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NORMAL LIGHT INTERIOR FUNCTIONS
DEFINED IN THE UNIT DISK

J.-H. MATHEWS

1. Preliminaries

Let D be the unit disk, C the unit circle, and f a continuous function
from D into the Riemann sphere W. We say that f is normal if f is uni-
formly continuous with respect to the non-Euclidean hyperbolic metric in D
and the chordal metric in W. Let 2w, w, denote the chordal distance
between the points w,w,=W; and let p(z,2,) denote the non-Euclidean
hyperbolic distance between the points z,,z,e<D [6). If {z,} and {z;} are
two sequences of points in D with p(z,,2;) =0, we say that {z,} and {z;}
are close sequences.

Let A be an open subarc of C, possibly C itself. A Koebe sequence
of arcs relative to A is a sequence {/,} of Jordan arcs such that: (a) for
every ¢ >0,

J.clzeD: |z —a| < ¢ for some ac A}

for all but finitely many », and (b) every open sector 4 of D subtending
an arc of C that lies strictly interior to A has the property that, for all but
finitely many », the arc J, contains a subarc L, lying wholly in 4 except
for its two end points which lie on distinct sides of 4.

We say that the function f has the limit ¢ along the sequence of arcs
{J.} (denoted by f(J,)—c) provided that, for every e>0, x(c, f(J,) <¢
for all but finitely many #.

2. Factorization of light interior functions

Let f be a light interior function from D into W, i.e. f is an open
map which does not take any continum into a single point. Church [4,
p. 86] has pointed out that f has the representation f = goh where & is a

Received May 19, 1969.
This paper is part of the author’s doctoral thesis directed by Professor Peter Lappan at
Michigan State University.

149



150 J.H. MATHEWS

homeomorphism of D onto a Riemann surface R and g is a non-constant
meromorphic function defined on R. In view of the uniformization theorem
[1, p. 181], there exists a conformal mapping ¢ of R onto either the unit
disk or the finite complex plane. We will be concerned with the case when
the range of ¢ is the unit disk, but remark that similar results hold when
the range is the complex plane. Therefore, if f is a light interior function
from D into W then f has a factorization f = go h where k2 is a homeomor-
phism of D onto D and g is a non-constant meromorphic function in D.
Conversely, if & is a homeomorphism of D onto D and g is a non-constant
meromorphic function in D then the function f = go# is light interior.

DErFINITION 1. Let h be a homeomorphism of D onto D. If h is uniformly
continuous with respect to the non-Euclidean hyperbolic metric in both its domain and
range then we say that h is HUC.

DerINtTION 2. Let f be a light interior function in D with factorization
f=goh. If his HUC then f has a type I factorization; otherwise f has a type
II factorization.

TueoreMm 1. If f is a light interior function in D then f has a unique
Sactorization type.

Proof. Let f have the factorization f = goh. Suppose f also has the
factorization f = Go H. Then as pointed out by Church [4, p. 86] ko H™!
is a conformal homeomorphism. In view of Pick’s theorem ([6, Theorem
15. 1.3, p. 239] both Ao H™ and Ao H are HUC. Since the composition
of two uniformly continuous functions is uniformly continuous, it follows that
h is HUC if and only if H is HUC; and the proof of the theorem is com-
plete.

3. Necessary conditions for both f and g normal
Noshiro [10, p. 154] has divided the class of normal meromorphic functions
in D into two categories which are defined as follows: A normal meromor-

phic function g in D is of the first category if the normal family {g( 1a:a‘zz>:
aED] admits no constant limit; otherwise g is of the second category.
THeOREM 2. Let f be a normal light interior function with factorization

f=goh. If g is a normal meromorphic function then h is normal. Furthermore,
if g s a normal meromorphic function of the first category then h is HUC.
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Proof. Let f have the factorization f = go k. If % is not normal there
exists close sequences {z,} and {z,} such that h(z,) = e** and h(z;) = ¢** with
0< p—wa<2z [7]. For each integer n, let J, be the non-Euclidean geodesic

joining z, to z;. Then {A(/,)} is a sequence of Jordan arcs such that for
every ¢ >0,

h(J)c{zeD:1—¢e<|z| <1}

for all but finitely many », and the end points of k(J,) tend to e~ and e'’.
Choosing a subsequence of {%(/,)} if necessary, we may assume that there
exists a Koebe sequence of arcs {L,} relative to either the open arc (a,p)
or the open arc (8,a+2x) with L,ch(/,), and a constant ¢ such that
Sflz,)—~>c.

From the normality of f we have f(/,) = ¢, and it follows that g(L,)—>c.
By a theorem of Bagemihl and Seidel [2, Theorem 1, p. 10], g=c¢ in vio-
lation of our hypothesis. Therefore % is normal and the proof of the first
part is complete.

Now assume that g is a normal meromorphic function of the first cate-
gory. If 2 is not HUC there exists close sequences {z,} and {z,} and a § >0
with p(h(z,), h(z}))=46, and a constant ¢ such that f(z,)—c.

Let S,(2) = (h(z,) — 2)/(1 — h(z,)2) and let G,(z) = g(S,(z)). Then the
normal family {G,} has a subsequence which converges uniformly on each
compact subset of D to a meromorphic function G [8, p. 53]. Let J, be
the non-Euclidean geodesic joining 2, to z, and let L, =hi(J,. Then
d(L,) = d(S;'(L,)) =8, where d(E) is the hyperbolic diameter of the set
EcD. From the normality of f we have f(/,)—¢, so that g(L,)—¢, and
hence G,(S;'(L,))—~>c. For r (0 <r=35) fixed, there exists a point Z,€S;(L,)
such that p(0,Z7,) =7». Let Z, be a cluster point of the sequence {Z,} on
the circle {z : 0(0,2) = 7}.

Choosing a subsequence of {G,} if necessary, we may assume that
Z,—~Zy, and G,(Z,)—+c. A familiar argument (see e.g. [3, p. 179]) in the
theory of continuous convergence shows that G(Z,) = c. Since r (0=<<r=3)
was arbitrary, 0 is a limit point of values for which G assumes ¢ and hence

G = ¢ in violation our hypothesis. Therefore 2 is HUC and the proof of
the theorem is complete.
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4. Bounded non-normal light interior functions

Every bounded holomorphic function is normal, but the following result
shows that boundedness is not sufficient for a light interior function to be
normal.

TueOREM 3. If a homeomorphism h of D onto D ts not HUC, then there
exists a Blaschke product B in D such that the bounded light interior function
f = Boh is not normal.

Proof. If h is not HUC there exists close sequences {z,} and {z;} and
a 0 >0 such that p(h(z,), h(z.)=46. Let h(z,) =w, and h(z;) = w;,. Since
h is uniformly continuous on compact subsets we necessarily have that
2,1 =1, 1241 =1, |lw,] =1, and |w,] =>1. Hence, choosing a subsequence
of {w,} if necessary, we may assume that {w,} is a Blaschke sequence, i.e.

o

21(1 — |w,]) < oo, There exists a Blaschke subsequence {w,,} of {w,} and
a corresponding subsequence {w;,} of {w;} for which o(Ry-,,7) = tanh™!(1—1/?)
where 7, = min {{w,,|, |w/,|} and R, = max {|w,,[, [w,|}.

It follows easily that

tanh™ (1 — 1/(k+1)3) (1<k<})
P(Wnyy Wn)) = {

tanh™'(1 — 1/k?) 1=j<k),

and hence
wﬂ_k:‘w_;“- {1 — 1)k + 1)? 1<k<y)
1 —w,ws, 1—1/k? 1=i<k.

Recall that e(w,, w;)=6>0 (k=1,2,--+) so that

‘ﬂ”*f;ﬂ’% = tanh™'6 >0 (k=1,2, ).
1—w,w,,
Set  B(z) = 1 WrlWn = %)

Th=l w,,(1— w,2)

Consider B(w,,) for j=1,

f— ’ 4 ’

| Bw.)| = Jﬂl Woy — Wny | | Wa, — Wa, 2 Wy, — W,
)| = B e T
4 k=1| 1 — w, w;, 1—wywn, | k=j+1| 1 — w,wy,
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= (tanh-la)E =1/ + 1)2)k:f]'f1+1(1 1)

= (tanh’15)koﬁ (1 — 1/k?) = 1/2 tanh='(3) > 0.
=2

Let f=Boh. By assumption {z,} and {z,} are necessarily close

sequences with
lim f(2,,) = limB(k(z,,)) = limB(w,,) =0

and | f(z:)] = | BN = |Bw;,)] =1/2tanh™1(5) >0. By a theorem of

Lappan (7, Theorem 3, p. 156], f is not normal and the proof is complete.
The previous theorem suggests that the normality of g does not insure

the normality of f. An even stronger statement is the following result.

THEOREM 4.  There exists a homeomorphism h of D onto D with the property:
If g is a normal meromorphic function in D, which has two distinct asymptotic limits,
then the light interior function f = goh is not normal.

Since a bounded holomorphic function in D is normal and possesses
uncountably many distinct radial limits we obtain the following corollary.

CorovrLLARY. There exists a homeomorphism h of D onto D with the property:
If g is a non-constant bounded holomorphic function in D, then the bounded light

intertor function f = go h is not normal.

Proof of Theorem 4. Let {R,} be a strictly increasing sequence of non-
negative real numbers with R, =0 for which p(R,, R,+;) = 1/u.  Define the
mapping . in D by

h(z) = h(re*) = r exp (i0 + 2ai(r — Ry)[(Ruri — Ra))

for R,<r< R, =12,---). It is easy to verify that 2z is a homeo-
morphism of D onto D.

Since g has two distinct asymptotic limits, a theorem of Lehto and
Virtanen [8, Theorem 2, p. 53] implies that g has two distinct radial limits.
Let z, and ¢; be the radii which terminate at the points ¢* and e, res-
pectively, for which g(re**) > a and g(re®) — b with b+ a.

Now the radii of D are mapped onto spirals by 271, Let A7(z,)N[R,y Ry+1)
=z, and AU c)N[R, Ruei) =24.  Then p(z2,,20) < p(R, Ryey) = 1/n with
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f(z,) = g(h(z,) > a and f(z;) = g(h(z;)) > b. Hence, by a theorem of Lappan
[7], f is not normal and the theorem is proved.

5. Sufficient conditions for f normal
We now determine conditions on % and g which insure the normality
of f. Since the composition of two uniformly continuous functions is uni-

formly continuous the first result in this direction is obvious.

TuEOREM 5.  Let h be a homeomorphism of D onto D which is HUC. If
g is a non-constant normal meromorphic function, then the light interior function
f=g9oh is normal. Furthermore, if both h and h™' are HUC, then g is normal
if and only if f is normal.

Let f be a light interior function in D with factorization f = go s with
h a K-quasiconformal homeomorphism of D onto D. We show that f is
normal if and only if g is normal. This result was proved by Viisiala [11,
Theorem 5, p. 20] whose proof is considerably different.

TuEOREM 6. If h is a K-quasiconformal homeomorphism of D onto D, then
both h and h=* are HUC. '

THEOREM 7. Let f be a light interior function in D with factorization
f=goh with h a K-quasiconformal homeomorphism. Then f is normal if and
only if g is normal.

Proof of theorem 6. Since h is K-quasiconformal, by a theorem of Mori
[9]1 ~~' is also K-quasiconformal. Hersch and Pfluger [5] have shown that
if & is K-quasiconformal then p(k(z2), k(2’)) <¥«x(p(z,2')) where ¥, is con-
tinuous and strictly increasing and defined for all ® =0 with ¥,(0) =0. It
follows easily that % is HUC. Similarly 427! is HUC and the theorem is
proved.

Proof of theorem 7. From Theorem 6 both % and k™' are HUC. By
Theorem 5, f is normal if and only if g is normal and the theorem is
proved.

DerFiNiTION 3. Let h be a homeomorphism of D onto D. Define the set
F(h) as follows: e*cF(h) if there exist close sequences {z,} and {z,} and a
8 >0 for which p(h(z,), h(z,)) =05 and h(z,)—> e*.
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TuEOREM 8. Let h be a normal homeomorphism of D onto D. If g is a
non-constant normal meromorphic function which s continuous on DUF(h), then the
light interior function f = goh is normal.

Proof. If f is not normal there exist close sequences {z,} and {z;} such
thatTf(z,) > a and f(z])—>b with b=a [7]. It follows from the normality
of g that {i(z,)} and {k(z;)} are not close. Choosing a subsequence of {z,}
and a corresponding subsequence of {z;} if necessary, we may assume that
h(z,) = et and h(z.) — e with e?eF(h). But ¢ is continuous on DUF(k)
and hence & = lim f(2;) = lim g(k(2,)) = limg(A(z,)) = lim f(2,) = @ which is a
contradiction. Therefore f is normal and the proof is complete.
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