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NORMAL LIGHT INTERIOR FUNCTIONS

DEFINED IN THE UNIT DISK

J.H. MATHEWS

1. Preliminaries

Let D be the unit disk, C the unit circle, and / a continuous function

from D into the Riemann sphere W. We say that / is normal if / is uni-

formly continuous with respect to the non-Euclidean hyperbolic metric in D

and the chordal metric in W. Let χ(w19w2) denote the chordal distance

between the points ιvl9w2€ΞW; and let p{z19z2) denote the non-Euclidean

hyperbolic distance between the points ^ ^ ε e D [6], If {zn} and {z'n} are

two sequences of points in D with p{zn9z'n) ->0, we say that {zn} and {z'n}

are close sequences.

Let A be an open subarc of C, possibly C itself. A Koebe sequence

of arcs relative to A is a sequence {Jn} of Jordan arcs such that: (a) for

every ε > 0,

: \z — a\ < ε for some a<=A}

for all but finitely many n9 and (b) every open sector Δ of D subtending

an arc of C that lies strictly interior to A has the property that, for all but

finitely many n, the arc Jn contains a subarc Ln lying wholly in Δ except

for its two end points which lie on distinct sides of Δ.

We say that the function / has the limit c along the sequence of arcs

{/»} (denoted by /(/J->c) provided that, for every ε > 0, %(c,/(/J)<ε

for all but finitely many n.

2. Factorization of light interior functions

Let / be a light interior function from D into W9 i.e. / is an open

map which does not take any continum into a single point. Church [4,

p. 86] has pointed out that / has the representation / = g o h where h is a
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homeomorphism of D onto a Riemann surface R and g is a non-constant

meromorphic function defined on R. In view of the uniformization theorem

[1, p. 181], there exists a conformal mapping φ of R onto either the unit

disk or the finite complex plane. We will be concerned with the case when

the range of ψ is the unit disk, but remark that similar results hold when

the range is the complex plane. Therefore, if / is a light interior function

from D into W then / has a factorization f = g o h where h is a homeomor-

phism of D onto D and g is a non-constant meromorphic function in D.

Conversely, if h is a homeomorphism of D onto D and ^ is a non-constant

meromorphic function in D then the function f = g ° h is light interior.

DEFINITION 1. Let h be a homeomorphism of D onto D. If h is uniformly

continuous with respect to the non-Euclidean hyperbolic metric in both its domain and

range then we say that h is HUC.

DEFINITION 2. Let f be a light interior function in D with factorization

f = go h. If h is HUC then f has a type I factorization; otherwise f has a type

II factorization.

THEOREM 1. If f is a light interior function in D then f has a unique

factorization type.

Proof. Let / have the factorization f=g°h. Suppose / also has the

factorization f = G ° H. Then as pointed out by Church [4, p. 86] h o H'1

is a conformal homeomorphism. In view of Pick's theorem [6, Theorem

15. 1.3, p. 239] both h o H'1 and h'1 o H are HUC. Since the composition

of two uniformly continuous functions is uniformly continuous, it follows that

h is HUC if and only if H is HUC; and the proof of the theorem is com-

plete.

3. Necessary conditions for both f and g normal
Noshiro [10, p. 154] has divided the class of normal meromorphic functions

in D into two categories which are defined as follows: A normal meromor-

phic function g in D is of the first category if the normal family \g( α ~_ g j :

admits no constant limit; otherwise g is of the second category.

THEOREM 2. Let f be a normal light interior function with factorization

f — goh. If g is a normal meromorphic function then h is normal. Furthermore,

if g is a normal meromorphic function of the first category then h is HUC.
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Proof. Let / have the factorization / = goh. If h is not normal there

exists close sequences {zn} and {zή} such that h{zn)->eia and h(z'n)-±eίβ with

0 < β — a < 2π [7]. For each integer n, let Jn be the non-Euclidean geodesic

joining zn to z'n. Then {h(JJ} is a sequence of Jordan arcs such that for

every ε > 0,

h(Jn)a{z<ΞD:l-ε< \z\<l}

for all but finitely many n, and the end points of h(Jn) tend to eίa and eiβ.

Choosing a subsequence of {h(Jn)) if necessary, we may assume that there

exists a Koebe sequence of arcs {Ln} relative to either the open arc (a,β)

or the open arc (β,a + 2π) with Lntzh(Jn), and a constant c such that

From the normality of/we have /(/J->*c, and it follows that g(

By a theorem of Bagemihl and Seidel [2, Theorem 1, p. 10], g^Ξc in vio-

lation of our hypothesis. Therefore h is normal and the proof of the first

part is complete.

Now assume that g is a normal meromorphic function of the first cate-

gory. If h is not HUC there exists close sequences {zn} and {zή} and a δ > 0

with p{h{zn), h{z'n))>.δ, and a constant c such that f{zn)-ϊc.

Let SΛ(z) = ( * W - « ) / ( l - * W 2 ) and let Gn(s) = g(Sn(z)). Then the

normal family {Gn} has a subsequence which converges uniformly on each

compact subset of D to a meromorphic function G [8, p. 53]. Let Jn be

the non-Euclidean geodesic joining zn to z'n and let LΛ = h{Jn). Then

d{LJ - d(SZι{Ln))^δ, where rf(E) is the hyperbolic diameter of the set

EaD. From the normality of / we have f(Jn)-±c, so that g{Ln)-+c, and

hence Gn(Sΰι(Ln)) -> c. For r {O^r^δ) fixed, there exists a point Zn<=Snl(Ln)

such that p[0,Zn) = r. Let Zo be a cluster point of the sequence {Z }̂ on

the circle {z : p(0,2) = r}.

Choosing a subsequence of {Gn} if necessary, we may assume that

Z ^ - ^ Z Q and Gn(Zn)-*c. A familiar argument (see e.g. [3, p. 179]) in the

theory of continuous convergence shows that G{ZQ) = c. Since r {O^r^δ)

was arbitrary, 0 is a limit point of values for which G assumes c and hence

G = c in violation our hypothesis. Therefore h is HUC and the proof of

the theorem is complete.
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4. Bounded non-normal light interior functions

Every bounded holomorphic function is normal, but the following result

shows that boundedness is not sufficient for a light interior function to be

normal.

THEOREM 3. If a homeomorphism h of D onto D is not HUC, then there

exists a Blaschke product B in D such that the bounded light interior function

f — B o h is not normal.

Proof If h is not HUC there exists close sequences {zn} and {z^} and

a δ>0 such that p{h(zn), h(z'n))>.d. Let h(zn) = wn and h{z'n) = w'n. Since

h is uniformly continuous on compact subsets we necessarily have that

l s J - H , |Zn|->l, \wn\-*l, and \w'n\-+l. Hence, choosing a subsequence

of {wn} if necessary, we may assume that {wn} is a Blaschke sequence, i.e.

2 (1 — \wn\) < oo. There exists a Blaschke subsequence {wnk\ of {wn} and
M = l

a corresponding subsequence [wήk] of {w'n} for which p(Rk-l9rk)>. tanrr^l—1/fc2)

where r* = min {I wnJ, |M/£J} and i?fc = max {| wnjt |, |wίj}.

It follows easily that

^l - l/(fc + I)2) (1 < fc < i)

^l - I/A2) ( l<y<fc),

and hence

1 - 1/(A + I)2

Recall that p(wΛk, wήk)

1 -

(k = 1,2, •) so that

tanh"1^ > 0 (fc= 1,2,

Set g )

Consider B(wή) for y;>l,

ΐi1

- wnkwnj — wnwn.
π 1 -
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) ( / ( l ) 2 ) Π (1 - I/A;2)
k=l k=j+l

= (tanh-1^) Π (1 - I/A;2) = 1/2 tan/z"1^) > 0.
Jc=2

Let f = B o h. By assumption {zΛk} and {zήj are necessarily close

sequences with

YimfizJ = YimB{h{zJ) = \ΊmB{wJ = 0

and | / « ) I - |fi(A«))I - | £ ( < ) | > 1/2 tanrr1^) > 0. By a theorem of

Lappan [7, Theorem 3, p. 156], / is not normal and the proof is complete.

The previous theorem suggests that the normality of g does not insure

the normality of /. An even stronger statement is the following result.

THEOREM 4. There exists a homeomorphism h of D onto D with the property:

If g is a normal meromorphic function in D9 which has two distinct asymptotic limits,

then the light interior function f = g o h is not normal.

Since a bounded holomorphic function in D is normal and possesses

uncountably many distinct radial limits we obtain the following corollary.

COROLLARY. There exists a homeomorphism h of D onto D with the property:

If g is a non-constant bounded holomorphic function in D, then the bounded light

interior function f = g o h is not normal.

Proof of Theorem 4. Let {Rn} be a strictly increasing sequence of non-

negative real numbers with Rί = 0 for which p(Rn9 Rn+i) — Vn Define the

mapping h in D by

h(z) = h(reίθ) = rexp (iθ + 2πi(r - Rn)l(Rn^ - RJ)

for Rn^r< Rn+1 (w = 1,2, •)• It i s e a sY t° verify that h is a homeo-

morphism of D onto D.

Since g has two distinct asymptotic limits, a theorem of Lehto and

Virtanen [8, Theorem 2, p. 53] implies that g has two distinct radial limits.

Let τa and τβ be the radii which terminate at the points eίa and eiβ, res-

pectively, for which g(reίa)-±a and g(reίβ)->b with b ψ a.

Now the radii of D are mapped onto spirals by h"1. Let h^iτ^ΠίR^Rn+i)

= zn and h-'iτβ) n[R n , Rn+1) = z'n. Then p{zn9 zr

n) < p{Rn, Rn+1) = \\n with
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/ ( z j = 9(h{zn))-±a and f(zή) = g{h{z'n))-±b. Hence, by a theorem of Lappan

[7], / is not normal and the theorem is proved.

5. Sufficient conditions for / normal

We now determine conditions on h and g which insure the normality

of /. Since the composition of two uniformly continuous functions is uni-

formly continuous the first result in this direction is obvious.

THEOREM 5. Let h be a homeomorphism of D onto D which is HUC. If

g is a non-constant normal meromorphic function, then the light interior function

f=g°h is normal. Furthermore, if both h and h~ι are HUC, then g is normal

if and only if f is normal.

Let / be a light interior function in D with factorization / = g o h with

h a Z£-quasiconformal homeomorphism of D onto D. We show that / is

normal if and only if g is normal. This result was proved by Vaisala [11,

Theorem 5, p. 20] whose proof is considerably different.

THEOREM 6. If h is a K-quasiconformal homeomorphism of D onto D, then

both h and h"1 are HUC.

THEOREM 7. Let f be a light interior function in D with factorization

f = g o h with h a K-quasiconformal homeomorphism. Then f is normal if and

only if g is normal.

Proof of theorem 6. Since h is X-quasiconformal, by a theorem of Mori

[9] h~ι is also X-quasiconformal. Hersch and Pfluger [5] have shown that

if h is iί-quasiconformal then p{h(z), h(z'))^Ψκ{piz,zf)) where Ψκ is con-

tinuous and strictly increasing and defined for all x ̂  0 with Ψκ{0) = 0. It

follows easily that h is HUC. Similarly h"1 is HUC and the theorem is

proved.

Proof of theorem 7. From Theorem 6 both h and h'1 are HUC. By

Theorem 5, / is normal if and only if g is normal and the theorem is

proved.

DEFINITION 3. Let h be a homeomorphism of D onto Ό. Define the set

F(h) as follows: eiθ^F{h) if there exist close sequences {zn} and {zή} and a

δ>0for which p(h{zn), h{zf

n))^d and h{zn)-+eίθ.
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T H E O R E M 8. Let h be a normal homeomorphism of D onto D. If g is a

non-constant normal meromorphic function which is continuous on D\jF{h)9 then the

light interior function f = g o h is normal.

Proof If / is not normal there exist close sequences {zn} and {z'n} such

&aty/(sn)-*Λ and /(«£)-> δ with b ψ a [7] It follows from the normality

of g that {h{zj} and {h{z'n)} are not close. Choosing a subsequence of {zn)

and a corresponding subsequence of {Zn} if necessary, we may assume that

h(zn)-+eίθ and h{zή) -> eίθ with eίθ^F{h). But g is continuous on DΌF(h)

and hence b = lim/(X) = lim#(/z(Zn)) = limflr(A(«J) = \\mf{zn) = α which is a

contradiction. Therefore / is normal and the proof is complete.
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