condition for X to be an infinitesimal
affine transformation of M is that

4o Vr—Vyo = V[A"Y]

for every Ye 77 {(M), where &4 denotes the Lie derivation with respect to
X. Therefore, we have to prove the following

6.7) Fr<i>o V; K—V;0 %%<«x>K= V[Xd > 71K

for every KGL%E (TM) and Ye g 5(17?M). To prove (6.7) it suffices to prove
(6.7) for the special cases, where ¥ =Y<> with Ye 974(M), p=N(p,r) and
K=2Z<> or ¢» with Ze 77{(M), 0 9 ¥(M) and v=N(p,r). Moreover, to
prove (6.7) for the case K=6% with 6= 7 (M), it suffices to prove (6.7)
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for 0 = df with fe 7 {(M).
If K= 2>, then we calculate as follows:
GasVy<n>Z> — Vy<w> SLa<a>Z%>
= [XP, (Vo 2)+] — Tyens[ X2, Z°7]
= [X, VpZ]H+> — (VoX, Z]) <+
= ([X,VyZ]— Vo X, Z)'"> = (G o V) Z — (Vy 0 B Z)HH#+>

— (V[X.le)<l+/t+v> —_ V[X<1>.Y<F>] <v>’

which proves (6.7) for K= Z<".

To prove (6.7) for the case K=df» with fe 7 (M), we first note
that the following equalities hold:

(6.8) (AY) = X(O(Y)) — 00X, Y])
(6.9) (VaxdMNY) = XY [ — (VxY)f

for X,Ye 7 {M), fe.7 (M) and 6= 7 }(M).
Take a vector field Ze 7 {(M) and p=N(p,r). Making use of (6.8),
6.9), Lemma 2.5 and (5.1), we calculate as follows:

{ <> (Vyan>(d f)) — Vy<u> F<ax(d fO)) Y Z<7)

= X ((Vy<r(d fONZ)) — Vyen>d fO) X, Z°])
= (Vy<w>d(X*> fO)Z <)

= XSOV Z9 O — (Vs Z<%) fO)
—{Y[X, Z<1f© — (Vyaw[ X<, Z<°]) f0)
— (Y2 Z0 X f6) — (Vyeu>Z <07 X F0}

=[X{YZf — (Vy2)f} = {YIX, Z1f — (V[ X, Z1f — (V4lX, Z]) £}
—{YZXS — (Ve Z)X f}]07#=0D

=[{ A(Vyd f) — Vy FHd /)HZ)J#=07D

= (V. d N2 = (X, Y1Zf — (Vip.niZ) f)¢ 40D

= [X, Y912 fO — (Vigeas gensiZ %) fO

= (Vix<a>,y<w>1d fONZ*),

which proves (6.7) for K=dsf®, since Ze 7 §(M) and peN(p,r) are

arbitrary. Thus (6.7) holds for any K and Y. Q.E.D.
From Lemma 6.6 we obtain
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ProrosiTiON 6.7. If the group of affine transformations of M with V is
transitive on M, then the group of affine transformations of T™ with respect lo r'Vp
is transitive on TM.

From Proposition 6.7 and Corollary 6.5 we obtain the following

. . . . 7,0
THEOREM 6.8. If M is an affine symmetric space with connection V, then TM

. . . .
is also an affine symmetric space with connection V .

§7. Remarks.

Let P(M,z,G) be a principal fibre bundle with base M, projection =
and structure group G. We shall be able to prove that rf'I?P (77'?M, 7,713”’ rY'?G)
becomes canonically a principal fibre bundle with structure group ’T'I"pG,
which is a Lie group by the natural group multiplication. Let o be a
connection form on P. Then by the same methods as in [5], we can con-
struct the prolongation «"” of w to TP If P=F (M) is the frame bundle
of M then a linear connection on M will induce a linear connection on 7'M
by the above procedure. We shall investigate the relationships between this
procedure and the liftings of affine connections in §5 in a forthcoming
paper, where we shall also study the prolongations of G-structures to the
tangent bundles of p”-velocities, which will generalize the results in [4].
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