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EVANS-KURAMOCHI EXHAUSTION FUNCTIONS

ON NON-ALGEBROID RIEMANN SURFACES

J.E. SKEATH

1. Let % denote a non-compact parabolic Riemann surface, and let

Da% be compact and such that each frontier point of D is contained in a

continuum that is also contained in D. Under these conditions, Kuramochi

[2] (see also [3]) has established the existence of a function u on 21 — ί>

satisfying

(a) u>.0, harmonic on % — D,

(b) u vanishes continuously on fr D, the frontier of D,

(c) u tends to + co at the ideal boundary of $L

Any such function will be called an (Evans-Kuramochi) exhaustion function

on 2t — D. An exhaustion function u on $1 — D will be said to satisfy the

k-condition if and only if there exists an integer k such that the number of

components of the level loci {u = s} is bounded above by k independent of

5, 0< 5< + oo.

In [4] it was shown that an extension of the Denjoy-Carleman-Ahlfcrs

theorem in subharmonic form can be obtained for any surface admitting

an exhaustion function satisfying the A -condition for some k. Any n-sheeted

algebroid Riemann surface over the finite plane falls under this classification.

In this paper we construct a non-algebroid surface admitting an exhaustion

function satisfying the A -condition, thus answering in the affirmative a

question raised in [4]. As we shall see, the desired surface is closely related

to that constructed by Heins in [1, pp. 297-299].

2. Following Heins [1], we begin by constructing a non-algebroid

surface given as an explicit covering surface of the extended plane. Thus,

let {an}Z=o denote a sequence of positive reals such that ao> e and inf ajan-ι > 1.

Let {£4rl+2}n=o be such that ain+1< bAn+2< aAn+2 and let each segment
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[a4n+1, a4n+2] be subdivided into an odd number (> 1 + a4n+2) of subsegments.

Define

Eι, the finite plane less the slits [a2n, a2n+1] and every alternate subseg-

ment of [a4n+ί, a4n+2~\ starting with the second (all n)

E2, the region E1 less the slits [— b4ni2, — a4n+1~\ (all n)

σn9 the extended plane less the slit [— b4n+2, — fiWiL

Let 21 denote the Riemann surface formed by joining copies of E1 and E2

along their common slits in the usual way, identifying the upper edges of

the slits of E1 with the corresponding lower edges of the slits of E2 and vice

versa. The remaining free edges of E2 are identified with the opposite edges

of the slits of copies of the corresponding σn.

It follows as in [1] that every non-constant meromorphic function on

any end Ω of 21 (see [1] for terminology) takes on all values infinitely often

with the exception of at most two. Thus 21 is non-algebroid. We wish to

establish the following

T H E O R E M 1. Given [an}Z=Q satisfying the above conditions•, there exists {b4n+2}Z=o

satisfying a4n+ί < bin+2 < ain+2 and a subdivision of [a4n+ί, a4n+2] into an odd number .

( > 1 4- a4n+2) of subsegments (all n) such that the surface 21 constructed as above from

these quantities admits an exhaustion function satisfying the Jc-condition for k^2 on

% — D where D denotes the set of points over \z\ ^Ll in the copies of E1 and E2.

Before proceeding to the proof of Theorem 1, we establish the following

notation. If b2, ,b4m+2 are given such that a4n+1 < b4n+2 < a4n+2, O^Ln^rn,

and if an odd number (> 1 + a4n+2) of subsegments subdividing [a4n+ί, a4n+2],

Q^n^m, are given, let

Em denote the finite plane less the slits [a2n, a2n+1] for 0 ^ n ^ 2 m + l,

the slits [a4n9 a4n+^\ for n>m-\-l, and every alternate subsegment starting

with the second of [a4n+ι, ain+2\ for O^n^m',

El denote the region Em less the slits [— b4n+2, — a4n+1~\ for O^n^Lrn;

σn as before, 0 < n ^ m.

Let 2ίm, m>§ denote the surface formed from the above quantities as in

the construction of 21. Finally, let 2ί_i denote the surface constructed by

copies of Elγ and Elx by identifying opposite edges in the usual way where

Elγ = E-\ = the finite plane less the slits [a4n, a4n+z] (all n).

Note that, since inf ajan-x > 1, any such 2ίm, m> — 1, has harmonic

dimension one in the sense of Heins [1]. If 2lTO, m^ — 1, is given, let Dm
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denote the set of points in %m lying over 1 z\ ^ 1 in the copies of El and

Em. Let ])m denote the point in 9lm lying over z = e in the copy of Em,

and let um denote the unique exhaustion function on %m — Dm normalized

such that um{pm) = 1.

We assert that Theorem 1 is a consequence of

T H E O R E M 2. Given {an}n=0 satisfying the conditions of Theorem 1, there exists

a sequence {b4n+2}Z=Q and a subdivision of [ain+19 a4n+2] (all n) satisfying the condi-

tions of Theorem 1 such that for all m9 the normalized exhaustion function um on

%m — Dm satisfies the following conditions.

I . um{p) = Amlog\c{p)\ + Bm + Hm{p), if v lies in the joining of El and

Em over \z\ >rm — α 4 m + 3 where c is the natural projection map and

a) Am, Bm are constants, Am>~-;
Δ

b) Hm is harmonic, \Hm\ < — | — , r = infaja^;

c) \Hm(p)l < j C ^ < J l^-^ jog-1- if c(p)^[ain9 a4n+,] and n>m+\.

II . For each s, 0 < s < Am log rm + Bm + —g~—9 the level locus {um = s}
4

is contained in a relatively compact open subset Ω of %m — Dm less the points in

EmUEm over \z\ >aim+i where Ω is either

a) a region having genus one and connectivity two,

b) a plane region having connectivity three, or

c) the union of two disjoint doubly connected plane regions.

I I I . um satisfies the k-condition for k^2.

We remark that conditions I and II of Theorem 2 imply condition I I I .

In fact, if there exists s < Am log rm + Bm + —-f̂ — such that {um = s] has

three or more components, then by condition II some subset of these com-

ponents forms the boundary of a relatively compact subregion of $ίm — Dm9

and thus um must be identically constant. If s>Am log rm + Bm + - ^ j - — ,

then by condition / 5 > max wm in the joining of Em and Em over \z\ = rm.

Therefore, {um = s} lies in the joining of El and Ei over \z\ > rm9 and the

representation given by condition I is valid. Now if pλ and p2 are points

in the joining of El and Em over \z\ > rm such that \c(p2)/c(p1)\^.rf then
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by condition I we have

>: Λm log I c(p2)/c(p1) I - - i - log r

It follows that {um = s} lies over an annular region of the form R1 < \z\ < R2

with R2IRi<r. Since r = inf ajan-ί9 {um = s} is contained in a set Ω

satisfying either condition lib) or condition Πc). Thus {um = s} consists of

at most two components. Condition III is established.

Proof that Theorem 2 implies Theorem 1: Let 91 denote the Riemann

surface constructed as in Theorem 1 from the quantities given in Theorem

2. Observe that, for all m, um on 9ίm — Dm can be considered as a function

defined on 91 — D less the points in the joining of E1 and E2 over [a4n+19a4n+2]

for n^.m-\-19 the points in the copy of E2 over [— b4n+29 — a4n+J} for

n > m + 1, and the points of σn for n >. m + 1. In particular, for any com-

pact subset K of 91 — D9 um is defined on K if m is sufficiently large.

Moreover, um > 0 and um(φ°) = 1 (all m) where p° denotes the point over

z — e in E1. It follows that [um\m^ — 1} is normal on 9ί — £>, and thus

there exists a subsequence almost uniformly convergent to a harmonic func-

tion u > 0 on 91 — D9 u(p°) = 1. It is easily seen that u vanishes continuously

at the frontier of D. Since 91 has harmonic dimension one and since 91 has

at least one exhaustion function on 91 — D9 it follows that there is (up to

constant multiples) exactly one such exhaustion function, and that function

must be u. (It follows from this that the original sequence {um}Z=-ι con-

verges almost uniformly to u although this result will not be needed in

what follows.)

If u does not satisfy the A -condition for k ;< 2, then there exists an s > 0,

5 not a critical level of u9 such that {u = s] consists of j{>2) components.

Take ε > 0 such that A = {5 — ε-^Lu-^s + ε) contains no critical levels of u.

Then A is compact and consists of j components, each conformally equivalent

to an annulus with u = s + ε on one boundary component of each such

annulus and u = s — ε on the other boundary component (cf. [4]). More-

over, for m sufficiently large, um is defined on A, and we can assume

\u — um\ < e/2 on A. But then {um = s] has at least one component in each

of the j{> 2) components of A9 a contradiction.
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Before turning to the proof of Theorem 2, it will be convenient to have

the following two lemmas at our disposal.

LEMMA 1. If %m is given, m>. — l, and if φm denotes the indirectly confor-

mal map from %m onto itself determined by φm(p) = p, p as defined below, then

Um o <pm — um. Aloreover, in the joining of El and El over the slits on the positive

real axis, the two determinations of um agree.

DEFINITION: If a point p in 2Cm corresponds to a point z in El, El or

σn9 O^n^m, respectively, then p denotes the point in $ m corresponding

to z in Eι

m, El or σn, O^n^m, respectively. The obvious modifications

are made for points of %m over slits, e.g., if pl9 p2 denote the two points

of %m in the joining of El and El over a point in (ain,ain+ι), then px = p2

and p2 = px.

Proof of Lemma 1: Since φm is indirectly conformal, um o φm is harmonic.

Moreover, um o φm{pm) = 1. Since $ϊm has harmonic dimension one, it follows

that um o φm = Um- The remaining assertion of the lemma is an immediate

consequence of this property.

LEMMA 2. Let h, harmonic on \z\ > R, be such that \h\ < M, \ϊmh(z) = 0.

Then \h(z)\^-^^for \z\ > R.

Proof of Lemma 2: The proof follows by a direct application of Har-

nack's inequalities to the functions M— ^ ( — ) a n d M + h(—j for \z\ < -ί-.

Proof of Theorem 2: The proof is by induction on m. The case m — — 1

is trivial. Here the normalized exhaustion function u-x on %^ι — D-1 is

given by U-X{p) = loglc(p)| where c is the natural projection. Assume there-

fore that ^CTO_!(w^0) is given such that um-λ satisfies conditions I, II and

III of Theorem 2 with m — 1 replacing m. With this assumption, we show

there exists b4m+2, aim+1 < b4m+2 < a4m+2 and a subdivision of [aim+1, a4m+2] into

an odd number (> 1 + aim+2) of subsegments such that um on %m — Dm

satisfies the conditions of Theorem 2.

Thus, let bim+2(n) = (1 — — V ^ + i + ( — )̂ m+2> w = 1,2, . Let y, an

integer, be such that β4m+2/2 < y < a^2, and let δ = (a4m+2 - a4m+ί)lu. Note

that 2v + 1 > 1 + <24m+2 a ^d that δ > 1 — — , r = inf«Λ/αΛ»1. Let αJ =α 4 m + 1 +iδ,

i = 0, , v, and introduce aj(n), j = 0, , v, and n = 1,2, , such that
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(i) a0 < ao(n) < a^n) < aί9 all n\

(ii) aj-! < (Xj{n) < aj, j = 2, , v and all n;

(iii) lim exj{n) = aj9 j = 0, , v.

For each n, the points αo>«o(w)>«i(w)>αi> ' * •> ccv{n)9av subdivide [aim+ί, a4m+2]

into 2v + 1 subsegments. Let 2t£ denote the Riemann surface constructed

in the usual manner with this choice of subintervals for [β4m+1, β4m+2], the

subinterval [— b4m+2(n), — β4m+i], a copy of the extended plane slit along

[— b4m+2(u), — a4m+1], and the information given from §tm_!. Let Um denote

the normalized exhaustion function on 2Ϊ™ — Dm>

The functions uZ, n = 1, 2, , can be considered as defined on

^Cm_! — Dm-i less the appropriate subsets (dependent on n). Since u^>0

and MJ(3)Λ-I) = 1 (all w), the family {M£}n-i is normal on (&m_1 — Z)m_1 less

the point of £l_! over — a4m+ί and less the points in the joining of E}n-ι

and El-ι over α ; , j = 0, , y. Hence there exists a subsequence almost

uniformly convergent there to a positive harmonic function u such that

w(Pm-i) — l Moreover, it is easily seen that M is bounded in some neigh-

borhood of each of the points deleted from ^m_x — Dm-X. Thus u can be

extended to a function harmonic on %m-λ — Dm~x. Also, u vanishes con-

tinuously at frDm-λ. Since %m-λ has harmonic dimension one, it follows

that u = um-γ.

Note that rm_! < a4m, and thus the representation of um-x given by

condition / of Theorem 2 is valid in the joining of Em-i and El-λ over

[#4 m, «4m+3]« By Lemma 1, the two determinations of um-1 agree in the

joining of E})l-ι and El-i over [a4m9 a4m+3], and therefore the same is true

for Hm-!. Thus, if α ε f c , a4m+3], let um^(a)9 Hm-ι{a), respectively, denote

the common value of the two determinations of um-ί9 Hm-19 respectively,

over a. If a, /3e[α4m, a4m+3] and β > a + (l — — j , then

(1) «m-i(i3) - Mm-i(α) = ^m-i log (jS/tt) + Hm-Aβ) ~ Hm-M

> M > 0

since — < Am-19 1< r, and 1< a4m^a^am+3. In particular, min{ \um-ι(a3)
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— Um-xiaje)]: k ψ j] > M > 0. We can choose disjoint closed disks Δ] in

d W i ^ \z\ ̂ aim+2

 s u c n that aj<=dj, j = 0, , v and such that, if K3 denotes

the points in the joining of Em-i a r *d Em-ι over Jy, then

(2) m?ix{\um-1{p)-um-1{aj)\:p^Kj}<~~Mf j = 0, . - ,v.

Moreover, we can assume α ; (n) e z^ , all j , all n. Let Δ denote a closed

disk in El-ι containing the point of El-λ over — a4m+1, Δ lying over

^4m+i< \z\ < aAm+3. If εm>0 is given, there exists a k such that uί is defined
V

on yίm-i — Dm-! — Δ — UKj and such that \Um — Um-i\ < εm at the points in

the joining of £ i _ ! and . E ^ over U| = r-rm(rm = a4m+3) union the points of
V

the frontier of Δ U ( U ϋCj ). We will show that if εm is taken sufficiently small
•7 = 1

and fc is chosen as above, then Um{= um) on Ĉfn — D^(= l̂TO — Dm) satisfies the

conditions of Theorem 2. Henceforth, write uκ

m — um, %m = ̂ m and Dfn = Dm.

We assume, in particular, that

(3) 0 < ε m < - ^ ;

(4) Λ»-i \ogainι + 5m_ x + - l ^ +εm<

(5) Λ . 1 lθgβ4m+2 + ^ m i + — |

Since Λn-i > - ^ - a n d inf ajan-1 = r, the conditions in (4) and (5) can be met.

Further restrictions on εm will be imposed later.

By the maximum principle, we have \um— ̂ m-il < εm in the joining of

Ein-ι and Em-i over \z\ = rm. Let hm denote the unique bounded harmonic

function defined in the joining of Em-ι and El-ι over \z\ > rm with boundary

values um — Λm-ι \ogrm — Bm-i — iΐn-i. Note that \hm\ < εm, and that hm has

a limit at the ideal boundary of 5ίm_! since ^im_ί has harmonic dimension

one (cf. [1]). Thus we can write hm = fm + 6m where 6.̂  is constant, | ^ | < ε m ,

/TO is harmonic, \fm\ < 2εm and fm tends to 0 at the ideal boundary of %m-i-

The function

um(φ) — Am,-! \ogrm — (Bm^1 + bm) — [Hm-ι{v) + fmlv))

is positive harmonic and tends to 0 at the points in the joining of E}n-{ and

Em-i over \z\ = rm9 and hence is a multiple of \og\c{φ)lrm[ where c is the

natural projection map. We have
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um{v) = Λm\og\c{p)\ - {Am - Am-i) \ogrm + {Bm-1 + bm) + ( #

= Am log I c(p) I + Bm + Hm{p), where

(6) Bm= - (Am - Am-X) \ogrm + {Bm-! + 6m) and

Hm = Hm-M + fUp), I c(p) I > rm.

Since 1^^— ^m-J < em in the joining of Em-X and £"^_! over \z\ = r rm, we

have

1 (Λ/i - Am-!) lθgr + 6m + fm\ < Sm

or

(7) I {Am - Am-i) logr 1 < 2εm.

Moreover, if F m denotes the function defined on ] z | > rm as the sum of the

two determinations of fm then Fm is harmonic, |F m l < 4εm and li

It follows by Lemma 2 that

\ΓmXZ)\ ^ I i ,

I Z I - f A m

However, by Lemma 1, the two determinations of fm agree in the joining

of Ek-ι and Ei-λ over [ain, ain+3], n^rn + 1. Thus

- f o r

It now follows directly that if εm > 0 is chosen sufficiently small, then um,

Am and Hm satisfy condition I of Theorem 2.

It remains to establish condition II for um. Thus, let s be such that

0 < 5 < Am logrm + Bm + - ^ | — .

Case 1. 0 < 5 < Afc-i logα4m+1 + B , ^ - - i ^ - .

Case 2.

4

3.

2 + Sm-i + —ψ- < s < Am logrm
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Note by condition / that, if εm is sufficiently small, then um-i > Am-ι

logίWi + 5m-1 - —?ψ- + em in the joining of El^ and El-γ over \z\ = <Wi.

Thus if.s is in Case 1 and εm is sufficiently small, then {s—εm< um-i< s-\-εm}

is contained in 9ϊm_! — Dm_i less the points in the joining of E^-i and El-γ

over \z\>am+19 a subset of %m-ι — Dm-ι which can also be considered as a

subset of Wm—Dm. Moreover, for such s we have {um = s}a{s—εm<um-1<s+εm).

Thus, the facts given in conditions I and I I for um-ι can be used to assure,

if εm is sufficiently small, that {um= s}9 s in Case 1, satisfies condition I I .

We omit the details of the proof and turn to Case 3 which, as we shall see,

is similar to Case 1. If εm is sufficiently small, note that by condition I we

have um-x < Λm-ί logam+2 + Bm-i + -—^— ~ ε™, in the joining of Ei^ and El.x

over \z\ = a4m+2, and note that by condition I, (6) and (7) we have

Ur^!>Am\ogrm +Bm+—Z—+ sm in the joining of E}n-Y and El-Y over

\z\ = r rm{< aim+i). For 5 in Case 3, we have then that {5 —εT O< iim-x < s + εm}

lies in the joining of E^-i and El-ι over aim+2< \z\ < aim+A9 a subset of

^Cm_! — Dm-1 which can also be considered as a subset of $ϊm— Dm and which,

in addition, is a region satisfying condition II (b). Since

{ιιm = s}a{s — εm< um~ι < s + εm}

for 5 in Case 3, it follows by the above that condition I I is satisfied for

such 5. We turn then to the more interesting Case 2. Note by (4) and (5)

that

(8) if s is in Case 2, then {um= s} lies in the joining of Ei and E;n over

am< \z\ < am+t union σm.

Let A denote the set of points in the joining of Em and El over (aim, a4m+3),

and let as = min c(AΠ {um= 5}), bs = max c{Af] [um = s}) where c is the natural

projection map and 5 is in Case 2. Observe that

(9) if p&AΠKj for some j , then by (2) and (3) we have

\um(p) — um-ι{<χj)\ < -~2~

(10) if p e A - U Ki, then by (3) we have
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Inequalities (9) and (10) together with (1) imply that the interval [as,bs]

intersects at most one Δs. I t follows from this and (8) that, for s in Case

2, {um= s} is contained in a relatively compact subregion Ω of %m — Dm less

the points in the joining of El and El over [z\ > «4m+3 where Ω has genus

one and connectivity two. Thus, um satisfies condition I I . The proof of

Theorem 2 is complete.
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